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Estimation of Generalized Mixture in the Case of

Correlated Sensors filytoyis -y = F) ) - f7 ). (L)

Woijciech Pieczynski, Julien Bouvrais, and Christophe Michel ICE-GEMI allows one to find the form of them functionsf{, and
estimate their parameters, once we know that ¢adfelongs to a given
Abstract—This paper deals with unsupervised Bayesian classification of S€t of forms. For instance, in the case of three classes and two sensors,
multidimensional data. We propose an extension of a recent method of gen- in which each component can be exponential or Gaussian, there are
eralized mixture estimation to correlated sensors case. The method pro- sixty-four possibilities and ICE-GEMI makes possible to search what
pgsed isfye}:jid i”(tjh? indepenﬂint data ca?e, aswellasin tlhe hidden Markov ;ase the data lie in. In this paper, we propose the following generaliza-
chain or field model case, with known applications in signal processing, par- ' " . .
op gna'p g:p tion of ICE-GEMI: eachf; of the densities, - - -, fr is searched in

ticularly speech orimage processing. The efficiency of the method proposed - ok ISTHE
is shown via some simulations concerning hidden Markov fields, with ap- the set of possible densities of the distribution of a random veégter

plication to unsupervised image segmentation. A;Z;, whereA; ism x m matrix andZ; a random vector with inde-
Index Terms—Bayesian classification, image segmentation, Markov pendent components. Roughly speaking, we add matdges -, Ax
fields, mixture estimation, multisensor data. making one possible to deal with correlated sensors. The distribution

of Z; is thus given by
|. INTRODUCTION : m 2, 2 m_me
gi(z1, 20, ") = g DG () g (2 (L2)
The aim of this paper is to deal with the following problem. We
are faced withn series of real data produced by sensors. For each where eacty’ belongs to a given set of forms. The density of the dis-

sensorl < j < m the data are denoted by, ---.y.. We assume tribution of ; is then written
that for each point < s < n the datay!,-- -,y correspond to a
certain class, among classesv., - - -, wx, and the problem is to find Flyhoyt, -yl = (detA) gt (@ gyl + -+ aly™)

which class it is. In other words, the problem is to classify each point
1 < s < n from the data available. The probabilistic approach, which

will be our approach in this paper, consists in assuming that the class ) .
of the pointl < s < n is a realization of a random variahl,, and e ¢an see ho{d.3)generalize¢1.1) Finally, the method we pro-
T om ; pose allows one to find the form of eagh estimate its parameters, and

the datay!, - - -, y?" produced by then sensors are a realization of aP®> . : - .
random vectod, = (Y.,---,¥7"). Thus the problem is to estimate €Stimate thé: matricesA,, - - -, A,. Itis valid in the independent data

the unobserved realizations of a random process (Xi.---. X,) ca;g, as well as in the hidden Mar_kov cham_or field m_odel c_ase. The
from the observed realization of a random process (.- - -, Y, ) efficiency of the method proposed is shown via some simulations con-

Different methods of such a statistical classification exist once the df€Ming hidden Markov fields, with application to unsupervised image
tribution I x yy of (X,Y’) is known. WhenP’ x y-y is not known, one segmentatlorl. . . .
has to identify it fromy” = , the only data available. The aim of our Thg organization (_)f the paper is as follows. In the next section we
paper is to generalize to correlated sensors the method proposed inJBfcify the assumptions needed and describe the run of the proposed
method. Section Il is devoted to simulation results. The final section
contains some concluding remarks and perspectives.
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of (X,Y), denoted byl x v), is defined byPx, the distribution of 5) Put

X, and the set of distributions a&f conditional onX. We assume that

Px , which is a probability on the finite spaé¥’, with n = Card(S), FI Nyl gty =gl T D) gt (2, with
depends on a parameter The set of random variable¥ can be a 2! y!

Markov field, a Markov chain, a set of independent variables, or still 2 = | = a0

have any other structure, once the assumptions below are verified. The om g

random variable&Y; )¢ s are assumed to be independent conditionally
to X, and the distribution of each; conditional onX is equal to its

distribution conditional onX .. The distributions of’; conditional on ) ) AN
q
X. = s € {w1,---,ws} are given by the densities, - - -, fi. with The solution of 3), which consists in finding? of the form(2.1)and

respect to Lebesgue measure, respectively. Furthermore, we assﬁH?g' thatd 1 (‘43)? Is diagonal. GiverT', A SUCh. t.hatAFAT s di-

that there exisk triangular matricest, , - - -, Ay, with agonal can be_obtamed fromthe LDU decompositioh .csc_), this pro-
cedure is applied to eadh< ¢ < k by the use of’}. We will assume

the needed hypothesis according to whicl"féllare positive definite,

which means, in the context considered, that there is no deterministic

link among the sensors considered. The equality in 5) is a particular

Concerning the points 3) and 5), let us make the following remarks.

