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Multisensor Image Segmentation Using
Dempster—Shafer Fusion in Markov Fields Context

Azzedine Bendjebbour, Yves Delignon, Laurent Fouque, Vincent Samson, and Wojciech Pieczynski

Abstract—This paper deals with the statistical segmentation of these different methods prove rather tedious. However, different
multisensor images. In a Bayesian context, the interest of using simulations and real image segmentation results presented
hidden Markov random fields, which allows one to take contex- i, gifferent papers attest that the parameter estimation step
tual information into account, has been well known for about 20 d t the effecti f th | ter based
years. In other situations, the Bayesian framework is insufficient oes not lessen the e _ec IVeNess of the real parameter base
and one must make use of the theory of evidence. The aim of our Methods. We may mention [7] and [44] for EM-based methods,
work is to propose evidential models that can take into account [43] for SG-based methods, [5], [19], [24], [31], and [32] for
contextual information via Markovian fields. We define a general jterative conditional estimation (ICE)-based ones, and [2], [21]
evidential Markovian model and show that it is usable in practice. ¢ gifferent other methods. Most of these papers treat one
Different simulation results presented show the interest of eviden- . H th It ) ite simil
tial Markovian field model-based segmentation algorithms. Fur- Sensor image. However, the mu. ISensor cas.e IS quite simifar
thermore, an original variant of generalized mixture estimation, t0 the one sensor case, at least in the Gaussian and reasonable
making possible the unsupervised evidential fusion in a Markovian SNR case, which is usually considered ([41], among others).
context, is described. It is applied to the unsupervised segmenta-  So roughly speaking, when a HMM, possibly with unknown

tion of real radar and SPOT images showing the relevance of the 5.9 meters;, is well suited to the data considered and when the
proposed models and corresponding segmentation methodsinreal ™ .~ . . . e .
noise is not too strong, there is no serious difficulty in per-

situations. X .

Index T 5 . ati data fusi b forming segmentation.

ndex Terms—Bayesian segmentation, data fusion, Demp- : . -~
ster-Shafer combination rule, generalized mixture estimation, The purpose of our work is to extend, using the theory of ev

hidden Markov fields (HMF), iterative conditional estimation iO_'e”CF—‘ [1]" [15]7_ [34], [37], these W?" known methods'tc.) some
ICE, multisensor image segmentation, theory of evidence. situations in which the use of classical HMFs poses difficulties.

Of course, the use of theory of evidence in image processing
is not new and has already given satisfactory results in var-
ious problems, like medical image classification [4] , or SAR
HIS PAPER addresses the problem of unsupervis@dage interpretation [39]. So the originality of our approach
statistical segmentation of multisensor images. We to use this theory in a Markovian context. In fact, when the
place ourselves in the context of hidden Markov field (HMF)pixel-by-pixel” multisensor image segmentation is concerned,
models, which have shown their effectiveness over the pdse theory of evidence can be useful in numerous situations. For
two decades. The success of these models is mainly duesxample, if we have two classes, “forest” and “water,” and if
the following two properties. First, they allow one to takeve know that the proportion of forest is between 20% and 30%
into account the spatial interactions between pixels, whig¢ko the proportion of water is between 70% and 80%), we can
can render different Bayesian methods of segmentation vempdel this knowledge putting 20% on the class forest, 70% on
effective. The pioneering papers [2], [13], [21], [23] have beethe class water, and 10% on the class “water-or-forest.” This
followed by many others and, understandably, only a smaltior knowledge is then merged with the knowledge provided
part of this rich bibliography can be mentioned (numerousy the observation via the Dempster—Shafer combination rule,
references can be found in [6], [8], [16]). Second, the parametesulting in a probability measure, which then appears as a gen-
estimation problem can be solved by different general methogiglization of the classical posterior probability. An analogous
like estimation—maximization [10], stochastic gradient [43process can be applied when the priors are known exactly but
or iterative conditional estimation [25] among others. Thisne of sensors is very noisy and its probabilistic model (distri-
results in numerous possibilities of unsupervised segmentattmrtion of the noise) is very unreliable. Another example, which
methods, in which all hidden Markov model (HMM) paramwill be treated in some detail in this paper, is the following: the
eters are estimated in a previous step. Theoretical studiegpadportions of the two classes and the noise distributions are
well known. However, there are some clouds. As we will see in
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we specify some elements of the theory of evidence and specifys then possible to perform the segmentation by the maximum
in the simple pixel-by-pixel context, how they can generalize threeposteriori(MAP) method
classical Bayesian image segmentation methods. Section IV is

devoted to a new “evidential” HMF model we propose. Different Smar(y) = arg max PX =z/Y =y] (2.4)
experiments, related with synthetic or real images, are presented zeqfer
in Section V. Section VI concludes the paper. or the maximum posterior mode (MPM) method
[l. MULTISENSORHIDDEN MARKOV FIELDS Vs €S smpm(s, y) = argmax P[X, =w/Y =y|. (2.5)
wC2

