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Estimation of Generalized Mixture in the Case of
Correlated Sensors

Wojciech Pieczynski, Julien Bouvrais, and Christophe Michel

Abstract—This paper deals with unsupervised Bayesian classification of
multidimensional data. We propose an extension of a recent method of gen-
eralized mixture estimation to correlated sensors case. The method pro-
posed is valid in the independent data case, as well as in the hidden Markov
chain or field model case, with known applications in signal processing, par-
ticularly speech or image processing. The efficiency of the method proposed
is shown via some simulations concerning hidden Markov fields, with ap-
plication to unsupervised image segmentation.

Index Terms—Bayesian classification, image segmentation, Markov
fields, mixture estimation, multisensor data.

I. INTRODUCTION

The aim of this paper is to deal with the following problem. We
are faced withm series of real data produced bym sensors. For each
sensor1 � j � m the data are denoted byyj

1
; � � � ; yjn: We assume

that for each point1 � s � n the datay1s ; � � � ; y
m
s correspond to a

certain class, amongk classes!1; � � � ; !k; and the problem is to find
which class it is. In other words, the problem is to classify each point
1 � s � n from the data available. The probabilistic approach, which
will be our approach in this paper, consists in assuming that the class
of the point1 � s � n is a realization of a random variableXs; and
the datay1s ; � � � ; y

m
s produced by them sensors are a realization of a

random vectorYs = (Y 1

s ; � � � ; Y
m
s ): Thus the problem is to estimate

the unobserved realizations of a random processX = (X1; � � � ; Xn)
from the observed realization of a random processY = (Y1; � � � ; Yn):
Different methods of such a statistical classification exist once the dis-
tributionP(X;Y ) of (X;Y ) is known. WhenP(X;Y ) is not known, one
has to identify it fromY = y; the only data available. The aim of our
paper is to generalize to correlated sensors the method proposed in [8].
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Let us first consider the case of one sensor. WhenP(X;Y ) depends
on an unknown parameter�; the problem is to estimate� from Y:

This problem, which is known as the mixture estimation problem, is
a very general and important one [17]. The pioneering method of mix-
ture estimation is the expectation-maximization (EM) algorithm [6],
[16], which admits theoretical justifications and gives very good re-
sults in classical cases, such as independent Gaussian mixtures. Other
methods like stochastic gradient [18] or iterative conditional estima-
tion (ICE, [12]) can also be used. In particular, their use in the Markov
random field model (MFR) context leads to the unsupervised image
segmentation [2], [9], [18], among others. In fact, once the parame-
ters are estimated, the segmentation can be performed with simulated
annealing [7], maximum posterior mode (MPM [11]), or iterated con-
ditional mode (ICM [1]).

All these methods are easily generalizable to the multi-sensor case
when the noise is Gaussian. When the noise is not Gaussian and the
sensors are independent, one may use the ICE-general mixture (ICE-
GEMI) algorithm, valid in the following context [8]. We havek classes,
and so we have to find thek probability densitiesf1; � � � ; fk onRm:

Because of the independence, each of these densitiesfi is written

fi(y
1
1 ; y

2
1 ; � � � ; y

m
1 ) = f

1
i (y

1
1)f

2
i (y

2
1) � � � f

m
i (ym1 ): (1.1)

ICE-GEMI allows one to find the form of thekm functionsf ji ; and
estimate their parameters, once we know that eachf

j
i belongs to a given

set of forms. For instance, in the case of three classes and two sensors,
in which each component can be exponential or Gaussian, there are
sixty-four possibilities and ICE-GEMI makes possible to search what
case the data lie in. In this paper, we propose the following generaliza-
tion of ICE-GEMI: eachfi of the densitiesf1; � � � ; fk is searched in
the set of possible densities of the distribution of a random vectorYi =
AiZi; whereAi is m�m matrix andZi a random vector with inde-
pendent components. Roughly speaking, we add matricesA1; � � � ; Ak

making one possible to deal with correlated sensors. The distribution
of Zi is thus given by

gi(z
1
1 ; z

2
1 ; � � � ; z

m
1 ) = g

1
i (z

1
1)g

2
i (z

2
1) � � � g

m
i (z

m
1 ) (1.2)

where eachgji belongs to a given set of forms. The density of the dis-
tribution ofYi is then written

fi(y
1
1 ; y

2
1 ; � � � ; y

m
1 ) = (detAi)g

1
i (a

i
11y

1
1 + � � �+ a

i
1my

m
1 )

