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Multisensor Image Segmentation Using
Dempster–Shafer Fusion in Markov Fields Context

Azzedine Bendjebbour, Yves Delignon, Laurent Fouque, Vincent Samson, and Wojciech Pieczynski

Abstract—This paper deals with the statistical segmentation of
multisensor images. In a Bayesian context, the interest of using
hidden Markov random fields, which allows one to take contex-
tual information into account, has been well known for about 20
years. In other situations, the Bayesian framework is insufficient
and one must make use of the theory of evidence. The aim of our
work is to propose evidential models that can take into account
contextual information via Markovian fields. We define a general
evidential Markovian model and show that it is usable in practice.
Different simulation results presented show the interest of eviden-
tial Markovian field model-based segmentation algorithms. Fur-
thermore, an original variant of generalized mixture estimation,
making possible the unsupervised evidential fusion in a Markovian
context, is described. It is applied to the unsupervised segmenta-
tion of real radar and SPOT images showing the relevance of the
proposed models and corresponding segmentation methods in real
situations.

Index Terms—Bayesian segmentation, data fusion, Demp-
ster–Shafer combination rule, generalized mixture estimation,
hidden Markov fields (HMF), iterative conditional estimation
ICE, multisensor image segmentation, theory of evidence.

I. INTRODUCTION

T HIS PAPER addresses the problem of unsupervised
statistical segmentation of multisensor images. We

place ourselves in the context of hidden Markov field (HMF)
models, which have shown their effectiveness over the past
two decades. The success of these models is mainly due to
the following two properties. First, they allow one to take
into account the spatial interactions between pixels, which
can render different Bayesian methods of segmentation very
effective. The pioneering papers [2], [13], [21], [23] have been
followed by many others and, understandably, only a small
part of this rich bibliography can be mentioned (numerous
references can be found in [6], [8], [16]). Second, the parameter
estimation problem can be solved by different general methods
like estimation–maximization [10], stochastic gradient [43],
or iterative conditional estimation [25] among others. This
results in numerous possibilities of unsupervised segmentation
methods, in which all hidden Markov model (HMM) param-
eters are estimated in a previous step. Theoretical studies of
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these different methods prove rather tedious. However, different
simulations and real image segmentation results presented
in different papers attest that the parameter estimation step
does not lessen the effectiveness of the real parameter based
methods. We may mention [7] and [44] for EM-based methods,
[43] for SG-based methods, [5], [19], [24], [31], and [32] for
iterative conditional estimation (ICE)-based ones, and [2], [21]
for different other methods. Most of these papers treat one
sensor image. However, the multisensor case is quite similar
to the one sensor case, at least in the Gaussian and reasonable
SNR case, which is usually considered ([41], among others).

So roughly speaking, when a HMM, possibly with unknown
parameters, is well suited to the data considered and when the
noise is not too strong, there is no serious difficulty in per-
forming segmentation.

The purpose of our work is to extend, using the theory of ev-
idence [1], [15], [34], [37], these well known methods to some
situations in which the use of classical HMFs poses difficulties.
Of course, the use of theory of evidence in image processing
is not new and has already given satisfactory results in var-
ious problems, like medical image classification [4] , or SAR
image interpretation [39]. So the originality of our approach
is to use this theory in a Markovian context. In fact, when the
“pixel-by-pixel” multisensor image segmentation is concerned,
the theory of evidence can be useful in numerous situations. For
example, if we have two classes, “forest” and “water,” and if
we know that the proportion of forest is between 20% and 30%
(so the proportion of water is between 70% and 80%), we can
model this knowledge putting 20% on the class forest, 70% on
the class water, and 10% on the class “water-or-forest.” This
prior knowledge is then merged with the knowledge provided
by the observation via the Dempster–Shafer combination rule,
resulting in a probability measure, which then appears as a gen-
eralization of the classical posterior probability. An analogous
process can be applied when the priors are known exactly but
one of sensors is very noisy and its probabilistic model (distri-
bution of the noise) is very unreliable. Another example, which
will be treated in some detail in this paper, is the following: the
proportions of the two classes and the noise distributions are
well known. However, there are some clouds. As we will see in
the following, the presence of clouds can be modeled by a prob-
ability on the set (forest, water, and water-or-forest).