We recall in this section the classical multisensor hidden ] )
Markov field (MHMF). Given the sef of pixels, we consider The first problem can be solved by the simulated annealing of
two sets of random variable¥ = (X,).cs, ¥ = (Y3)scs Gemaret al.[13] and the second one by the algorithm of Mar-

called “random fields.” Form sensors. eachy. takes its roguinetal.[23]. Let us also mention the iterated conditional
. L] 5

values in a finite set of classés = {wi, ..., wx}, and each mode (ICM) of Besag [2], which is a fast approximation of the

Y, = (Y}, ..., Y/") takes its values iR™. The segmentation : _
problem consists of estimating the unobserved realizationRémark 2.1:Letus comment on the hypotheses 1)- 3) men-

X = z of the field X from the observed realizatiori = v tioned previously, some of which appear as rather strong, at least
of the field Y, wherey = (ys)scs are m digital images in some situations. Although quite unrealistic, 1) generalizes the
1 - $/8

representing the same scene. It is then generally solved by t8ite noise,” notion thatis widely used in signal processing. In
use of a Bayesian strategy, which is optimal with respect faCt: in Gaussian case, if we consider= (B, )¢ s the random
some criterion. field of white Gaussian noise with unit variance for each vari-

The field X = (X,),cs is said to be Markovian with respect@P!e5s, we haveY, = mx, + ox, B;. Although open to criti-
to a neighborhood if its distribution can be written as cism, such models are currently used in image processing based
on HMF models and seem to be very robust. In other words, this

Px[z] = e V@) (2.1) obviously wrong hypothesis does not significantly undermine,
at least in situations described in different papers, the applica-
with bility of the different processing steps. So we will keep it for this
paper and offer some remarks about possible extensions in per-
Ulz) = Z We(e) (2.2) spectives, Section VI. The hypothesis 2) does not seem overly
c€l strong. The hypothesis 3) can be removed at this stage, however,
where it will be useful when considering “evidential” sensors. Now,
E set of cliques (a clique being a subseiahat is either SENSOrs can r_eally be_ ipdepgndent in some situations, and t_hus
a singleton or a set of pixels mutually neighbors wit#f? such situations 3) is justified. Some further remarks on this

respect toV); hypothesis will be developed in Section VI.

To restriction ofz to ¢;

¥,  function, which depends anonly and which takes its lll. DEMPSTER-SHAFER COMBINATION RULE IN
values inR. PIXEL-BY-PIXEL CONTEXT

In order to define the distributions af = (Y)scs conditional | et us position ourselves at one pixel and consider the fol-
onX = (AS)SES, we will assume that the f0||0WIng three Con'lowing prob'em_ We have two class@s— {wlv UJQ} with the

ditions hold. prior probability given byr; = Px_[wi1], 72 = Px,[w2] and
1) The random variableg’;) are independent condition- two images of a same scene: a radar image and an optical one.
ally on X. The radar image is very noisy, which is modeled by two noise
2) The distribution of eacli; conditional onX is its dis-  distributionsg; andgi. The optical image is not very noisy, but
tribution conditional taX;. there are some clouds. So in spots without clouds, the grey level
3) The random variabley}, ..., Y are independent is distributed according to a probability densitj for the first

conditionally onX; (i.e., the sensors are independentglass, and it is distributed according to a probability dengjty
Due to theses hypotheses, all the distributiond’ofondi- for the second class. In spots hidden by the clouds, the grey
tional on X are defined fok classes by x m distributions on level is distributed according to a probability densify. The
R. To be more precise, let’ denote the density of the distri- problem is to decide, from the observ(e@l) = (Z;) whether
bution of Y/ conditional toX, = w;. Thus, the distribution of the pixels belongs to the class one or to the class two. If there
(X, Y') is defined by the function¥. and the densitieg/. The were no clouds, i.e., i§? = 0, the fused information would be
posterior distribution ofX is expressed, according to the classical probabilistic model, by the

robability p¥s - ¥°
PIX =2/Y =] ProvaRIY

o PPV () = g1 ()9t (v2)
=y exp|— |U@) =Y log | [ £ (+)) 9l (DR (W2) + 93 (yh) g3 (v2)
s€S j=1 1y, 1N 27,2
pyi,yg (w2) _ gQ(ys )92 (ys) (31)

(2.3) g1 ()i (W?) + g5(uh)gs (w3)
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Furthermore, in the Bayesian context, the probakybliféyy§ can So in the presence of clouds, the probability (3.2) becomes
be fused with the prior probability = (71, 72), wherer; =
m(w1) andwy = w(ws), resulting in the posterior probability (W @pyi ® My?) (w1)
s s
e _ mgi (ws)lg? (2) +92 ()]
P () = 100)01(0) m1gE D g3 () + 92 W)+ a9 (D o3 (w2) + 92 (42)]
m191(¥3)91 (U2) + 7295 (y3) 95 (y2) o ,2
(7r @ pYs @ My5> (w2)

L, 1N42(,,2
v 293 (Y5)9(5)
7Y ¥s (wy) = . (3.2 L, AN 2(,,2 20,2
2) =TGR 2) + magh (Vg3 ) () AU A0 I
. . . i i 91 (ys)[gl (ys)+gc (ys)]+7r292(y5)[92(y5)+gc (ys)]
Finally, we can say that we have three probability distributions (3.4)

defined onQ = {w;, wo}: the prior probabilitys, the proba-

bility pv: defined by the observation in the first sensor by We can see, according to (3.2) and (3.4), how p¥> & MY:

11 11 generalizes the classical posterior distribution. When there are
o= W) o 9(W) o clouds, i.e.g? = 0, the Dempster—Shafer fusion resul
p¥ (w1) » pYe(w2) c
1( 1) + 1( 1) 1( 1) + 1( 1) 1 2 . . el 02
91\Ys) T 92\Ys 91\Ys) T 92\Ys pY¥s @ MYs becomes the classical posterior probabitity: v .

