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Abstract. The use of random fields, which allows one to take into account the spatial interaction
among random variables in complex systems, becomes a frequent tool in numerous problems of statis-
tical mechanics, spatial statistics, neural network modelling, and others. In particular, Markov random
field based techniques can be of exceptional efficiency in some image processing problems, like segmen-
tation or edge detection. In statistical image segmentation, that we address in this work, the model
is generally defined by the probability distribution of the class field, which is assumed to be a Markov
field, and the probability distributions of the observations field conditional to the class field. Under
some hypotheses, the a posteriori distribution of the class field, i.e. conditional to the observations field,
is still a Markov distribution and the latter property allows one to apply different bayesian methods
of segmentation like Maximum a Posteriori (MAP) or Maximum of Posterior Mode (MPM). However,
in such models the segmentation of textured images is difficult to perform and one has to resort to
some model approximations. The originality of our contribution is to consider the markovianity of the
couple (class field, observations field). We obtain a different model; in particular, the class field is not
necessarily a Markov field. However, the posterior distribution of the class field is a Markov distribution,
which makes possible bayesian MAP and MPM segmentations. Furthermore, the model proposed makes

possible textured image segmentation with no approximations.

Key words: hidden Markov fields, pairwise Markov fields, bayesian image segmentation, textured

images.

1. Introduction

The aim of this paper is to propose a novel Markov Random Field model and describe
some situations in which its use is more relevant that the use of the classic, Hidden
Markov Random Field (HMRF) models. The main difference with the classical HMRF
models ( [2,3,5,11-13]) is that the prior distribution of the hidden class field is not
necessarily markovian. In the context of textured images segmentation, the advantage
of the new model with respect to the classical HMRF model is that textured images can
be segmented without any model approximation. More precisely, for a set of pixels S one
classically considers two random fields X = (X;)ses and Y = (Y;)ses. The unobserved
field X is markovian, and one observes the field Y, which can be seen as a “noisy version”
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of X. So X is “hidden” and such a model is often called a “Hidden Markov Random
Field” model. Estimating X from Y = y requires being able to simulate realisations of
X according to its distribution conditioned on Y = y (its posterior distribution), which
is possible when the latter distribution is markovian. In the pioneering papers [2,3, 5]
addressing this problem, the markovianity of the posterior distribution of X is ensured
by the hypothesis according to which the random variables (Y;)ses are independent
conditionally to X. The drawback is that such a hypothesis is rather strong and, in
particular, does not allow one to take into account possible textures of the considered
classes. This problem has been described by Derin et al., who proposed a genuine
“hierarchical” Markov model to solve it [4,6,7,10]. Although the model proposed is
well adapted to numerous situations, the posterior distribution of X is not markovian,
and thus using bayesian estimations of X necessitates some model approximations. To
avoid this, we propose in this paper a new model, briefly mentioned in [21], that we
call a “Pairwise Markov Random Field” model (PM RF), consisting of assuming that
the couple Z = (X,Y) is markovian. This is not necessarily an HMRF because X is
not necessarily markovian. So neither X nor Y are markovian in a PMRF, but they
are simulable (7 = (X,Y) is simulable). Furthermore, the distribution of Y conditional
to X is markovian, and the distribution of X conditional to Y is markovian too. The
first allows one to model textures, and the second allows one to apply bayesian MAP
and MPM segmentations. As a consequence, textured images - which, moreover, can
be corrupted by potentially correlated noise - can be segmented without any model
approximation.

The organisation of the paper is as follows. The next section is devoted to the clas-
sical Hidden Markov Random Field model, in which the difficulty of modelling textured
images is brought forth. The new PMRF model is introduced in the third section and
some calculations in the gaussian case are specified. The fourth section is devoted to the
presentation of some samplings of PMRF, and some segmentations using MPM of syn-
thetic images so obtained. The fifth section contains some conclusions and perspectives.