� � � gmi (a
i
m1y

1
1 + � � �+ a

i
mmy

m
1 ): (1.3)

We can see how(1.3)generalizes(1.1). Finally, the method we pro-
pose allows one to find the form of eachgji ; estimate its parameters, and
estimate thek matricesA1; � � � ; Ak: It is valid in the independent data
case, as well as in the hidden Markov chain or field model case. The
efficiency of the method proposed is shown via some simulations con-
cerning hidden Markov fields, with application to unsupervised image
segmentation.

The organization of the paper is as follows. In the next section we
specify the assumptions needed and describe the run of the proposed
method. Section III is devoted to simulation results. The final section
contains some concluding remarks and perspectives.

II. GENERALIZED CORRELATEDSENSORSMIXTURE ESTIMATION

LetX = (Xs)s2S ; Y = (Ys)s2S; be two random processes, where
eachXs takes its values in the set of classes
 = f!1; � � � ; !kg and
eachYs takes its values in the set of observationsRm: The distribution

1057-7149/00$10.00 © 2000 IEEE
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of (X; Y ); denoted byP(X;Y ); is defined byPX ; the distribution of
X; and the set of distributions ofY conditional onX: We assume that
PX ; which is a probability on the finite space
n; with n = Card(S);
depends on a parameter�: The set of random variablesX can be a
Markov field, a Markov chain, a set of independent variables, or still
have any other structure, once the assumptions below are verified. The
random variables(Ys)s2S are assumed to be independent conditionally
to X; and the distribution of eachYs conditional onX is equal to its
distribution conditional onXs: The distributions ofYs conditional on
Xs = xs 2 f!1; � � � ; !kg are given by the densitiesf1; � � � ; fk with
respect to Lebesgue measure, respectively. Furthermore, we assume
that there existk triangular matricesA1; � � � ; Ak; with

Ai =

1 0 0 � � � 0

ai21 1 0 � � � 0

ai31 ai32 1 � � � 0

� � � � � � � � � 1 0

aim1 aim2 � � � aimm�1 1

(2.1)

such that for1 � i � k; the components ofZs = AiYs are indepen-
dent conditionally toXs = !i: Denoting byg1i ; g

2
i ; � � � g

m
i the densi-

ties of the distributions of these components we assume that each of
them is of a form being in the finite set of forms	 = fF1; � � � ; FMg;
each formFj being a parametrized family of densities onR: Thus the
problem is to find thekm densities(gli); thek matricesA1; � � � ; Ak;
and the parameter�: We assume the following:
(A1) An estimator�̂ = �̂(X) of α fromX is available;(A2) One

may simulate realizations ofX according to its distribution conditional
to Y ; (A3) Each familyFj of 	 = fF1; � � � ; FMg is characterized by
a parameter�j ; i.e.,Fj = fg� g� 2B : In practiceBj is a subset of
Rn with nj depending onFj : for instancenj = 2 if Fj are Gaussian;
(A4)M estimatorŝ�1; � � � ; �̂M are available such that if a samplez =
(z1; � � � ; zr) is generated by a distributiong� in Fj ; then�̂j = �̂j(z)
estimates�j ; (A5) A decision ruleD is available, such that for any
samplez = (z1; � � � ; zr) and any(g1; � � � ; gM ) 2 F1 � � � � � FM ;
the ruleD associates toz the “best suited” density amongg1; � � � ; gM ;
according to some criterion.