. o In a general way, let us consider a set of classes
and the probability¥- defined by the observation in the secong, _ {wi, ..., w}, the power seQ* = {Q, ..., Qo)

sensor by of 2, andm + 1 mass functiondZy, M1, ..., M,,, which are
) probabilities or2*. Recall that if a mass function only charges
2 () 2 95(y2) i i imi i il
pY (wy) = 91\Ys Yo (ws) = =22 the singletons, it can be assimilated to a classical probability

G (y2) +g5(y2) gi(w2) +95(¥2)"  onqQ. Such a mass function will be called “Bayesian” or “prob-

. . . . abilistic.” Roughly speakinglM, models the prior information
The posterior probability (3.2) is “‘eﬂ .5'”7'?'3/2 the normalénd My, ..., M,, models the information contained in the
ized product of these three probabilities¥-:¥-(w) observation ofn sensors. The Dempster—Shafer combination

oyl 42 'zl,'zg 'zi 'zg N ) A
mpYe (wl)p‘{s (w1), ,"’md”‘,}S Y (w?) o map? ,(WQ)pJ (w2). So rule, which enables one to aggregate these different pieces of
the “Bayesian fusion” simply is a normalized product. HOW t5rmation  is as follows:

does one generalize this fusion to take the presence of clouds

into account? One possible way of using the theory of evidence m

is the following. For the optical sensor, there are three classes: M(A) = _1 Z H M;(A) (3.5)
O = {w1, wa, ¢}, wherec is the class “clouds.” However, we 1= Ao NAm=AZD | j=0

are only interested in whether a given pixelis or ws. Thus,

if it is a “cloud” pixel, we have no information about; or with

wa. In the theory of evidence, such a situation is modeled by

considering a probability/ onQ* = {{w1}, {w2}, €}, which i

is called a “mass function.” The prc;{éabi}iit);{ @‘,}whi}éh is the H= 3 M40 (3.6)
probability of ¢, models the uncertainty due to the presence of AoN-NAm=3 | j=0

clouds. Here this mass function is naturally defined by This defines a probability oft*, which will be denoted by// —
My M, & --- & M,,. We have the following well known

M (fun}) = o1(s;) property
' 7= 2¢.2 20,2 2(n2 '
g1(v;) +92(3) + 92(v2) Proposition 3.1:If at least one mass function among
i 3 (2) .MO’ My, s M, is probabilisticM = Mo M, ®-- - B M,
MY ({wa}) = 202 T 200 £ 2D is probabilistic.
and ILNYs) T 92\5) T 9e (s Returning to our segmentation problem, we simply replace,
, 2(42) at a given pixel? = {w, ..., wi} by the power sef2* of
MY (Q) = e \Ys . the power sef2* = {2, ..., 2} of €. Thus, in the same
2( 2) + 2( 2) + 2( 2) . - b .
I1\Ys) T 92\Y5) 7 9e W5 manner as in the classical case, we now consider that we have

I = 2 — 1 classes. Thé< x m densities of the distribu-
tions of Y/ conditional toX, = €;, which correspond to the
densitiesf; of the classical model, will be denoted by. For
a given observatioy, = (3%, ..., ™), the mass functions
My, ..., M,, are defined by

Furthermore, the Dempster—Shafer combination rule, which
. gn . 1
specified in the general case below, allows one to fusg’s,
2 ., .
and MY in the following manner:

(7r @pysl ey My§> (w1) 7r1pysl (w1) [Myg (w1) + MY (Q)}

ay(eny = S0 (3.7)
> i)
q=1

1

(7r @pyl P MyQ) (wa) o map¥s (w2) [MyQ (w2) + MyQ(Q)} .
(3.3)
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and My, modeling the prior information, is independent of thevhich extends to the evidential sensors case the classical poste-
observationy, = (4%, ..., ¥™). However, remember that for arior probability.

given {2;, we can haveM,;(©2;) = 0 for some sensorg, and We have seen that in the classical HMFs case, the use of dif-
M;(Q;) # 0 for some others. The whole information, fronferent Bayesian classification methods was possible because of
which we must perform the segmentation, is then representad Markovianity of the posterior distribution éf. So we have

by M = My & M; & --- @ M,,. There exist different deci- to verify that the probability distributio®’y & M, is a Markov

sion rules, for instance the classical Bayesian decision, in ttistribution.

case of probabilistidZ. In order to simplify things we willcon- ~ We have the following.