2. Classical Hidden Markov Random Field (HMRF) model

2.1. General framework

Let S be the set of pixels, with N = Card(S), and let X = (X5)ses, Y = (Ys)ses be
two random fields. Each X takes its values in a finite set of classes Q@ = {w;,ws} and
each Y, takes its values in IR. The field X is unobserved and the problem is to estimate
his realizations from the observed field Y. Before looking for estimation methods, one
has to define the distribution of (X,Y"). The classical way of defining this distribution
is to define the distribution of X and the distributions of ¥ conditional on X. In the
HMRF context considered here, the field X a Markov one. In a general manner, X is
said to be markovian with respect to a neighbourhood Vi, whose form is independent of
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the position of s in S and will be denoted by V, if its distribution can be written as:
P(X =z) = yexp(-U(z)) (1)
with
Ue) = 3 W.(a.), (2)
eeFE
where F is the set of cliques (a clique being a subset of S which is either a singleton or
a set of pixels mutually neighbours with respect to V' ), . the restriction of # to e, and
¥, a function, which depends on e and which takes its values in R. In order to define
the distributions of Y = (Y;)ses conditional on X = (X;)ses, one classically assumes
that the two following conditions hold:
(i) the random variables (Y;) are independent conditional to X;
(ii) the distribution of each Y, conditional to X is its distribution conditional to Xj.
Due to theses hypotheses, all the distributions of Y conditional to X are defined, for
k classes, by k distributions on R. To be more precise, let f; denote the density, with

respect to the Lebesgue measure on R, of the distribution of Y; conditional to X = w;.
Then we have

PY =y| X =2)=[]fe(vs), (3)

where fy_ is the density of the distribution of Y; conditional to X; = z;. So, given
that P(X = 2,Y = y) = P(Y = y | X = 2)P(X = ) and putting fy, (ys) =
exp (log(fe, (ys))), we have

P(X =2, Y =y) =vexp— (Z \Ile(a:e)—Zlogfxs(ys)) : (4)
ecE SES

Let us notice that as X is discrete and Y is continuous, the function (1) is a probability
density with respect to the counting measure on Q¥ the functions (3) are probability
densities with respect to the Lebesgue measure on IRN, and so the function (4) is a
probability density with respect to the product of the counting measure on Q by the
Lebesgue measure on RY. As such, the notation P(X = 2,Y = y) is slightly abusive,
because it is not a probability; however, once admitted, it significantly simplifies subse-
quent expressions. So, according to (4) the couple (X,Y) is then a markovian field, and
the distribution of X conditional to Y = y is still a distribution of a Markov field. This
allows one to simulate realizations of X according to its posterior distribution and thus
apply different segmentation methods like Maximum A Posteriori (MAP, [2,3]):

Smap(y) =argmax P(X =z |Y =y) (5)
zeQN

or Maximum Posterior Mode (MPM [5]) :
Vs €S, smupm(s,y) = arg max PXs =2z, |Y =y). (6)
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Remark 2.1. MAP and MPM are two bayesian methods, corresponding to two
cost functions. A cost function L : QN x QY — RY models the gravity of errors:
L(z1,%) is the cost of assuming that the value of  is Z, when the real value is ;. A
bayesian strategy is then a strategy which minimises, with respect to 5 : RY — ov,
the expectation E((L(X,5(Y))). In other words, a bayesian strategy minimises, in the
long run, the average of costs of errors made. The bayesian strategy MAP corresponds
then to Li(z,Z) = 1[x¢;], and the bayesian strategy MPM corresponds to Li(z,Z) =
doses 1[4«"5;625]' The success of the hidden Markov fields model in image segmentation is
due mainly to the fact that MAP and MPM are not computable in the general case, but
they are computable, via approximations, when using the hidden Markov random field
model.

2.2. Gaussian model

Let us consider a simple gaussian case. The random field X = (X;);es is a Markov field
with respect to four nearest neighbours and each X, takes its values in the set of two
classes Q = {w1,ws}. Denoting by ¢ <« u the fact that the pixels ¢ and u are neighbours,

we have:
Uz) =Y e1(ze,aa) + Y #2(as) (7)
teu seS
and

1 Us — my )>

which gives

1 2 (ys - miﬁ‘s)z
P(Y=y|X =z)=exp (sezs —3 log(7oy ) — T (9)
and

1 Ys — Mg, §
P(X =2,Y = y) = yexp <_ 2_(pa(s) = 5 log(mo?)) - %
sES o

- Z 301(33% ..’L‘u)) ) (10)

t—=u
where ¢ is any function from Q2 to R?, and ¢, is any function from © to R. In
practice, the random variables (Y;) are not, in general, independent conditionally on X.
In particular, (9) is too simple to allow one to take texture into account. For instance, if
we consider that texture is a gaussian Markov random field realization ( [1,12,13]), (9)
should be replaced with:

P(Y =y | X = z) = v(z) exp (— e vitu — Y (treyE + bxsys)) (11)

te=u SES
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In other words, Y is markovian and gaussian conditionally to X. Such a model is very
satisfying in the case of textured classes; in fact, this make possible to model situations
in which each class w; can have its own texture modelled with a,y,.