1 0 0 0 case of the following property. [f" and Z are two random vectors
a§1 1 0 0 taking their values irR™, if fy- andf» are densities of their distribu-
Ai=|asn azp 1 0 (2.1)  tions, and ifZ = AY with A a matrix, thenfy (y) = det(A) f(Ay).
_ ‘ 1 0 Given that detd;) = 1 for any¢, we get 5).
Ayl Aims 0 A1 1 Finally, the generalization of ICE-COR with respect to ICE-GEMI is

following. In real situations we have, férclasses angh sensorsk un-
known densitiesy, - - -, fx on R™. In the previous modeling, each of
such that forl < ¢ < k, the components of, = A;Y. are indepen- themis of the formy, (y1. yi. -+, y1") = fi (y{)f,?(yf) s S,
dent conditionally taX, = w;. Denoting byg, , 42, - - - ¢'" the densi- Where eacly; belongs to one among the familiés, - - -, Fi;.. In the
ties of the distributions of these components we assume that eaclP@Sent modeling we have
them is of a form being in the finite set of forrls= {4, --, Far}, | . o ) .
each formF; being a parametrized family of densities Bn Thus the filYsseonys") = 90 (y5)9i (anys +y5) ... g0
problem is to find theim densities(¢!), the k matricesA,, - - -, A, (b ys F oo F Ay T ) (2.2)
and the parameter. We assume the following:

(A1) An estimatora = &(X) of a from X is availablej(A2) One where eacly! belongs to one among the familigs. - - - , Fs. Thus, in
may simulate realizations df according to its distribution conditional order to better approximate the real unknown densfties- - , fx, we
toY’; (As) Each familyF; of W = {Fy,-- -, Fus } is characterized by introducekm (m—1)/2 supplementary parameters, and, when they
a parametep”, i.e., F; = {g5}35cps- In practiceB” is a subset of are all equal to zero, we find again the previous model. Furthermore,

R"7 with n; depending orF;: for instance:; = 2 if F; are Gaussian; when they are all equal to zero ICE-COR becomes ICE-GEMI.
(A4) M estimatorsi®, - - -, 3! are available such that if a sample=

(21.-++. ) is generated by a distributigny, in F;, then3’ = 3(x)
estimates’?’; (As) A decision ruleD is available, such that for any
samplez = (z1,---, %) and any(g1.---.gm) € F1 X -+ X Fur,

the ruleD associates to the “best suited” density among, - - - ., gar, . ) .
4 9, o Let X = (X,).cs be a Markov field and let us consider the case of

according to some criterion. !
Roughly speaking, the method we propose resembles ICE-GEI\t)ﬁI,O classe$k = 2) and two sensor&n = 2). Thus each¥; takes its

except that we use, at each iteration, some estimates of the matr ges, int2 - {wr. ”2}. and an observation is a realization of a random
Aiq,---, Ar inorderto “decorrelate” the sensors. Thus the method prh‘-a dY = (Y)ses, with
posed here, which we will call ICE-COR (COR for “correlate”), is an v
iterative method and runs as follows. At each iteration: Y, = {YS{Z} .
1) Simulatez?, a realization ofX, according to itsa? and ¢
£, -+, f] based distribution conditional {6 = y.
2) Calculatea®™ = E J[a(X)|Y = y], where E,[-|Y =
y] denotes the conditional expectation given= «? and

lll. SIMULATION RESULTS

According to the general conditions of the previous section, we con-
sider two matrices

(frs---o fu) = (fE,---, f1). If this calculation is not pos- 4 = 1 0 1, — 1 0
sible, calculatev?™ = & (x?). T 1 P T e 1

3) Fori = 1,---,k, considerS! = {s € S/z? = w;}. Let
! = (ys)iess = (5,4l )sese andy?” = (y).es9-  such that the components , Z2 of the vector
For eachi = 1,---,k calculate, fromy! = (ys)sgsg, the
empirical covariance matrik? and consideri?, of the form 7 _ {Z; } _4 {Y; }
(2.1)and such thatl?T?(A?)" is diagonal. For each € S, V4 A
putz, = Aly, and consider! = (z.),cse.