sider in this paper that eithéd,, or at least one mass function Proposition 4.1: Let us assume that{, is a Markov field
amongMy, ..., M,,, is probabilistic. Thus)M is probabilistic with Mo[z] = ve V@ andU(z) = egf%(we) [(2.1) and

by virtue of Proposition 3.1, and our segmentation rule will b 2)], and letM,, be the mass function defined by (3.7) and
the Bayesian rule corresponding to a given loss function.  (4.2). ThenM, ® M, is a Markov field whose distribution is the

Remark 3.1: As noticed in the simple case above, the evide’ame as the posterior distribution f, classically corrupted
tial model is a generalization of the classical Bayesian modeljith the independent noise

the following way. When all mass functiodg,, M, ..., M,,
are probabilistic, then the mass functibh= Mo ® M, & - - & hi(ys) = > ga,(ys) (4.3)
M,,, is simply the posterior distribution of ;. AJwiCA,

Remark 3.2: The pixel-based approach described previously
can actually be applied to other problems of classifying obje

that are “spatially” independent. D mo .
Remark 3.3: AssumingM, probabilistic, we obtain a“gen-  9a.(ys)= , " _ , y ®/ NEAAIE
eralization” of the classical Bayesian theorem. In fact, the prob- I tm s J=1

ability distribution we obtain generalizes the classical posterigrO the energy oy @ M.... is generally computable an(g.t4h)us
distribution. However, the situation here is different from th gy oMo sen 15 9 y P '

context of the Generalized Bayesian Theorem of Smets [3 e classical segmentation methods can be used.

M, & --- & M,, is defined by the observatiopy?, .. ., y™), Proof.

and it does not depend on the classe&in My @ M, [z]

IV. DEMPSTER-SHAFER FUSION IN MARKOV FIELD CONTEXT x>y <M0[a:] x ] 5. (ys)>
xCB sCS

Let us consider that/, is a classical Markov field, as in Sec-
tion Il, and we haven sensors, which possibly are evidential. x Z efe;w’e(we) % H 9. (ys)
We are looking for a consistent generalization of the classical o
HMM recalled in Section Il. In the classical case and according By
to the hypotheses 1)— 3), the distribution of the figld Y) is — ¢ &7 (o) Z H 95.(ys). (4.5)

z€EB s€S

r€ERB s€S

P —P a |
= (y)’" On the other hand, knowing that € B] & Vs € S z, €
= Px(x) H H £ (). (4.1) B,], we have

s€S j=1
s) ) = ) | - 4.6
First, according to the pixel-by-pixel approach specified in the ;; <£[SQBS (v )> 11 <§ 98.(y )) (4.6)
previous section, we propose replacing the Bayesian fusion ' ' He e

ITj-, fi (y2) by the “evidential fusion” of the previous Equations (4.5) and (4.6) give

section:M,, = M! @ ... & M™, with eachM? defined by

(3.7). Second, the consistency with the classical model leads us Mo @ My[x]

to keep the produd]], . s, which models the spatial indepen- DY delze)

dence, conditionally on the class process, of the observations. ece oer H Z 98, (Ys)
Finally, the information contained in the observatibon= ¥

will be mod_eled by the_ mass functidd,, defined on eachl = — ; Ye(ze) H ha. (115) 4.7)

(As)ses, with eachA, in © by

s€S \x,€B,;

s€S

M, A= || M, [A] = Ml - @M™[4,] 4.2 which completes the proof.
o4 H o] H( ' S 42 Finally, when at least one sensor is evidential, their fusion

is easily done in the pixel-by-pixel way. When at least one of
So the productPx (z) f.(y), which is in the classical case athem is probabilistic (as in the simple example of clouds in op-
“Bayesian fusion” of the prior probability with the piece of ev4ical and radar images above), the result of the fusion is a prob-
idence provided by the observation, must be replaceftpys  ability measure and then the posterior Markov distributioX of
M, which is a probability according to the Proposition 3.1, anid obtained as in the classical case, V\MI:Y’:1 f;’_@ (y9) in (2.3)

sCS sCS



BENDJEBBOUREet al. MULTISENSOR IMAGE SEGMENTATION 1793

replaced by the fused probabiliy,,. . If all sensors are eviden-
tial, [T/~ i, (y3) in (2.3) is replaced with (4.3).

Remark 4.1:Let us notice that the model we propose ap-
pears, with respect to the richness of possibilities of the theory
of evidence [11], [35], [38], [40], as a quite particular one. This
particularism is mainly due to the particular form &f, de-
fined by (4.2). However, even in this particular setting, the fu-

sion is workable and it extends the possibilities of the widely Lmuge | i e
used HMFs. Realizmion of the cless Realestion of the consosaiil
Nickl, Blask: class a, grey Fiedd. Block: class &, grev

Remark 4.2:We have assumed that all sensors were con- Al B and whistéc chass T
cerned with the same frame of discernm@ntHowever, when ] : T Mg
sensors are concerned with partially overlapping frames, there
exist different, more general methods of evidential fusion [17],
[38] that may be used in the context considered in this paper.