The trouble is that, except in some particular cases, the product of (1) by (11) is not
a Markov distribution. In fact, denoting by I'(z) the covariance matrix of the gaussian
distribution (conditional on X = & ) of the random vector ¥ = (¥;);¢s, we have

1

1) = o dett@)’ (12)
which can not be written, in the general case, as a Markov distribution with respect to
z. Thus here X is markovian, Y is markovian conditional to X, but neither (X,Y) nor
X conditional to Y, are markovian. This is uncomfortable, because the markovianity
of the posterior distribution of X is required to apply different segmentation methods.
Even if this drawback can be circumvented by some model approximations, as in [6, 10],
it remains a problem in general.

3. Pairwise Markov Random Fields and textured image segmentation

This section is devoted to the new PMRF model. In order to do a clear link with the
previous section, we start with the particular gaussian case and then present the general
case.

3.1. Gaussian case

In order to circumvent the difficulty due to the possibly non markovian form of y(z)
given by (12) of the previous section, we propose to directly assume that the couple
(X,Y) is markovian with respect to four nearest neighbours. More precisely, we put

P(X =z,Y = y) = 7Y exXp <_ Zﬁo((xtayf)’('ru’yu)) —Zc’p*((l‘s,ys))) =

teu SES

Y €Xp (_ Z(Sol(ajt; Iu) + a:ciccuytyu) - 2(502(155) + axsxsyg + bxsys)) . (13)
t—u sES
We notice immediately that in the PMRF given by (13) the distribution of ¥ condi-
tioned on X is a Markov field and, what is more, is it exactly of the same shape as the
distribution (11). So, the “approximate” HMRF model obtained by multiplying (1) by
(11) gives the same distribution of ¥ conditioned on X as the PMRF. The difference is
that in the “approximate” HMRF model the distribution of X is a Markov distribution
given by (1), and in the PMRF the distribution of X is a different, and not necessarily
markovian, distribution. In fact, the distribution of X in the PMRF (13), which is its
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marginal distribution, is given by

P(X = z) = 71/ (2m)N det(T(z)) exp (- > iz, zy) - Zm(;ps)) . (14)

teu sES
Finally, the model proposed differs from the HMRF model defined with (1) and (11) by:

(i) The marginal distribution of X (its prior distribution) is markovian in the classical
HMRF model and is not necessarily markovian in the proposed PMRF model;

(ii) The posterior distribution of X is not necessarily markovian in the classical HMRF
model and is markovian in the PMRF model. Furthermore, as a consequence, we
have:

(iii) when dealing with the problem of segmentation of textured images, the proposed
model makes possible the use of MAP or MPM without any model approximation.

Remark 3.1. The fact that the distribution of X is not necessarily a markovian
distribution in a PMRF could be felt as a drawback; in fact, in bayesian context of work,
one is used to being able to write the prior distribution. This does not seem to us to be
a serious drawback for at least two reasons. First, the markovianity of X is rarely estab-
lished in real world images of classes and it is rather arbitrarily assumed. Furthermore,
the main goal of this assumption is to ensure the posterior markovianity of X, which
makes possible different bayesian segmentations. In other words, the markovianity of X
appears rather as a sufficient condition of the applicability of the bayesian methods than
as a necessary one. Second, even in the very simple classical HMRF given by (4), the
distribution of Y is not necessarity a Markov distribution. So, the non markovianity of
X in PMRF should not seem more strange, a priori, that the non markovianity of ¥ in
classical HMRF models.

Remark 3.2. The existence of the distribution (13) is not ensured for every ¢,
©2, z.3,, Oz,.3,, 4, bz, b. To ensure its existence, one has to verify that for every fixed
z = (xs)ses, the energy with respect to y = (ys)ses is a gaussian energy; i.e., for every
fixed # = (25)ses,P(X = 2,Y = y) given by (13) integrable with respect to y.