4) Foreach = 1,...,m and each class= 1,....k, calculate are independent conditionally t§, = wi, and the components,
M parameters3!” = §'(z0),...,8M" = gM(zr), U?Z of the vector
which give the densitiesy””,...,¢M". Put, for each
ro= L...,mg " = D(g".... gg;M’T) which give . Ul v}
gl gt v. = {Uﬁ} = A {Yf}
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TABLE |
GEEG:g; AND g2 GAUSSIAN, AND EXPONENTIAL. p1, p2: CORRELATION'S INI'y, I'z. mi, m2, m}, AND m2: MEANS OF g}, ¢, AND ¢2,
RESPECTIVELY. VARIANCE OF THE FOUR DISTRIBUTION EQUAL TO 1. 7; AND 72: ERROR RATES OF BAYESIAN CLASSIFICATION
WITHOUT (71) AND WITH (72) TAKING THE CORRELATION INTO ACCOUNT

Cuse Laws 0 P ny m, n; n, T, 7,
1 GEEG 0.0 0.0 -1.0 1.0 1.0 -1.0 1.12% | 1.18%
2 GEEG 0.8 0.0 -1.0 1.0 1.0 -1.0 2.5% | 1.04%
3 GEEG 0.4 0.4 -1.0 1.0 1.0 -1.0 [ 1.73% | 1.12%
4 GEEG 0.8 0.8 -1.0 1.0 1.0 1.0 [ 3.02% | 1.12%
5 GEEG 0.8 0.0 -0.5 0.5 0.7 -0.7 B8.00% P5.25%
6 GEGG 0.8 0.8 -0.5 0.5 0.7 -0.7 B6.27% |3.03%
2 2
are independent conditionally 6, = w-. Let us denote by (z) = 2y = <*§ ) = A1 <?/L; )
g1(z4 2%) = g1 (21)gi(2?) the density of the distribution of, = Zs / sest "\ ¥s /eesy
A,Y, conditional toX, = wi, andgz(u',u?) = g5(u')g3(u?) the
densities of the distribution df, = A»Y. conditional toX, = ws. and use the sample§:l),cqa, (23),cse, (24),e59, and
The densities of the distribution &f conditional to the classes , w, (22),css to identify the formslofg}w 72, gs, g3 and éstimate
respectively, are thep: (41y), g2(A2y). Furthermore, we consider their parameters. The latter is done as follows: to identify the
¥ = {F, Fy}, whereFy are_(_;auszlan1lavxés aric are exponential form and the parameters of , estimate the mean and the
laws. Thus each of the densitigh, g1, g3, g5 can be exponential or variance from(z!),. s, which gives a Gaussian density
s )sese

Gaussian. Likely to Gaussian densities which are easily determined on the one hand, and an exponential deniftyon the other

from the mean and the variance, an exponential density is of the form i : : :

F(2) = b1 4 ((2) ana thus zepends on twoyparameters hand. Calculate the histogramfrom (:,})Sesg and consider

JA<) — U a,+oo[\ </ ’ 7 ,'N_A 2 . 1 g1

which can easily be determined from the mean and the variance. 3 z glR [h’d(‘l) B };(27)2 ddz>fodr ! P_ 1”2'dP.Utf]1 = hoif
Concerning the structure of the Markov field we adopt the simple fl s, 2 an %‘ ;C;’f W dy =2 do. Frocee r:nt elgsame ;/(\j/ay

Potts model, which is Markovian with respect to four nearest neighbors boer Zéég% andg;. Of course, numerous other rulés cou

and whose distribution depends on just one real pararaefdthough . - . .

there exist numerous estimatorsoofrom X, we will fix o in the sim- iv) Determine the densitie§, f> with f1(y) = g1(A1y), fo(y) =

g2(Azy). Calculate the posterior distribution.

ulations below and focus on the noise densities recognition. ) i )
Finally, » being the number of pixels, we have available a sampIeThe results of some simulations are as follows. In order to clarify the
presentation in Table I, let us specify, as an example, the case 2. Laws
y! Yl y! GEEG means thaf; is Gaussiang; andg? are Exponential, ang
Wi, y2, 3 Yn) = 2 )5\ 2 )2 is Gaussian. In all simulations the variance of the four densifies!,
Y1 Y2 Yn 2 5 - . . 1 9
g%, andg? is 1, thus they are defined by their mean$, mJ}, m?, and

and we must identify the forms af, ¢, g1, ¢2 and estimate their ™3. Recall thatf, is defined bygi , ¢7. andA- [ull T] On the other
parameters and estimate, a2. The algorithm is as follows: hand,
1) Initialization:

Assume the sensors independent (matri¢esand 4, are identity) N 1p U} for T = [a'f’ p }
and all densities Gaussian. Calculate, frgfnys, - - -, vy, the empir- T l-= 1 “lp o2
ical mean and varianck/], 3} of first sensor, and calculate, frog, 71 1
y3,---,y=, the empirical mean and variandd3, ¥ of the second AsT; = { pll} and Ty = L} plz}