Remark 4.3: The Markovian approach described in this sec-
tion can also be applied to other problems of classifying ob-
jects. The main property to be verified is some spatial interac-
tion among classes of considered objects, and this interaction
can be reasonably modeled by a Markov field distribution.

V. EXPERIMENTS

This section is devoted to three series of experiments. In
all series, we consider four algorithms: two local algorithms
and two global ones. Algorithm global Bayesian (GB) is the
classical probabilistic MPM algorithm, which uses the sole
Bayesian sensor. Algorithm global evidential (GE) is the new
algorithm described in the previous section. In the same way,
blind Bayesian (BB) will denote the classical Bayesian, which
will use the sole Bayesian sensor, pixel-by-pixel method.
Finally, we will call blind evidential (BE) the method which
will use the fused information from the both Bayesian and
Evidential sensors, in the pixel-by-pixel way. The aim of the
experiments is to study how the use of the evidential sensor can
improve the segmentation methods which use the only Bayesian
sensor, in pixel-by-pixel way as well as in the Markovian one.

The first series of experiments, described in the Section V_Ri,g. 1. Segmentation of noisy images corresponding to the case 9, Table I.
is concerned with some hand-drawn images. Section V-B is de-
voted to the unsupervised fusion using an original variant of the
generalized mixture estimation [9], [14], and in the last Sec. TABLE |

ESULTS OFSEGMENTATIONS WI

. . TH DIFFERENTMETHODS IN THE CONSONANT
tion V-C, we present some results of real world images SegmeNtase: 4 = {a}, B = {a, b}, AND C = {a, b, ¢}. NOISE STANDARD

tation. DEVIATION EQUAL TO ONE. BM: BAYESIAN MEANS, CM: CONSONANT MEANS
A. Simulated Images Case EM M Eror Rate
a b |c |A |B |c BB |BE |GB |GE

Let @ = {a, b, c} be a set of three classes ap{f?} the 1 lo 13 [6 |o |3 j6 |81 |687 1065 | 045
power set of©2. We will consider two cases. In the firstone, 2 fo |2 [4 [o |2 |4 [1937 1791 201 | 175
the evidential sensor is a consonant one, which means thatthe s o |1 [2 |0 |1 12 [37.75 |38.68 |7.26 |10.04
mass function defined by this sensor is a probability3in= 4 o |1 |2 o |2 14 |3775 [34.05 [7.26 | 665
{4, B, C} with A = {a}, B = {a, b}, andC = {a, b, c}. 5 Jo |t |2 Jo |4 |8 [3775 |2946 |726 | 450
According to the general fusion rule, fpra probability orf2 = 6 |0 Jos |1 |o |2 |4 ]49.01 |43.65 2070 [16.89
{a, b, ¢} andgq, a probability onQ* = {A, B, C}, the result 7_10 o5 [1 |o |4 |8 |49.01 |37.54 [20.70 | 8.62
of the Dempster—Shafer fusion= p ¢ ¢ is the probability on 8 10 10210410 |2 |4 [5573 |4832 |46.16 |30.24
Q = {a, b, ¢} given byr(a) x p(a)[g(4) + ¢(B) + ¢(C)], 9 o Jo2 |o4 |0 |3 |6 [5573 |42.86 |46.16 |17.02
r(b) x p(b)[g(B)+q(C)], andr(c) x p(c)q(C). The Bayesian 10 [o |02 o4 o [4 |8 15573 |4043 |46.16 |12.52
image (Image 1, Fig. 1) is a realization of a Markov field. 11 10 10110210 12 |4 |5723 [4798 |5521 133.33

The results concerning the second case are presented in 12 10 10110210 13 16 157.23 14197 155.21 11887
Table Il and Fig. 2 (they are extracted from [3], where we have 210 [0.1 10210 [4 |8 157.23 [3890 |55.21 |1431
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TABLE I
RESULTS OFSEGMENTATIONS WITH DIFFERENTMETHODS NOISE STANDARD
DEVIATION EQUAL TO ONE. SAME NOTATIONS AS INTABLE |, WITH A = {a},
B ={b},C ={c},D ={a, b},AND E = {a, b, ¢}

Case BM EM Error Rate
a b c A |B |C |D |E [BB BE GB GE

1 0 |2 4 {0 |2 {4 [1 |6 |19.92 [1349 |2.02 [1.09
2 0 1 2 |0 |2 |4 11 |6 [3770 |23.68 [7.11 }3.13
3 0 |05 [1 0 |2 |4 |1 |6 [4891 }26.13 |20.97 [4.85
4 0 |02 ]04 10 |2 {4 |1l [6 [5584 [26.61 |46.07 [5.85
5 0 0.1 [021]0 [2 {4 |1 [6 |57.26 |26.28 [54.09 ]6.02
6 0 0.1 {02 ]0 (3 [6 |1 |6 |57.26 |18.14 [54.09 |4.76