Let us return to the distribution defined by (13) and let us specify how to simulate
realizations of (X,Y). Let s € S and let ¢;,%5,%3,t4 be the four nearest neighbours of
the pixel s. When using the classical Gibbs sampler, important is to be able to simulate
(X;,Y;) according to its distribution conditional to

[(XfUYh): T (XM: YM)] = [('rh’ ytl)’ R (IM’ yu)]' (15)

So, let us calculate the density of this distribution. We will show that it is of the separable

form (which also depends, of course, on (21, Y1, ), (%1, Yro ), (%15, Y, ), and (2+,, y¢,) which
are omitted):

hoe, ) = () e, () (16)

where p is a probability on the set of classes and for each class z;, the function f;, is

a gaussian density corresponding to this class. Of course, (16) makes simulation very
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easy: one first simulates z; according to p, and then y; is simulated according to f5,.

We have :
P((XsaYs) == (él‘s;'ys) | (tha}/tl): ey (Xtu}/u) — (xtlaytl)n sy ($t4;yt4))

ocexp | = Y e((@e,ys) (20,,90) = ¢ (2, 95)) | =

i=1,...,4

exp | = Y (p1(ms, ) + ooy, Ys ) — (02(25) + o, U7 + be,ys) (17)
i=1,....4

Omitting temporarily the dependence on z, let us put :

a = 502(1‘5)‘1' Z Sol(xsnyti)
i=1 4

i=1,...,4
6 = ag, (18)

the conditional density above is equal to

()

axs:ctl yt,ys)

exp —(a + Bys + 6yf) — exp —

B2
o (i) e 2282)-

Vo Texp <_<£)25+ a) for (), (19)

26

where f;_ is a gaussian density with the mean _2[3_6 and the variance 21—6. Finally, recalling
(18), the density (16) is given by the gaussian densities defined by means M,, and

variances o2 :
s

bz, + 22:1,,,,,4 A x,, Yt;
2a,,

M, =

s

0r. = 1 (20)

° 2a,,
and p the probabilty given on the set of classes with:

(BeatD D im, g Geeme Yt)

(az,)~"exp < 2%;1 +ea(zs)+ 300 4 3'01(1‘3,%,))
- . (21)
(bw+z,—1 4a“’””tzytl)2
e viaa) Texp ( S T o) + zizl,...,w(w,mt,))

p(zs)

w
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So, (20) and (21) allow one to simulate realisations of (X;,Y;) according to its distri-
bution conditional on [(Xy,, Ye,)s -, (Xey, Y2,)] = (@4, Y4,), -, (244, Y2, )], which affords
using the Gibbs sampler to simulate realisations of the Markov field (X, V).

3.2. General framework

The generalisation of the simple PMRF described above is immediate. Let S be a set
of pixels with N = card (S). One may consider k classes Q = {wy,...,wi}, m sensors
(each Yy = (Y}, ..., Y™) takes its values in R™), and a set of cliques C' corresponding to
a neighbourhood system. The random field 7 = (Z;);se¢s, with Z; = (X;,Y5), is called a
multisensor Pairwise Markov Random Field if its distribution may be written as

P(Z =z)=ryexp (— E «pc(zc)) . (22)
ceC

In particular, the three-sensor PMRF may be used in segmenting colour images, a prob-

lem in which statistical methods take growing importance, [16].

Remark 3.3. Let us notice that the conditions (i) and (ii) of the paragraph 2.1
are not necessary to obtain simultaneously prior and posterior markovianity of X. For
instance, let X be a Markov field with respect to some neighbourhood, and let B =
(Bs)ses a “noise” field, markovian with respect to the same neighbourhood as X. Let
us assume that:

(i) the fields X and B are independent;
(ii) for each s € S, we have Y; = F(X;, B;) and By, = G(X;,Y5) ; i.e., F' can be inverted
for evey fixed x;.

Than we can state :

P(Y =y|X =) —|H (20,9.) | P(B = Glz,y)) (23)

and

P(XIJJ,Y:y) |H ls,ys |P(B G(‘l y)) (24)
sES

which implies that (X,Y’) is a Markov field with respect to the same neighbourhood as
the Markov fields X and B, and so the posterior distribution of X is still markovian
with respect to the same neighbourhood. Such models can take correlated noise into
account; however, they can not model really different textures because of the simplicity
of the hypothesis (ii), according to which Y = F(X, B) is defined “point by point” from
the fields X and B : Y, = F(X;, B;) for each s € S. In particular, all the textures
would have the same correlation coefficient. When considering more complex F, the
determinant in (23),(24) would no longer be [] (2s,ys), and so the markovianity
would not be ensured in general.

aG
SES dy.
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In gaussian case, the model above generalises the simple model described in the
paragraph 2.2. Taking the same distribution for X, let B be gaussian, centred, markovian
with respect to four nearest neighbours, and verifying E(Bs)? = 1. Considering Y, =
F(X;s,Bs) = mg, + 05, Bs (and thus B, = G(X;,Ys) = YS;% ) we obtain a more
general model than the model described in the paragraph 2.2, where the field B was a
white gaussian noise.