Let us remark that the generalization considered in this paper
is one possible generalization among many others [1], whose re-
spective extensions to Markov models may be considered topics
for further work.

The organization of the paper is as follows. In the next sec-
tion, we briefly recall the classical HMF model. In Section III,
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we specify some elements of the theory of evidence and specify,
in the simple pixel-by-pixel context, how they can generalize the
classical Bayesian image segmentation methods. Section IV is
devoted to a new “evidential” HMF model we propose. Different
experiments, related with synthetic or real images, are presented
in Section V. Section VI concludes the paper.

II. M ULTISENSORHIDDEN MARKOV FIELDS

We recall in this section the classical multisensor hidden
Markov field (MHMF). Given the set of pixels, we consider
two sets of random variables ,
called “random fields.” For sensors, each takes its
values in a finite set of classes , and each

takes its values in . The segmentation
problem consists of estimating the unobserved realization

of the field from the observed realization
of the field , where are digital images
representing the same scene. It is then generally solved by the
use of a Bayesian strategy, which is optimal with respect to
some criterion.

The field is said to be Markovian with respect
to a neighborhood if its distribution can be written as

(2.1)

with

(2.2)

where
set of cliques (a clique being a subset ofthat is either
a singleton or a set of pixels mutually neighbors with
respect to );
restriction of to ;
function, which depends ononly and which takes its
values in .

In order to define the distributions of conditional
on , we will assume that the following three con-
ditions hold.

1) The random variables are independent condition-
ally on .

2) The distribution of each conditional on is its dis-
tribution conditional to .

3) The random variables are independent
conditionally on (i.e., the sensors are independent).

Due to theses hypotheses, all the distributions ofcondi-
tional on are defined for classes by distributions on

. To be more precise, let denote the density of the distri-
bution of conditional to . Thus, the distribution of

is defined by the functions and the densities . The
posterior distribution of is

(2.3)

It is then possible to perform the segmentation by the maximum
a posteriori(MAP) method

(2.4)

or the maximum posterior mode (MPM) method

(2.5)

The first problem can be solved by the simulated annealing of
Gemanet al. [13] and the second one by the algorithm of Mar-
roquin et al. [23]. Let us also mention the iterated conditional
mode (ICM) of Besag [2], which is a fast approximation of the
MAP.

Remark 2.1:Let us comment on the hypotheses 1)– 3) men-
tioned previously, some of which appear as rather strong, at least
in some situations. Although quite unrealistic, 1) generalizes the
“white noise,” notion that is widely used in signal processing. In
fact, in Gaussian case, if we consider the random
field of white Gaussian noise with unit variance for each vari-
able , we have . Although open to criti-
cism, such models are currently used in image processing based
on HMF models and seem to be very robust. In other words, this
obviously wrong hypothesis does not significantly undermine,
at least in situations described in different papers, the applica-
bility of the different processing steps. So we will keep it for this
paper and offer some remarks about possible extensions in per-
spectives, Section VI. The hypothesis 2) does not seem overly
strong. The hypothesis 3) can be removed at this stage, however,
it will be useful when considering “evidential” sensors. Now,
sensors can really be independent in some situations, and thus
in such situations 3) is justified. Some further remarks on this
hypothesis will be developed in Section VI.

III. D EMPSTER–SHAFER COMBINATION RULE IN

PIXEL-BY-PIXEL CONTEXT

Let us position ourselves at one pixel and consider the fol-
lowing problem. We have two classes with the
prior probability given by , and
two images of a same scene: a radar image and an optical one.
The radar image is very noisy, which is modeled by two noise
distributions and . The optical image is not very noisy, but
there are some clouds. So in spots without clouds, the grey level
is distributed according to a probability density for the first
class, and it is distributed according to a probability density
for the second class. In spots hidden by the clouds, the grey
level is distributed according to a probability density. The
problem is to decide, from the observed , whether
the pixel belongs to the class one or to the class two. If there
were no clouds, i.e., if , the fused information would be
expressed, according to the classical probabilistic model, by the
probability

(3.1)
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Furthermore, in the Bayesian context, the probability can
be fused with the prior probability , where

and , resulting in the posterior probability

(3.2)