Roughly speaking, the method we propose resembles ICE-GEMI,
except that we use, at each iteration, some estimates of the matrices
A1; � � � ; Ak in order to “decorrelate” the sensors. Thus the method pro-
posed here, which we will call ICE-COR (COR for “correlate”), is an
iterative method and runs as follows. At each iteration:

1) Simulatexq; a realization ofX; according to its�q and
fq1 ; � � � ; f

q

k based distribution conditional toY = y:
2) Calculate�q+1 = Eq[�̂(X)jY = y]; whereEq[�jY =

y] denotes the conditional expectation given� = �q and
(f1; � � � ; fk) = (fq1 ; � � � ; f

q

k): If this calculation is not pos-
sible, calculate�q+1 = �̂(xq):

3) For i = 1; � � � ; k; considerSqi = fs 2 S=xqs = !ig: Let
yqi = (ys)s2S = (y1s ; � � � ; y

m
s )s2S andyq;ri = (yrs)s2S :

For eachi = 1; � � � ; k calculate, fromyqi = (ys)s2S ; the

empirical covariance matrix̂�qi and considerAq
i ; of the form

(2.1)and such thatAq
i �̂

q
i (A

q
i )
T is diagonal. For eachs 2 Sqi ;

put zs = Aq
i ys and considerzqi = (zs)s2S :

4) For eachr = 1; . . . ; m and each classi = 1; . . . ; k; calculate
M parameters�1;ri = �̂1(zri ); . . . ; �

M;r
i = �̂M(zri );

which give the densitiesg1;ri ; . . . ; gM;r
i : Put, for each

r = 1; . . . ;mgr;q+1i = D(g1;ri ; . . . ; gM;r
i ) which give

g1;q+1i ; . . . ; gm;q+1
i :

5) Put

fq+1i (y1s ; � � � ; y
m
s ) = g1;q+1i (z1s) � � � g

m;q+1
i (zms ); with

zs =

z1s
� � �

zms

= Aq
i

y1s
� � �

yms

:

Concerning the points 3) and 5), let us make the following remarks.
The solution of 3), which consists in findingAq

i of the form(2.1)and
such thatAq

i �̂
q
i (A

q
i )
T is diagonal. Given�; A such thatA�AT is di-

agonal can be obtained from the LDU decomposition of�. So, this pro-
cedure is applied to each1 � i � k by the use of̂�qi : We will assume
the needed hypothesis according to which all�̂qi are positive definite,
which means, in the context considered, that there is no deterministic
link among the sensors considered. The equality in 5) is a particular
case of the following property. IfY andZ are two random vectors
taking their values inRm; if fY andfZ are densities of their distribu-
tions, and ifZ = AY with A a matrix, thenfY (y) = det(A)fZ(Ay):
Given that det(Ai) = 1 for anyi; we get 5).

Finally, the generalization of ICE-COR with respect to ICE-GEMI is
following. In real situations we have, fork classes andm sensors,k un-
known densitiesf1; � � � ; fk onRm: In the previous modeling, each of
them is of the formfi(y11; y

2
1 ; � � � ; y

m
1 ) = f1i (y

1
1)f

2
i (y

2
1) � � � f

m
i (ym1 );

where eachf ji belongs to one among the familiesF1; � � � ; FM : In the
present modeling we have

fi(y
1
s ; . . . ; y

m
s ) = g1i (y

1
s)g

2
i (a

i
21y

1
s + y2s) . . . g

m
i

� (aim1y
1
s + . . . + aimm�1y

m�1
s + yms ) (2.2)

where eachgji belongs to one among the familiesF1; � � � ; FM : Thus, in
order to better approximate the real unknown densitiesf1; � � � ; fk; we
introducekm(m�1)=2 supplementary parametersaijl; and, when they
are all equal to zero, we find again the previous model. Furthermore,
when they are all equal to zero ICE-COR becomes ICE-GEMI.