4. Visual examples

This section is devoted to some simulation results. We show that different class images
and different noise correlations can be obtained with the PMRF model, and some seg-
mentation results are presented. We have chosen rather noisy cases to show that the
high segmentation power of classical hidden Markov fields is preserved.

The PMRFs presented in fig. 2 are markovian with respect to eight nearest neigh-
bours. Assuming that ¢, are null for cliques containing more than two pixels, the general
form of the distribution of (X,Y) is (see (22) of the previous section):

P(X =Y =y)=vexp [ — > duul(@ev), (T, vu)] = Y 6s(zs, s)] ) (25)
te—u sES
and we take the following particular gaussian form:

¢(t,u)[(mt; yt); (aju; yu)] = Ugyz,YsYt + Voo, Us + Copo, Yo + dxtaru)

5
Bullre )] = glowt? 4 By ). (26)

Let us note that the neighbors ¢ < u can form four different cliques, which are specified

in fig. 1.

D - H gs

form 1 form 2 form 3 form 4

Fig. 1. Four possible forms of cliques.

So we have, in the general case, four different functions ¢(; ., that we will call of the
form 1,2,3, and 4, and denote ¢1, ¢2, @3, and ¢4, respectively.
Otherwise, it is useful to have some information about the distribution of ¥ conditional
to X = z. In fact, we have seen that it was a gaussian distribution and knowing some
parameters can be useful in adding or subtracting noise in simulations. More precisely,
let ¥, be the covariance matrix of the gaussian distribution of ¥ conditional to X = «
and let Qz = (¢o, 20 )tues = Xy +. We have:

PY=y|X =2)xexp <—%(y —mg) Qu(y — mx)> . (27)
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By expanding (27) and comparing with (26) one may specify different relations, and in
particular (28) and (29) below.
B 5 1
—_— s = . 2
2(1@'3’ st ( 8)

Ay,

my, =

The relation (28) may be used to modulate the level of the noise (notice that the noise

level also depends on the noise correlation, which is not calculable from (26), and on the
distribution of X).

Let us specify the functions defining ¢;, and ¢, for the three couples of images

(Image 1, Image 2),(Image 4, Image 5), and (Image 7, Image 8) in fig. 2. Given the
following relations

Ar,e, — 2%,,“; b:ct:cu = _Qth,xum:cu:cﬁ Crizy — _Qth,xumxt:
deyo, = 0.4me, mg, + So(t,u)(xtaxu)a ag, =1, Bo, = —2myg,, Yo, = ma%s' (29)
and labelling m; = —0.25, my = 0.25 for the three couples; all we have to specify is

1,92, ¢3, ¢a and ¢y, 5, for each couple. For (Image 1, Image 2) we take:

1 ifes=x
901($t, &l‘u) = 5'02(1% éL‘u) = 5'03(=’L‘t, éL‘u) = 904(1‘t, Iu) = { -1 othérwisé

and
9ze, = —0.2.
The parameters taken for (Image 4, Image 5) are:
1 ife, ==
901(‘1%, Iu) = 902(l‘t; él‘u) = 5'03(‘1% éL‘u) = { -1 otherwiset
pa(®s, Ty) = dp1 (2, Ty)
and
9z,0, = —0.1.
Finally the last couple (Image 7, Image 8) is sampled with:
1 ife, ==
4,02(1% l‘u) = 903(=’L‘t; »”Uu) = 904(33t, l‘u) = { -1 otherwiset.
1(x1, Ty) = dpa(®s, Ty)

and

0 otherwise

{ —0.1 ife; =2, =1
qd?tJ?u =

The estimated covariances and the error rates in MPM segmentations are given in tab. 1,
and the segmentation results are presented in fig. 2.
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-

Image 7 Image 8 Image 9

Fig. 2. Three realizations of Pairwise Markov Fields (Image 1, Image 2), (Image 4, Image 5),(Image 7,
Image 8), and the MPM segmentations of Image 2 (giving Image 3), Image 5 (giving Image 6), and
Image 8 (giving Image 9), respectively. The different parameters are specified in tab. 1.