Finally, we can say that we have three probability distributions
defined on : the prior probability , the proba-
bility defined by the observation in the first sensor by

and the probability defined by the observation in the second
sensor by

The posterior probability (3.2) is then simply the normal-
ized product of these three probabilities:

, and . So
the “Bayesian fusion” simply is a normalized product. How
does one generalize this fusion to take the presence of clouds
into account? One possible way of using the theory of evidence
is the following. For the optical sensor, there are three classes:

, where is the class “clouds.” However, we
are only interested in whether a given pixel is or . Thus,
if it is a “cloud” pixel, we have no information about or

. In the theory of evidence, such a situation is modeled by
considering a probability on , which
is called a “mass function.” The probability of, which is the
probability of , models the uncertainty due to the presence of
clouds. Here this mass function is naturally defined by

and

Furthermore, the Dempster–Shafer combination rule, which is
specified in the general case below, allows one to fuse, ,
and in the following manner:

(3.3)

So in the presence of clouds, the probability (3.2) becomes

(3.4)

We can see, according to (3.2) and (3.4), how
generalizes the classical posterior distribution. When there are
no clouds, i.e., , the Dempster–Shafer fusion result

becomes the classical posterior probability .
In a general way, let us consider a set of classes

, the power set
of , and mass functions , which are
probabilities on . Recall that if a mass function only charges
the singletons, it can be assimilated to a classical probability
on . Such a mass function will be called “Bayesian” or “prob-
abilistic.” Roughly speaking, models the prior information
and models the information contained in the
observation of sensors. The Dempster–Shafer combination
rule, which enables one to aggregate these different pieces of
information, is as follows:

(3.5)

with

(3.6)

This defines a probability on , which will be denoted by
. We have the following well known

property.
Proposition 3.1: If at least one mass function among

is probabilistic,
is probabilistic.

Returning to our segmentation problem, we simply replace,
at a given pixel, by the power set of
the power set of . Thus, in the same
manner as in the classical case, we now consider that we have

classes. The densities of the distribu-
tions of conditional to , which correspond to the
densities of the classical model, will be denoted by. For
a given observation , the mass functions

are defined by

(3.7)
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and , modeling the prior information, is independent of the
observation . However, remember that for a
given , we can have for some sensors, and

for some others. The whole information, from
which we must perform the segmentation, is then represented
by . There exist different deci-
sion rules, for instance the classical Bayesian decision, in the
case of probabilistic . In order to simplify things we will con-
sider in this paper that either , or at least one mass function
among , is probabilistic. Thus, is probabilistic
by virtue of Proposition 3.1, and our segmentation rule will be
the Bayesian rule corresponding to a given loss function.

Remark 3.1:As noticed in the simple case above, the eviden-
tial model is a generalization of the classical Bayesian model in
the following way. When all mass functions
are probabilistic, then the mass function

is simply the posterior distribution of .
Remark 3.2:The pixel-based approach described previously

can actually be applied to other problems of classifying objects
that are “spatially” independent.

Remark 3.3:Assuming probabilistic, we obtain a “gen-
eralization” of the classical Bayesian theorem. In fact, the prob-
ability distribution we obtain generalizes the classical posterior
distribution. However, the situation here is different from the
context of the Generalized Bayesian Theorem of Smets [36]:

is defined by the observation ,
and it does not depend on the classes in.

IV. DEMPSTER–SHAFER FUSION IN MARKOV FIELD CONTEXT

Let us consider that is a classical Markov field, as in Sec-
tion II, and we have sensors, which possibly are evidential.
We are looking for a consistent generalization of the classical
HMM recalled in Section II. In the classical case and according
to the hypotheses 1)– 3), the distribution of the field is

(4.1)

First, according to the pixel-by-pixel approach specified in the
previous section, we propose replacing the Bayesian fusion

by the “evidential fusion” of the previous
section: , with each defined by
(3.7). Second, the consistency with the classical model leads us
to keep the product , which models the spatial indepen-
dence, conditionally on the class process, of the observations.