Q = {a, b ctandQ* = {A, B, C, D}, with A = {a},
B = {b}, C = {c},andD = Q = {a, b, c}. Thus we have to
determineg,, ¢, andg. concerning the Bayesian sensor, and
ga, 98, gc, andgp concerning the Evidential one. Estimating
these functions from the observations is the mixture estimation
problem and we propose to solve it by applying a new variant
of a recent method of “generalized” mixture estimation [14]. A
» mixture is called generalized when the form of each component
. ‘ is not known; however, it belongs to a given set of forms. For
- ] instance, if each of the densities, g;,, andg. can be Normal
GE GE or exponential, we have eight possibilities of classical mixtures

and the additional difficulty is to determine in which case we
Fig. 2. Segmentation of noisy images corresponding to the case 4, Tablqig.
BM: Bayesian means and CE: evidential means. :

Remark 5.2: The generalized mixture estimation is more
general than classical mixture estimation in that when the two
proposed the algorithm GE in a heuristic manner). These resifgsses have the same form of noise, it remains valid. Now, it
concern the cas@ = {a, b, c}, andQ?* = {A, B, C, D, F}, s possible to have two classes with different forms of noise.
with A = {a}, B = {0}, ¢ = {c}, D = {a, b}, and Forinstance, the form of the sea surface variability can depend
E = {a, b, c}. The Bayesian image is the same as Image dn weather and so, when the weather changes, the “noise”
Fig. 1, and the evidential image (Image 2, Fig. 2) is obtainggrm can evolve. Furthermore, the noise for a given class can
from Image 1 by a stochastic sampling analogous to thgeady be a mixture of distributions; the “vegetation” class can
sampling used in the first case. As above, the noise variancdstain “grass,” “trees,” “bushes,” and thus the distribution of
equal to one, and the different means are presented in Table<}egetation” can no longer be of a classical form. When trying

These different results show that the use of the evidentiglfind a good approximation for this distribution, the general
sensor can be beneficial, as well in the blind case as in the Maixture offers more possibilities than the classical one.
kovian one. The more interesting cases are those in which th@f course, if we know the forms of different noise processes,
Bayesian images are much noisier that the evidential ones. \ye have to use a classical mixture estimation like Gibbsian ex-

Of course, other situations could be considered in Fectation-estimation method (GEM [7]), ICE [25], or SG [43].
analogous manner. According to the generalized setting ofrhe proposed method is as follows.

Sectlon_s [ .and IV, analogous segmentgtlons could be used |r_11) Consider(X, Y'*), which is a classical HMF described
every situation where we have a Bayesian sensor and an evi- " ;- saction II. We assume that each of the densifies,

dential one, the latter being able to distinguish some elements andg. can be a normal, beta, or gamma density. We apply

of the power sef2". our method, whose novelty is specified in the following,
to estimate this Markovian generalized mixture.
Conside(Y?) without any Markovian structure. The dis-
When dealing with real images, the parameter estimation tribution of Y2 is thus a classical mixture oR of four
problem becomes an important factor. Although the consider-  distributionsg., g5, gc, andgp. We could still apply
ations to follow are quite general, in order to simplify things, our method to treat this mixture as a generalized mix-
we shall place ourselves in a particular, relatively simple, case. ture, although in simulations below, we consider that it is
Concerning the Markov class field we take a very simple Potts  a Gaussian mixture and we estimate it with the classical
model, in which the energy [see (2.2)] is a sum over the couples  ICE.
of neighbor pixels:il/(z) = >, ;) ¢(zs, x¢). We take the The general mixture estimation method proposed in
potential functiony defined byy(z,, ;) = —« if x5 = x4, [14], called the ICE-GEMI algorithm, is an iterative
andy(xs, x¢) = « if z; # x,. Furthermore, let us consider method. At stegy, leta? andg?, gf, g2 be current prior

B. Parameter Estimation and Unsupervised Image Fusion 2)
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TABLE I
B, G, N: BETA, GAMMA , AND NORMAL DISTRIBUTIONS, RESPECTIVELY, WITH
THE CORRESPONDINGPARAMETERS. MPM (Y'!): ERRORRATIO OBTAINED BY
THE MPM METHOD USING THE ONLY PROBABILISTIC SENSORY . FUSION
MPM: ERROR RATIO OBTAINED BY THE MPM METHOD AFTER THE
DEMPSTER-SHAFER FUSION OF THESENSORSY'! AND Y2, ICE: THE
CLASSICAL ICE ASSUMING ALL DISTRIBUTIONS NORMAL. 7: ERRORRATIO

Case | Class a b c 7(GB) 7(GE)
1 True Laws B(7.0,7.0,0.0,20.0)] G(1.5,2.0,5.0) |N(2.0,1.0)| 3.63|1.86
2 ICE N(9.8, 5.4) N(7.8, 5.6) N(1.5,1.0)] 4.54 |2.23
3 ICE-PEAR N(8.7, 5.8) G(1.2,2.6,6.0) |N(24,1.3)] 993 ]5.69
4 ICE-KERNEL B(4.3,6.0,1.8,23.2)[G(1.4,2.2,47) |N(1.9,09) | 398 |2.18

where(y;) are iny!, and K is the normal kernel

K(y) = (1/V2m)e= @'/,
ii) take amongf}, 7, andf? the densityf; such that
e T 17 = filloo = mini<e<a |Iff = filloo-

oY o R This procedure, which will be called ICE-KERNEL,
AL turns out to perform better, at least in the setting of our
i experiments, than the Pearson system-based method

(ICE-PEAR [9)).