5. Conclusions

We proposed in this paper a novel model called Pairwise Markov Random Field (PMRF).
A random field of classes  and a random field of observations Y form a PMRF when
the pairwise random field Z = (X,Y) is a Markov field. Such a model is different from
the classical Hidden Markov Random Field (HMRF); in particular, in the PMRF the
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Images 1,2,3 | Images 4,5,6 | Images 7,8,9
P11 0.25 0.1 0.11
P21 0.25 0.1 0.0
T 13 % 11 % 10 %

Tab. 1. p11, p22: : the estimated covariances inter-class (neighbouring pixels).
7 : the error rate of wrongly classified pixels with MPM. The number of iterations in MPM is 25 x 30
(the posterior marginals are estimated from 20 realizations, each realization being obtained after 50
iterations of the Gibbs Sampler).

random field x is not necessarily a Markov field.

The PMRF allows one to deal with the statistical segmentation of textured images
which can be, in addition, corrupted with correlated noise. Contrary to the use of
hierarchical models [4], this can be done in the framework of the model, without any
approximations. Roughly speaking, in the Hierarchical HMRF the prior distribution of
X is markovian and its posterior distribution is not markovian; and in PMRF the prior
distribution of z is not markovian but its posterior distribution is. When using a bayesian
method of segmentation like MPM or MAP, we have to make some approximations when
using Hierarchical HMRF, unlike PMRF. Furthermore, the distributions of ¥ conditional
to X, which model different textures and different possibly correlated noises, can be
strictly the same in the both Hierarchical HMRF and PMRF models.

We have presented different simulations of PMRF and different results of the Bayesian
MPM segmentation of the observation fields. The cases presented are rather noisy and
the results show that the well known efficiency of the HMRF is preserved when using
PMRF, at least in the simple cases presented.

We mainly dealt with textured images segmentation, but, of course, PMRF can by
used in any classification problem in which the observations are spatially dependent
and in which inside of each class the observations are possibly correlated, with possibly
different correlations attached with different classes.

As perspectives for further work, we may put forth the following.

(i) Parameter estimation from Y, allowing unsupervised segmentation. Given that the
simulations of X according to its posterior distribution are feasible, we may propose
the use of Tterative Conditional Estimation (ICE, [9]) for parameter estimation. This
method has given good results, even in more complex situations where the form of
the noise corresponding to each class is not known, [14, 15], or still in hierarchical
models, [18,20]. To apply ICE, one needs an estimator from complete data (X,Y)
and the choice of the stochastic gradient [8], with the difference that it would be
applied to (X,Y) instead of X, for this estimator could be a good one. In fact, the
use of the stochastic gradient with ICE has already given good results in the context
of fuzzy Markov random fields [17], which is more complex that the classical context
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of hidden Markov random fields;

(ii) Another direction of research could be the extension of the “pairwise” notion to other
hidden Markov models. This has been recently one concerning the classical Hidden
Markov Chains (HMC) by introducing Pairwise Markov Chain (PMC) model [22]. So,
one could view the possibilities of applying the “pairwise” notion to different general
hidden Markov models on networks, [19];

(iii) We have mainly introduced the PMRF models because of the lack of the marko-
vianity of y(z) defined by (12), or rather because of the lack of the certainty that
v(z) is markovian. However, we have not specified under what conditions y(z) is not
markovian, at least with respect to a given neighbourhood. Even if the PMRF mod-
els allow us to avoid searching theses conditions, it would undoubtedly be interesting
from the theoretical point of view.

A cknowledgement

We thank Alain Hillion, Directeur Scientifique de 1’Ecole Nationale Supérieure des Téléco-
mmunications de Bretagne, and Jean-Marc Boucher, Professor at Ecole Nationale Supé-
rieure des Télécommunications de Bretagne, for numerous discussions which greatly
helped the writing of this paper. We also thank the anonymous reviewers, whose re-
marks allowed us to improve its readability.