III. SIMULATION RESULTS

LetX = (Xs)s2S be a Markov field and let us consider the case of
two classes(k = 2) and two sensors(m = 2): Thus eachXs takes its
values in
 = f!1; !2g and an observation is a realization of a random
field Y = (Ys)s2S; with

Ys =
Y 1
s

Y 2
s

:

According to the general conditions of the previous section, we con-
sider two matrices

A1 =
1 0

a1 1
; A2 =

1 0

a2 1

such that the componentsZ1
s ; Z

2
s of the vector

Zs =
Z1
s

Z2
s

= A1
Y 1
s

Y 2
s

are independent conditionally toXs = !1; and the componentsU1
s ;

U2
s of the vector

Us =
U1
s

U2
s

= A2
Y 1
s

Y 2
s
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TABLE I
GEEG:g AND g GAUSSIAN, AND EXPONENTIAL. � ; � : CORRELATION’S IN � ;� : m ; m ; m ; AND m : MEANS OFg ; g ; AND g ;

RESPECTIVELY. VARIANCE OF THE FOUR DISTRIBUTION EQUAL TO 1. � AND � : ERROR RATES OF BAYESIAN CLASSIFICATION

WITHOUT (� ) AND WITH (� ) TAKING THE CORRELATION INTO ACCOUNT

are independent conditionally toXs = !2: Let us denote byg1(z) =
g1(z

1; z2) = g11(z
1)g21(z

2) the density of the distribution ofZs =
A1Ys conditional toXs = !1; andg2(u1; u2) = g12(u

1)g22(u
2) the

densities of the distribution ofUs = A2Ys conditional toXs = !2:
The densities of the distribution ofY conditional to the classes!1; !2;
respectively, are theng1(A1y); g2(A2y): Furthermore, we consider
	 = fF1; F2g; whereF1 are Gaussian laws andF2 are exponential
laws. Thus each of the densitiesg11 ; g

2
1 ; g

1
2 ; g

2
2 can be exponential or

Gaussian. Likely to Gaussian densities which are easily determined
from the mean and the variance, an exponential density is of the form
f(z) = be�b(z�a)1[a;+1[(z); and thus depends on two parameters,
which can easily be determined from the mean and the variance.

Concerning the structure of the Markov fieldX;we adopt the simple
Potts model, which is Markovian with respect to four nearest neighbors
and whose distribution depends on just one real parameterα. Although
there exist numerous estimators ofα fromX; we will fix α in the sim-
ulations below and focus on the noise densities recognition.

Finally,n being the number of pixels, we have available a sample

(y1; y2; � � � ; yn) = y11
y21

;
y12
y22

; � � � y1n
y2n

and we must identify the forms ofg11 ; g
2
1 ; g

1
2 ; g

2
2 and estimate their

parameters and estimatea1; a2: The algorithm is as follows:
1) Initialization:
Assume the sensors independent (matricesA1 andA2 are identity)

and all densities Gaussian. Calculate, fromy11 ; y
1
2 ; � � � ; y1n; the empir-

ical mean and varianceM1
0 ;�

1
0 of first sensor, and calculate, fromy21 ;

y22 ; � � � ; y2n; the empirical mean and varianceM2
0 ;�

2
0 of the second

one. Putm1
1 = M1

0 � (�1
0=2) andm1

2 = M1
0 + (�1

0=2) for means
of f11 ; f

1
2 ; and(�11)

2 = (�12)
2 = �1

0 for their variances. Proceed in
the same way to calculatem2

1; m
2
2; (�

2
1)

2; (�22)
2; the means and vari-

ances off21 ; f
2
2 ; from M2

0 ; �
2
0: Of course, numerous other initializa-

tions could be used but, on the contrary to EM technics, the initializa-
tion is not essential because of the stochastic aspect of iterations.