Finally, the information contained in the observation
will be modeled by the mass function defined on each

, with each in by

(4.2)

So the product , which is in the classical case a
“Bayesian fusion” of the prior probability with the piece of ev-
idence provided by the observation, must be replaced by

, which is a probability according to the Proposition 3.1, and

which extends to the evidential sensors case the classical poste-
rior probability.

We have seen that in the classical HMFs case, the use of dif-
ferent Bayesian classification methods was possible because of
the Markovianity of the posterior distribution of. So we have
to verify that the probability distribution is a Markov
distribution.

We have the following.
Proposition 4.1: Let us assume that is a Markov field

with and [(2.1) and
(2.2)], and let be the mass function defined by (3.7) and
(4.2). Then is a Markov field whose distribution is the
same as the posterior distribution of classically corrupted
with the independent noise

(4.3)

where

(4.4)
So the energy of is generally computable and thus,
the classical segmentation methods can be used.

Proof:

(4.5)

On the other hand, knowing that
, we have

(4.6)

Equations (4.5) and (4.6) give

(4.7)

which completes the proof.
Finally, when at least one sensor is evidential, their fusion

is easily done in the pixel-by-pixel way. When at least one of
them is probabilistic (as in the simple example of clouds in op-
tical and radar images above), the result of the fusion is a prob-
ability measure and then the posterior Markov distribution of
is obtained as in the classical case, with in (2.3)
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replaced by the fused probability . If all sensors are eviden-
tial, in (2.3) is replaced with (4.3).

Remark 4.1:Let us notice that the model we propose ap-
pears, with respect to the richness of possibilities of the theory
of evidence [11], [35], [38], [40], as a quite particular one. This
particularism is mainly due to the particular form of de-
fined by (4.2). However, even in this particular setting, the fu-
sion is workable and it extends the possibilities of the widely
used HMFs.

Remark 4.2:We have assumed that all sensors were con-
cerned with the same frame of discernment. However, when
sensors are concerned with partially overlapping frames, there
exist different, more general methods of evidential fusion [17],
[38] that may be used in the context considered in this paper.

Remark 4.3:The Markovian approach described in this sec-
tion can also be applied to other problems of classifying ob-
jects. The main property to be verified is some spatial interac-
tion among classes of considered objects, and this interaction
can be reasonably modeled by a Markov field distribution.

V. EXPERIMENTS

This section is devoted to three series of experiments. In
all series, we consider four algorithms: two local algorithms
and two global ones. Algorithm global Bayesian (GB) is the
classical probabilistic MPM algorithm, which uses the sole
Bayesian sensor. Algorithm global evidential (GE) is the new
algorithm described in the previous section. In the same way,
blind Bayesian (BB) will denote the classical Bayesian, which
will use the sole Bayesian sensor, pixel-by-pixel method.
Finally, we will call blind evidential (BE) the method which
will use the fused information from the both Bayesian and
Evidential sensors, in the pixel-by-pixel way. The aim of the
experiments is to study how the use of the evidential sensor can
improve the segmentation methods which use the only Bayesian
sensor, in pixel-by-pixel way as well as in the Markovian one.

The first series of experiments, described in the Section V-A,
is concerned with some hand-drawn images. Section V-B is de-
voted to the unsupervised fusion using an original variant of the
generalized mixture estimation [9], [14], and in the last Sec-
tion V-C, we present some results of real world images segmen-
tation.

A. Simulated Images

Let be a set of three classes and the
power set of . We will consider two cases. In the first one,
the evidential sensor is a consonant one, which means that the
mass function defined by this sensor is a probability on

with , , and .
According to the general fusion rule, fora probability on

and , a probability on , the result
of the Dempster–Shafer fusion is the probability on

given by ,
, and . The Bayesian

image (Image 1, Fig. 1) is a realization of a Markov field.
The results concerning the second case are presented in

Table II and Fig. 2 (they are extracted from [3], where we have

Fig. 1. Segmentation of noisy images corresponding to the case 9, Table I.