References

1983

[1] Cross G. R., Jain A. K.: Markov random field texture models. IEEE Trans. PAMI, 5(1), 25-39.
1984

[2] Geman S., Geman D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of
images. IEEE Trans. on PAMI, 6(6), 721-741.
1986

[3] Besag J.: On the statistical analysis of dirty pictures. J. Royal Statistical Society, Series B, 48,
259-302
1987

[4] Derin H., Elliot H. : Modelling and segmentation of noisy and textured images using Gibbs random
fields. IEEE Trans. on PAMI, 9(1), 39-55.

[5] Marroquin J., Mitter S., Poggio T.: Probabilistic solution of ill-posed problems in computational
vision. J. American Statistical Association, 82, 76-89.
1988

[6] Kelly P. A., Derin H., Hart K.D.: Adaptive segmentation of speckled images using a hierarchical
random field model. IEEE Trans. ASSP, 36(10), 1628-1641.
1989

[7] Lakshmanan S., Derin H.: Simultaneous parameter estimation and segmentation of Gibbs random

fields. IEEE Trans. PAMI, 11, 799-813.
[8] Younes L. : Estimation and annealing for Gibbsian fields. Annales de I'Institut Henri Poincaré, 24(2),

269-294,.
1992
[9] Pieczynski W.: Statistical image segmentation. MG&V, 1(1/2), 261-268,.
[10] Won C. S., Derin H. : Unsupervised segmentation of noisy and textured images using Markov random

fields. CVGIP: GMIP, 54(4), 308-328,.

Machine GRAPHICS & VISION vol. 9, no. 4, 2000 pp. 705-718



718 Pairwise Markov random fields and ...

1993
Chellapa R., Jain A. (Ed.): Markov Random Fields, Theory and Application, AP, San Diego,.
Cressie N. A. C.: Statistics for Spatial Data. Wiley, Series in Probability and Mathematical Statis-

tics.
1995
[13] Guyon X.: Random Fields on Network. Modeling, Statistics, and Applications. S-V, Probabily and
its Applications, NY.
1997
[14] Delignon Y., Marzouki A., Pieczynski W.: Estimation of generalized mixture and its application in

image segmentation. IEEE Trans. IP, 6(10), 1364-1375.
[15] Giordana N., Pieczynski W.: Estimation of generalized multisensor hidden Markov chains and un-

supervised image segmentation. IEEE Trans. PAMI, 19(5), 465-475.
[16] Yamazaki T., Gingras D. : Image classification using spectral and spatial information based on MRF

models. IEEE Trans. IP, 4(9), 1333-1339.
1997

[17] Salzenstein F., Pieczynski W.: Parameter estimation in hidden fuzzy markov random fields and
image segmentation. GMIP, 59(4), 205-220.
1999

[18] Kato Z., Zerubia J., Berthod M. : Unsupervised parallel image classification using markovian models.
PR, 32, 591-604.

[19] Serfozo R.: Introduction to Stochastic Networks. S-V, NY.
2000

[20] Mignotte M., Collet C., Pérez P., Bouthémy P.. Sonar image segmentation using an unsupervised

hierarchical MRF model. IEEE Trans. IP, 9(7), 1216-1231,.

[21] Pieczynski W., Tebbache A.-N.: Pairwise Markov random fields and their applicationin textured im-
ages segmentation. Proc. IEEE Southwest Symp. on Image Analysis and Interpretation (SSIAI’2000),
2-4 April, Austin, Texas, USA, 106-110.

[22] Pieczynski W.: Pairwise Markov chains and bayesian unsupervised fusion. Proc. 3rd Int. Conf.on
Information Fusion, FUSION 2000, 1, July 10th-13th, Paris, France, MoD4-24 - MoD4-31.

11
12

Wojciech Pieczynski received the Doctorat d’Etat degree from Pierre et Marie Curie University,
Paris, France, in 1986. He is currently Professor and Head of the Statistical Image Processing Group,
Institut National des Télécommunications, Evry, France. His research interests include mathematical

statistics, stochastic processes, and statistical image processing.

Abdel-Nasser Tebbache received the Diplome d’Etudes Approfondies degree from Pierre et Marie
Curie University, Paris, France, in 1997. He is currently completing the PhD degree at the Institut
National des Télécommunications, Evry, and at the Ecole Nationale Supérieure de Télécommunications
de Bretagne, Brest, France. His research interests include bayesian classification, hidden Markov models

parameter estimation, and sonar image segmentation.

Machine GRAPHICS & VISION vol. 9, no. 4, 2000 pp. 705-718