2) At each iteration

i) Using the Gibbs sampler, simulate a realizationX = xq in

n = f!1; !2gn according to the posterior distribution.

ii) Calculate, fromSq
1 = (s 2 S=xqs = !1g andSq

2 = fs 2
S=xqs = !2g; the empirical covariance matrices�̂q1; �̂

q
2: Calcu-

lateAq
1; A

q
2 takeA =

1 0

� �

�21
1 for � =

�21 �

� �22
:

iii) Consider

z1 =
z2s
z1s s2S

= Aq
1

y2s
y1s s2S

z2 =
z2s
z1s s2S

= Aq
2

y2s
y1s s2S

and use the samples(z1s)s2S ; (z2s)s2S ; (z1s)s2S ; and
(z2s)s2S to identify the forms ofg11 ; g

2
1 ; g

1
2 ; g

2
2 and estimate

their parameters. The latter is done as follows: to identify the
form and the parameters ofg11 ; estimate the mean and the
variance from(z1s)s2S ; which gives a Gaussian densityh1

on the one hand, and an exponential densityh2 on the other
hand. Calculate the histogram̂h from (z1s)s2S and consider

di = sR [hi(z) � ĥ(z)]2 dz for i = 1; 2: Put g11 = h1 if
d1 � d2 andg11 = h2 if d1 � d2: Proceed in the same way
for g21 ; g

1
2 ; andg22 : Of course, numerous other rulesD could

be used.
iv) Determine the densitiesf1; f2 with f1(y) = g1(A1y); f2(y) =

g2(A2y). Calculate the posterior distribution.
The results of some simulations are as follows. In order to clarify the
presentation in Table I, let us specify, as an example, the case 2. Laws
GEEG means thatg11 is Gaussian,g12 andg21 are Exponential, andg22
is Gaussian. In all simulations the variance of the four densitiesg11 ; g

1
2 ;

g21 ; andg22 is 1, thus they are defined by their meansm1
1; m

1
2; m

2
1; and

m2
2: Recall thatf1 is defined byg11 ; g

2
1 ; andA=

1
a

0
1
: On the other

hand,

A =
1 0

� �

�21
1 for � =

�21 �

� �22

As �1 =
1 �1
�1 1

and �2 =
1 �2
�2 1

we havea1 = ��1 anda2 = ��2: Finally,f1 is defined by the type of
g11 ; g

2
1 ; their meansm1

1; m
2
1; and�1: Recalling thatf1(y) = g1(A1y);

the exact form off1 is (the indexs is omitted)

f1(y) = g11(y
1)g21(��1y1 � y2)

=
1p
2�

e�(y +1) =2e�(�0:8y +y �1)1[0;+1[

� (�0:8y1 + y2): (3.1)

In the same way,f2 is defined by the type ofg12 ; g
2
2 ; their meansm1

2;
m2

2; and�2: According to the data on the line 2 of the Table I, its exact
form is

f2(y) = g12(y
1)g22(y

2)

= e�(y �1)1[1;+1[(y
1)

1p
2�

e�(y +1) =2 (3.2)
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Fig. 1. Hand written image, its noisy versions in the two sensors, and Markov Fields based segmentations: Cases 5 and 6, Table I.τ is real parameter based
Bayesian classification error rate.

The results presented in Table I show that taking into account the cor-
relation of the sensors may be advantageous when considering unsu-
pervised Bayesian multisensor data classification. In some situations,
as the case 3, its advantage seems limited and in some others, as the
case 6, its advantage is determining. Of course, the number of unsu-
pervised classification of multivariate data problems is extremely wide
and, for a given problem, we have numerous possibilities of considering
an ICE-COR method. So we have to be careful in claming anything
about the general quality of ICE-COR; however, this short simulation
study shows that ICE-COR may be of interest.

Some visual effects are presented in Fig. 1.
Let us notice that the computer time cannot be indicated precisely

because it depends on different subjective parameters, like the rule
D or number of different iterations. However, in the hidden Markov
fields context the ICE-COR methods have to be seen as rather time
consuming.