TABLE I
RESULTS OFSEGMENTATIONS WITH DIFFERENTMETHODS IN THECONSONANT

CASE: A = fag, B = fa; bg, AND C = fa; b; cg. NOISE STANDARD

DEVIATION EQUAL TO ONE. BM: BAYESIAN MEANS, CM: CONSONANTMEANS
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Fig. 2. Segmentation of noisy images corresponding to the case 4, Table II.
BM: Bayesian means and CE: evidential means.

proposed the algorithm GE in a heuristic manner). These results
concern the case , and ,
with , , , , and

. The Bayesian image is the same as Image 1,
Fig. 1, and the evidential image (Image 2, Fig. 2) is obtained
from Image 1 by a stochastic sampling analogous to the
sampling used in the first case. As above, the noise variance is
equal to one, and the different means are presented in Table II.

These different results show that the use of the evidential
sensor can be beneficial, as well in the blind case as in the Mar-
kovian one. The more interesting cases are those in which the
Bayesian images are much noisier that the evidential ones.

Of course, other situations could be considered in an
analogous manner. According to the generalized setting of
Sections III and IV, analogous segmentations could be used in
every situation where we have a Bayesian sensor and an evi-
dential one, the latter being able to distinguish some elements
of the power set .

B. Parameter Estimation and Unsupervised Image Fusion

When dealing with real images, the parameter estimation
problem becomes an important factor. Although the consider-
ations to follow are quite general, in order to simplify things,
we shall place ourselves in a particular, relatively simple, case.
Concerning the Markov class field we take a very simple Potts
model, in which the energy [see (2.2)] is a sum over the couples
of neighbor pixels: . We take the
potential function defined by if ,
and if . Furthermore, let us consider

TABLE II
RESULTS OFSEGMENTATIONS WITH DIFFERENTMETHODS. NOISE STANDARD

DEVIATION EQUAL TO ONE. SAME NOTATIONS AS IN TABLE I, WITH A = fag,
B = fbg,C = fcg,D = fa; bg, AND E = fa; b; cg

and , with ,
, , and . Thus we have to

determine , , and concerning the Bayesian sensor, and
, , , and concerning the Evidential one. Estimating

these functions from the observations is the mixture estimation
problem and we propose to solve it by applying a new variant
of a recent method of “generalized” mixture estimation [14]. A
mixture is called generalized when the form of each component
is not known; however, it belongs to a given set of forms. For
instance, if each of the densities, , and can be Normal
or exponential, we have eight possibilities of classical mixtures
and the additional difficulty is to determine in which case we
lie.

Remark 5.2:The generalized mixture estimation is more
general than classical mixture estimation in that when the two
classes have the same form of noise, it remains valid. Now, it
is possible to have two classes with different forms of noise.
For instance, the form of the sea surface variability can depend
on weather and so, when the weather changes, the “noise”
form can evolve. Furthermore, the noise for a given class can
already be a mixture of distributions; the “vegetation” class can
contain “grass,” “trees,” “bushes,” and thus the distribution of
“vegetation” can no longer be of a classical form. When trying
to find a good approximation for this distribution, the general
mixture offers more possibilities than the classical one.

Of course, if we know the forms of different noise processes,
we have to use a classical mixture estimation like Gibbsian ex-
pectation-estimation method (GEM [7]), ICE [25], or SG [43].

The proposed method is as follows.

1) Consider , which is a classical HMF described
in Section II. We assume that each of the densities, ,
and can be a normal, beta, or gamma density. We apply
our method, whose novelty is specified in the following,
to estimate this Markovian generalized mixture.

2) Consider without any Markovian structure. The dis-
tribution of is thus a classical mixture on of four
distributions , , , and . We could still apply
our method to treat this mixture as a generalized mix-
ture, although in simulations below, we consider that it is
a Gaussian mixture and we estimate it with the classical
ICE.