Remark 5.3:The ICE-GEMI algorithm can be used
in the most “pessimistic” context, in which one has no
training data. Of course, if one has a set of training data
(1, ¥1), -+ -5 (Zn, yn), the datax = (241, ..., z,) can be
used in different, and simpler, estimation procedures. In partic-
ular, if we have a programmed some version of ICE-GEMI, we
can use it by removing the iterations and usinigistead ofz4.

As an example, let us considgk, gz, gc, andgp Normal,
Fig. 3. Example of unsupervised segmentations of two sensor hiddanth variance 1 and means 0, 2, 4, and 1, respectively, whose pa-
evidential Markov field images, case 4, Table Ill. rameters are estimated by classical ICE. Thus, concerning these
densities, we consider a particular case, though a generalized

parameters and current densitigs, ¢,, and g.. The ICE could also be applied. The forms (beta B, gamma G, or
updating is as follows. Normal N, see, for instance, [18] for different precise forms)

a) Simulatez?, a realization ofX, according to its @nd parameters af,, g;, g. are given in Table Ill, which also
a? andg?, g¢, g2-based distribution conditional to cont_alns the Baye_sra_n e_rror ratio of GB a_nd GE segmen'Fatlons.
V1 = yl. Calculatea®! = @&(z%), with & the Having the true distributions and the optimal segmentathn re-
Younes method [42]. sults t_)ased on them, we then evaluate the pgrameter est|mat|qn
b) Fori = a, b, c, considerS? = {s € S/x1 = 4}. effectiveness on the one hand, and the effectlveness of the esti-
' +_ mated parameter based MPM segmentations, on the other hand.
Concerning the detection of the distribution forms, we note
that ICE-KERNEL finds the right forms, and ICE-PEAR makes
2 one mistake. It is interesting to note that ICE-based segmenta-
and f? using a decision ruleD that givze,s tipn, which is necessarily based on normal distributions, hgre
D(yY) € {ft, 2, f3}. gives better res_ul_ts than the ICE—PEAR—ba_sed segmentation.
d) Upa;teg,,,, ng, g0 by pUtting(gZ“, g,’f“, gitt) = This is no_t surprising because_ very badly estimated parameters
(D(y), D(yZ),‘D(yZ)). ' ’ can_stlll give good segmentation results.
The novel f ou metho s st a e decisg, 0 T0E U2 e CEKERNEL nasee st MM
rule D level. In [9], the ruleD is based on the use of the 9 9

. . mentation.
Pearson system, in which one calculates the skewness an

the kurtosis, and in [14], the rul® is the minimization C. Real Images Fusion
of the Kolmogorov distance. The decision rule we pro-
pose here is based on kernel estimation, and the sterH:

U nsupervised
Imisge -

RN Ol

wri o fLeld

Let y! = (y,),cs0. For eachi = a, b, ¢ esti-
mate fromy?! the three “candidate” densitieg}
(normal), 2 (beta), andf? (gamma).

c) For i = a,b ¢, choose betweenf}, f?

et us consider a radar and an optical image, given on
. 4, of a same scene. We have four classes, and the pres-

bec_omes' ence of clouds in the SPOT image will be modeled by an
i) Fore = a, b, ¢, calculate evidential model. So we hav = {a, b, ¢, d}, and the mass
;o function concerning the evidential sensor will be defined on
=YK <f‘Jh_f‘JJ> Q" = {A, B, C, D, E}, with 4 = {a}, B = {b}, C = {c},
i T n D = {d}, andE = {a, b, ¢, d}. Let us assume that all noise
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Fig. 4. Real images and different segmentation results.

TABLE IV
ESTIMATES OF MEANS AND VARIANCES IN BAYESIAN AND EVIDENTIAL
IMAGES (THE ESTIMATE OF THE PRIOR MARKOV FIELD IS & = 0, 59) AND
ERRORRATES OF UNSUPERVISEDSEGMENTATION RESULTS

Class a b c d
Mean and variance | (32,119) | (59,179) | (76,324) | (123,1820)
Class A B C D E
Mean and variance (38,2) (48,23) | (65,24) | (72,127) | (159,1691)
Algorithms BB BE GB GE
Error rate 0.45 0.31 0.34 0.23

TABLE V

ESTIMATES OF FORMS AND PARAMETERS IN BAYESIAN AND EVIDENTIAL
IMAGES (THE ESTIMATE OF THE PRIOR MARKOV FIELD IS & = 0, 59) AND
RATES OF WRONGLY CLASSIFIED PIXELS IN UNSUPERVISEDALGORITHMS
BASED ON GENERAL MIXTURES ESTIMATION

Class a b c d

Form and parameters B(5.6,6.9,-4,77) | I'(12.9,4.2,8) | I'(8.7,6.2,22) { B(0.8,2.9,91,300)
Class A B C D

Form and parameters | B(3.6,3.5,33,42) | I'(6.2,2.0,36) N(64,34) 1(6.5,4.9,43)
Class E

Form and parameters N(162,1700)

Algorithms BB BE GB GE

Error rate 0.43 0.29 0.33 0.23

images. According to the results of Table IV, we may say that
they are.