1 2

one. Putni = My — (£§/2) andmi = My + (£§/2) for means
1 1 1\2 — 1,2 — El B . . . ) )
?g fi, f>,and ig‘) leul (;;2) 2 02f02r t(he2|r2vattrr]|ances. Procdeed "N\we haver, = —p1 andas = —ps. Finally, f1 is defined by the type of
€ samfe;/vayZ ofca Cl;[ag ;’Qm’é’f(al) »(02)", the me?ﬁs a.m.t. \/lgrl- g1, g1, their meansn1, mi, andp:. Recalling thatf; (y) = g1 (41y),
ances off1, £, from My, 3. Of course, numerous other INitiallza-y, o oy 3 ¢t form off; is (the indexs is omitted)
tions could be used but, on the contrary to EM technics, the initializa-

tion is not essential because of the stochastic aspect of iterations.

. 11y 2, T2
2) At each iteration Hy) =0y )gi(=pry —y°)

1 2 _(— 14,2
— e~ (W F17/2 —(=0.8y 4y 1)1[0‘+x

[

i) Using the Gibbs sampler, simulate a realizati§n = =7 in Vor
Q" = {w1,w2}" according to the posterior distribution. (—=0.8y" + 7). (3.1)
i) Calculate, fromS} = (s € S/al = wi} andS; = {s €
S/ = w2}, the emplrlcallcova(r)lance matncE%., I'3. Caleu- In the same wayf: is defined by the type of;, g5, their meansn.,
late A7, A7 | takeA = 0 for T — {01 /J2 } ) m3, andp». According to the data on the line 2 of the Table |, its exact
N - 1 a3 form is
g

iii) Consider
f2(9) =2 (y")gs (%)

.2 2
P — A7 <ys> —(y'=1) TR SRR CLRELYP
1 1 1 1 = 1 .
< )56511 Ys sest e [1,+>o[(1/ ) /27r€ 3.2
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Sensor [, case 5 Sensor 2, case 5

Real image

Real parameters based
segmentation, case 3,
7=0.65%

Segmentation Wih ICE-
segmentation, case 6, ICE-GEMLI : COR : 7=23.03%
7=1.00% T=46.27%

Real parameters based

Fig. 1. Hand written image, its noisy versions in the two sensors, and Markov Fields based segmentations: Cases 5 andi6isTaaleparameter based
Bayesian classification error rate.

The results presented in Table | show that taking into account the colassification of multisensor data. The novelty is that the sensors are
relation of the sensors may be advantageous when considering uqmssibly non-Gaussian and can be correlated. The method proposed
pervised Bayesian multisensor data classification. In some situatioiss,a generalization of the recently published method ICE-GEMI
as the case 3, its advantage seems limited and in some others, a$ghedn the latter the sensors were assumed independent; however,
case 6, its advantage is determining. Of course, the number of unthe densities attached with each class were allowed to be, for each
pervised classification of multivariate data problems is extremely widensor, of different form, and they were allowed to vary, for a
and, for a given problem, we have numerous possibilities of considerigigen class, with sensors. All we required was that each density
an ICE-COR method. So we have to be careful in claming anythitg of a form belonging to a given set of forms. Such mixtures are
about the general quality of ICE-COR; however, this short simulatiaralled “generalized mixtures” and thus ICE-GEMI allows one to
study shows that ICE-COR may be of interest. estimate such mixtures in a quite general context, which includes

Some visual effects are presented in Fig. 1. Markov hidden chains or fields. The method proposed in this paper,

Let us notice that the computer time cannot be indicated preciselpich we call ICE-COR (classical ICE is found in the classical
because it depends on different subjective parameters, like the miixture case and COR for correlated sensors mixture), generalizes
D or number of different iterations. However, in the hidden MarkolCE-GEMI in that the sensors can be correlated, and, in the partic-
fields context the ICE-COR methods have to be seen as rather tiolar case when they are independent, ICE-COR gives ICE-GEMI.
consuming. In the same way as ICE-GEMI, the method proposed is valid in
a quite general setting; in particular, hidden Markov fields or hidden
Markov chains can be treated, with known applications to image or
signal restoration. As hidden Markov chains have been studied in [8],

In this paper we presented a new method for estimating multike proposed in this paper some simulation results concerning the
variate mixtures, with some applications to unsupervised Bayesidiglden Markov field model based multisensor image segmentation.

IV. CONCLUSIONS
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Different simulations allow us to asses the existence of some situatioBeparating Touching Objects in Remote Sensing Imagery:

in which the use of ICE-COR is of interest. The Restricted Growing Concept and Implementations
Unfortunately, we have no theoretical result to present concerning
the asymptotic behavior of ICE-COR. We hope to devote to this im- Leen-Kiat Soh and Costas Tsatsoulis

portant subject some efforts in our future works.
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