The general mixture estimation method proposed in
[14], called the ICE-GEMI algorithm, is an iterative
method. At step , let and be current prior



BENDJEBBOURet al.: MULTISENSOR IMAGE SEGMENTATION 1795

Fig. 3. Example of unsupervised segmentations of two sensor hidden
evidential Markov field images, case 4, Table III.

parameters and current densities, , and . The
updating is as follows.

a) Simulate , a realization of , according to its
and -based distribution conditional to

. Calculate , with the
Younes method [42].

b) For , consider .
Let . For each esti-
mate from the three “candidate” densities:
(normal), (beta), and (gamma).

c) For , choose between , ,
and using a decision rule that gives

.
d) Update by putting

.
The novelty of our method is situated at the decision

rule level. In [9], the rule is based on the use of the
Pearson system, in which one calculates the skewness and
the kurtosis, and in [14], the rule is the minimization
of the Kolmogorov distance. The decision rule we pro-
pose here is based on kernel estimation, and the step c)
becomes

i) For , calculate

TABLE III
B, G, N: BETA, GAMMA , AND NORMAL DISTRIBUTIONS, RESPECTIVELY, WITH

THE CORRESPONDINGPARAMETERS. MPM (Y ): ERRORRATIO OBTAINED BY

THE MPM METHOD USING THE ONLY PROBABILISTIC SENSORY . FUSION

MPM: ERROR RATIO OBTAINED BY THE MPM METHOD AFTER THE

DEMPSTER–SHAFER FUSION OF THESENSORSY AND Y . ICE: THE

CLASSICAL ICE ASSUMINGALL DISTRIBUTIONSNORMAL. � : ERRORRATIO

where are in , and is the normal kernel
;

ii) take among , , and the density such that
.

This procedure, which will be called ICE-KERNEL,
turns out to perform better, at least in the setting of our
experiments, than the Pearson system-based method
(ICE-PEAR [9]).

Remark 5.3:The ICE-GEMI algorithm can be used
in the most “pessimistic” context, in which one has no
training data. Of course, if one has a set of training data

, the data can be
used in different, and simpler, estimation procedures. In partic-
ular, if we have a programmed some version of ICE-GEMI, we
can use it by removing the iterations and usinginstead of .

As an example, let us consider , , , and Normal,
with variance 1 and means 0, 2, 4, and 1, respectively, whose pa-
rameters are estimated by classical ICE. Thus, concerning these
densities, we consider a particular case, though a generalized
ICE could also be applied. The forms (beta B, gamma G, or
Normal N, see, for instance, [18] for different precise forms)
and parameters of are given in Table III, which also
contains the Bayesian error ratio of GB and GE segmentations.
Having the true distributions and the optimal segmentation re-
sults based on them, we then evaluate the parameter estimation
effectiveness on the one hand, and the effectiveness of the esti-
mated parameter based MPM segmentations, on the other hand.

Concerning the detection of the distribution forms, we note
that ICE-KERNEL finds the right forms, and ICE-PEAR makes
one mistake. It is interesting to note that ICE-based segmenta-
tion, which is necessarily based on normal distributions, here
gives better results than the ICE-PEAR-based segmentation.
This is not surprising because very badly estimated parameters
can still give good segmentation results.

Finally, we note that the ICE-KERNEL-based fused MPM
segmentation is close to the True Laws-based fused MPM seg-
mentation.

C. Real Images Fusion

Let us consider a radar and an optical image, given on
Fig. 4, of a same scene. We have four classes, and the pres-
ence of clouds in the SPOT image will be modeled by an
evidential model. So we have , and the mass
function concerning the evidential sensor will be defined on

, with , , ,
, and . Let us assume that all noise
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Fig. 4. Real images and different segmentation results.

distributions are Gaussian. Thus, we have nine means and nine
variances to estimate. Concerning the Markov class field we
take the same Potts model as in the previous section. Thus,
the prior distribution is defined by the only real parameter

. We estimate all these parameters by a particular ICE. The
parameters of the four Bayesian Gaussian densities andare
estimated from the Bayesian image and the five
Gaussian densities corresponding to the evidential sensor are
estimated from the evidential one .

The results of estimation and rates of wrongly classified
pixels are presented in Table IV, and the real images and
different segmentation results are given on Fig. 4.