Concerning the possibly non-Gaussian forms of the noise
densities, the results of generalized mixture estimation and the
rates of wrongly classified pixels are given in Table V.

We can see that the generalized mixture estimation gives
different forms which are not necessarily Gaussian. However,
in the problem of interest, we notice that the error rates in
Table V are not significantly different from the error rates in
Table IV. Thus, at least in cases treated here, one may use
classical Gaussian mixture estimation.

Let us briefly mention an another example, which is some-
what different from all examples studied in this section. We have
always assumed having one Bayesian sensor and an evidential
one. However, according to the Proposition 4.1, all sensors can
be evidential in such a way that their fusion remains eviden-

distributions are Gaussian. Thus, we have nine means and Rige n particular, we can consider just one evidential sensor. We
variances to estimate. Concerning the Markov class field Wesent in Fig. 5 a radar image of a chalky plateaux in southern
take the same Potts model as in the previous section. ThHgance, which mainly contain pastures and woods. Because of
the prior distribution is defined by the only real parametgpe relief, some spots, which are in black in Fig. 5, do not pro-

a. We estimate all these parameters by a particular ICE. Thgce any radar echo. We still consider the simple Ising model,

parameters of the four Bayesian Gaussian densitiesvaaue

in which the parameter is estimated from the ground truth by the

estimated from the Bayesian image’ = y' and the five giochastic gradient [42], which givés= 2.7. We then consider
Gaussian densities corresponding to the evidential sensor @f§ models. In the first one, we do not consider the ignorance

estimated from the evidential on& = 2.

spots and assume that we have two classes. The two noise den-

_The results of estimation and rates of wrongly classifieglties, assumed Gaussian, are then estimated by the SEM [22],
pixels are presented in Table IV, and the real images agfld the real image is segmented into two classes by the classical

different segmentation results are given on Fig. 4.

MPM. The error ration is 21.7%. In the second model, we con-

We have to remark that the results of the real image segmeider three classes and, as before, we estimate three Gaussian
tation methods presented here may not be optimal. In fact, as tioése densitieg;, f», andfs with the SEM. The densitys cor-
prior Markov field is quite rudimentary, the model considered isesponding to the unobserved spots, according to (4.3) in Propo-
a rather simple one. However, our main goal was just to verijtion 4.1, the MPM is applied using the two “artificial” noise
whether the general trends noticed in the simulation studies prermsh; = f1 + f3 andhs = f> + f3. The new error ratio is
viously were preserved in an unsupervised segmentation of r&él6%, which improves the quality of the segmentation.



BENDJEBBOUREet al. MULTISENSOR IMAGE SEGMENTATION

[2
[3]
[4]
(8]
[ nd Truth: pasiurg 1n prev., wioss s irnage: unohbsa reed sty i (6]
n hluck ks

[7]

Fig. 5. Radar images of two classes “pasture” and “wood” and the ground
truth. (8]
[l

VI. CONCLUSIONS

[10]

We proposed in this paper a new HMM, extending the clas-
sical Bayesian HMM, allowing one to segment multisensor im'11]

ages. Its main novelty was to show how a link with the theory o
evidence can be advantageously made. In fact, in some real sit-
uations, as in the case of cloud presence in optical satellite imi2]
ages, modeling the resulting uncertainty with evidential mass
functions is quite straightforward and improves the segmentgs 3]
tion results. Furthermore, different simulation studies showed
that there exist other situations in which taking into account an
additional evidential sensor can improve the segmentation peP—
formed from the sole Bayesian sensor. Concerning the possibly
unsupervised segmentation in the Markovian context considi5]
ered, we have proposed an original method of generalized mix-
ture estimation. Finally, two examples of real image segmenta[—16
tions showed the favorable behavior of the proposed methods in
real situations. [17]

We have used HMFs in this paper, but the use of other Markoy
models for prior distribution, like Markov chains [14], [30], [18]
Markov trees [20], or still more general Markov networks [33] [19]
could be considered. As mentioned in [26], the Markov trees
model seems particularly well suited to the situations when Weyg)
have to deal with evidential priors.

As perspectives for further work, we may view two directions.
The first is to extend different Bayesian Markov models towarom]
“correlated” sensors. Such extensions, which would relax the
hypothesis 3) of Section II, have been briefly discussed in [29](22]
which extends the classical probabilistic case studied in [27].
The second is to try to relax, in the evidential sensor contex{23]
the hypothesis 1) of Section Il. We have recently proposed a
solution of this problem in the classical probabilistic contextj,4
by introducing “pairwise” Markov fields [28]. Such models, in
which the couple (classes, observations) is a Markov field, are
more general than the classical HMFs. In fact, the class fielézs]
distribution is not necessarily a Markov distribution. So, some26]
“evidential” pairwise Markov fields models could possibly be
studied to take into account some spatial dependence of obsézrzl

vations conditionally on classes.
[28]
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