IV. CONCLUSIONS

In this paper we presented a new method for estimating multi-
variate mixtures, with some applications to unsupervised Bayesian

classification of multisensor data. The novelty is that the sensors are
possibly non-Gaussian and can be correlated. The method proposed
is a generalization of the recently published method ICE-GEMI
[8]. In the latter the sensors were assumed independent; however,
the densities attached with each class were allowed to be, for each
sensor, of different form, and they were allowed to vary, for a
given class, with sensors. All we required was that each density
be of a form belonging to a given set of forms. Such mixtures are
called “generalized mixtures” and thus ICE-GEMI allows one to
estimate such mixtures in a quite general context, which includes
Markov hidden chains or fields. The method proposed in this paper,
which we call ICE-COR (classical ICE is found in the classical
mixture case and COR for correlated sensors mixture), generalizes
ICE-GEMI in that the sensors can be correlated, and, in the partic-
ular case when they are independent, ICE-COR gives ICE-GEMI.

In the same way as ICE-GEMI, the method proposed is valid in
a quite general setting; in particular, hidden Markov fields or hidden
Markov chains can be treated, with known applications to image or
signal restoration. As hidden Markov chains have been studied in [8],
we proposed in this paper some simulation results concerning the
hidden Markov field model based multisensor image segmentation.
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Different simulations allow us to asses the existence of some situations
in which the use of ICE-COR is of interest.

Unfortunately, we have no theoretical result to present concerning
the asymptotic behavior of ICE-COR. We hope to devote to this im-
portant subject some efforts in our future works.
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Separating Touching Objects in Remote Sensing Imagery:
The Restricted Growing Concept and Implementations

Leen-Kiat Soh and Costas Tsatsoulis

Abstract—This paper defines the restricted growing concept (RGC) for
object separation and provides an algorithmic analysis of its implementa-
tions. Our concept decomposes the problem of object separation into two
stages. First, separation is achieved by shrinking the objects to their cores
while keeping track of their originals as masks. Then the core is grown
within the masks obeying the guidelines of a restricted growing algorithm.
In this paper, we apply RGC to the remote sensing domain, particularly the
synthetic aperture radar (SAR) sea ice images.

Index Terms—Morphology, object separation, remote sensing imagery,
restricted growing.

I. INTRODUCTION

When two gray level objects touch with shared boundaries, it makes
shape analysis and recognition difficult in areas such as industrial vi-
sion applications [3], in aerial image and terrain analysis [7] or in shape
analysis [5]. The objectives of our work are to achieve object separa-
tion, and to preserve (or approximate as closely as possible) the object’s
original shape and size. The tradeoff between separation and preserva-
tion of size and shape is inherent in all object separation algorithms.
To address this problem, we have designed a technique based on the
restricted growing concept (RGC), that achieves separation and, then,
reestablishes the sizes and shapes of the objects lost or distorted during
the separation process by performing restricted growing.

In this paper, we present the restricted growing concept and address
the issues of preserving details through different designs of masks,
investigate the use of morphological reconstructionh-domes in ex-
tracting cores, compare the differences between the performance of the
morphological operators in synthetic and remotely sensed images, and
describe a reverse skeletonization algorithm to guide the growth of ob-
ject pixels in the image. We finally present twelve algorithms of RGC
and examine their weaknesses and strengths when applied to synthetic
aperture radar (SAR) sea ice images.

II. RESTRICTEDGROWING CONCEPT

The main idea behind the RGC is to decompose the object separa-
tion problem into two steps: The first step achieves separation, accom-
plished byshrinkingobjects such that each object is separated from
its touching neighbors. The second step preserves size and shapes by
growing the shrunk objects to restore them. To ensure that the sep-
aration established after the first stage is not disturbed, our growing
process isrestricted.

In our approach, amask objectis a version of the original object such
that the original size of the object is preserved. Mask objects are usu-
ally interconnected and can encompass one or more core objects. An
image with mask objects is amask image. A core objectis a version
of the original object such that its linkages to neighboring objects are
disconnected, satisfying object separation. Such an object is reduced in
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