We have to remark that the results of the real image segmen-
tation methods presented here may not be optimal. In fact, as the
prior Markov field is quite rudimentary, the model considered is
a rather simple one. However, our main goal was just to verify
whether the general trends noticed in the simulation studies pre-
viously were preserved in an unsupervised segmentation of real

TABLE IV
ESTIMATES OFMEANS AND VARIANCES IN BAYESIAN AND EVIDENTIAL

IMAGES (THE ESTIMATE OF THE PRIOR MARKOV FIELD IS �̂ = 0; 59) AND

ERRORRATES OFUNSUPERVISEDSEGMENTATION RESULTS

TABLE V
ESTIMATES OFFORMS AND PARAMETERS IN BAYESIAN AND EVIDENTIAL

IMAGES (THE ESTIMATE OF THE PRIOR MARKOV FIELD IS �̂ = 0; 59) AND

RATES OFWRONGLY CLASSIFIED PIXELS IN UNSUPERVISEDALGORITHMS

BASED ON GENERAL MIXTURES ESTIMATION

images. According to the results of Table IV, we may say that
they are.

Concerning the possibly non-Gaussian forms of the noise
densities, the results of generalized mixture estimation and the
rates of wrongly classified pixels are given in Table V.

We can see that the generalized mixture estimation gives
different forms which are not necessarily Gaussian. However,
in the problem of interest, we notice that the error rates in
Table V are not significantly different from the error rates in
Table IV. Thus, at least in cases treated here, one may use
classical Gaussian mixture estimation.

Let us briefly mention an another example, which is some-
what different from all examples studied in this section. We have
always assumed having one Bayesian sensor and an evidential
one. However, according to the Proposition 4.1, all sensors can
be evidential in such a way that their fusion remains eviden-
tial. In particular, we can consider just one evidential sensor. We
present in Fig. 5 a radar image of a chalky plateaux in southern
France, which mainly contain pastures and woods. Because of
the relief, some spots, which are in black in Fig. 5, do not pro-
duce any radar echo. We still consider the simple Ising model,
in which the parameter is estimated from the ground truth by the
stochastic gradient [42], which gives . We then consider
two models. In the first one, we do not consider the ignorance
spots and assume that we have two classes. The two noise den-
sities, assumed Gaussian, are then estimated by the SEM [22],
and the real image is segmented into two classes by the classical
MPM. The error ration is 21.7%. In the second model, we con-
sider three classes and, as before, we estimate three Gaussian
noise densities , , and with the SEM. The density cor-
responding to the unobserved spots, according to (4.3) in Propo-
sition 4.1, the MPM is applied using the two “artificial” noise
terms and . The new error ratio is
16.6%, which improves the quality of the segmentation.
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Fig. 5. Radar images of two classes “pasture” and “wood” and the ground
truth.

VI. CONCLUSIONS

We proposed in this paper a new HMM, extending the clas-
sical Bayesian HMM, allowing one to segment multisensor im-
ages. Its main novelty was to show how a link with the theory of
evidence can be advantageously made. In fact, in some real sit-
uations, as in the case of cloud presence in optical satellite im-
ages, modeling the resulting uncertainty with evidential mass
functions is quite straightforward and improves the segmenta-
tion results. Furthermore, different simulation studies showed
that there exist other situations in which taking into account an
additional evidential sensor can improve the segmentation per-
formed from the sole Bayesian sensor. Concerning the possibly
unsupervised segmentation in the Markovian context consid-
ered, we have proposed an original method of generalized mix-
ture estimation. Finally, two examples of real image segmenta-
tions showed the favorable behavior of the proposed methods in
real situations.

We have used HMFs in this paper, but the use of other Markov
models for prior distribution, like Markov chains [14], [30],
Markov trees [20], or still more general Markov networks [33]
could be considered. As mentioned in [26], the Markov trees
model seems particularly well suited to the situations when we
have to deal with evidential priors.

As perspectives for further work, we may view two directions.
The first is to extend different Bayesian Markov models toward
“correlated” sensors. Such extensions, which would relax the
hypothesis 3) of Section II, have been briefly discussed in [29],
which extends the classical probabilistic case studied in [27].
The second is to try to relax, in the evidential sensor context,
the hypothesis 1) of Section II. We have recently proposed a
solution of this problem in the classical probabilistic context
by introducing “pairwise” Markov fields [28]. Such models, in
which the couple (classes, observations) is a Markov field, are
more general than the classical HMFs. In fact, the class field
distribution is not necessarily a Markov distribution. So, some
“evidential” pairwise Markov fields models could possibly be
studied to take into account some spatial dependence of obser-
vations conditionally on classes.
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