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Estimation of Generalized Mixtures and
Its Application in Image Segmentation

Yves Delignon, Abdelwaheb Marzouki, and Wojciech Pieczynski

Abstract—We introduce in this work the notion of a generalized to facilitate calculations or improve the EM’s performances,
mixture and propose some methods for estimating it, along have since been proposed. An alternative method, called
with applications to unsupervised statistical image segmentation. iterative conditional estimation (ICE) [3], [4], [26]-[28], is
A distribution mixture is said to be “generalized” when the o 3 h ’ ' .
exact nature of components is not known, but each belongs based on the conditional expectation instead of the maxi-
to a finite known set of families of distributions. For instance, mum likelihood, and still allows estimate mixtures. All these
we can consider a mixture of three distributions, each being methods allow one to treat the case where the nature of the
exponential or Gaussian. The problem of estimating such a components of a given mixture is known. The aim of our

mixture contains thus a new difficulty: We have to label each work is to introduce a more general model, called “generalized
of three components (there are eight possibilities). We show 9 ! 9

that the classical mixture estimation algorithms—expectation- Mixture,” and propose some methods deriving from EM,
maximization (EM), stochastic EM (SEM), and iterative condi- SEM, or ICE for its estimation. A generalized mixture is a

tional estimation (ICE)—can be adapted to such situations once mjxture of m componentsfi,-- -, f,, where the nature of

as we dispose of a method of recognition of each componenty ., ¢ js not known exactly; however, this nature belongs
separately. That is, when we know that a sample proceeds from

one family of the set considered, we have a decision rule for {0 @ given finite set/” = {I1,..-, F;} of natures. For
what family it belongs to. Considering the Pearson system, which instance, if we consider a mixture of two densitigs fo

is a set of eight families, the decision rule above is defined by each of them being exponential or Gaussian, we hive-
the use of “skewness” and “kurtosis.” The different algorithms {exponential laws, F;, = {Gaussian laws There are four
7

so obtained are then applied to the problem of unsupervised ossibilities of “classical” mixtures (bot exponential
Bayesian image segmentation. We propose the adaptive versiond’ (botlfy, f> exp !

of SEM, EM, and ICE in the case of “blind,” i.e., “pixel by pixel,”  both fi, f» Gaussian,f; exponential andf, Gaussian,f;
segmentation. “Global” segmentation methods require modeling Gaussian and> exponential) and we do not know in what

by hidden random Markov fields, and we propose adaptations of case we are. The problem of the estimating such a generalized

two traditional parameter estimation algorithms: Gibbsian EM mixture becomes twofold: First. we have to decide to which
(GEM) and ICE allowing the estimation of generalized mixtures ’ !

corresponding to Pearson’s system. The efficiency of different family of £ each of the densitief;, f, belongs; second, what
methods is compared via numerical studies, and the results of are the parameters defining them.
unsupervised segmentation of three real radar images by different  The generalized mixture estimators we propose below are
methods are presented. then applied to the statistical unsupervised image segmentation

Index Terms—Bayesian segmentation, generalized mixture esti- problem. Among numerous methods of image segmentation,
mation, hidden Markov fields, mixture estimation, unsupervised the family of statistical ones turns out to be of exceptional
segmentation. efficiency in some situations [1]-[8], [10]-[29], [31]-[36]. The
use of such methods requires modeling by random fields: For
S (the set of pixels) we consider two sets of random variables
X = (X;)ses, Y = (Y)ses called “random fields”. Eaclk;

UR WORK addresses the mixture estimation problemakes its values in a finite set of clas$gs- {w1,---,w,,} and
with applications to unsupervised statistical image segachy, takes its values itR. The problem of segmentation is

mentation. In the case of independent observations, some it@en that of estimating the unobserved realization= = of
ative mixture estimation algorithms giving gen_erally sa_tis_fyin_ghe field X from the observed realizatidi = y of the fieldY’,
results have been prqposed. The_ expectatl_on-maX|m|zatwﬁerey = (y:)scs is the digital image to be segmented. The
(EM) [3], [9], [31], which allows, in some circumstancesproblem is then solved by the use of a Bayesian strategy, which
to reach the maximum likelihood, is the pioneer one. Somethe “best” in the sense of some criterion. If we want to use a
variants, such as stochastic EM (SEM) [24], [26], which tengiyen Bayesian strategys, we need to know some parameters
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generally of the forms = (51, - -+, Bm ), Where; defines the each X; taking its values in? = {w;,w2} andY; in R.
distribution ofY; conditional toX, = w. If these distributions The distributions ofY; conditioned onX; = w;,w, are
are Gaussian, which is the most frequently considered caGaussiansV(y1,0?), N(ju2,03) respectively. So, given; =
eachp; is of the formg; = (u;,0?) with u; being the mean P[X; = w], the parameter defining the distribution(©f,Y")
ando? being the variance. The previous parameter estimatiend = (1, i1, jt2, 01, 02). SEM is an iterative procedure that
problem is then the Gaussian mixture estimation problem. fans as follows.

real situations, the nature of the grey-level distribution can 1) |nitialization: let§° = (79,119,119, 09, 59) be an initial
vary in time. For instance, the nature of the radar grey-level  guess off = (715 15 12, 01, 02).

distribution of the sea surface depends on its state [8], thep) Calculation ofg*+! = (WfJ’l,u’fJ’l,u’§+1,0{“+1,0§+1)
latter depending on the weather. Thus, if we want to segment  from ¢* = (kb pk ok ok)y and Y = y =
a radar image where sea is one of the classes and we wish (y1,--,uyn), as follows.

to dispose of an algorithm insensitive to weather conditions, a) Compute, for each < i < n, the distribution ofX;
we must consider the problem of estimating a generalized conditioned onY; = y;. If we denote byf¥, f¥ the

mixture. _ 6% based densitieg;, f», this distribution is given
The organization of the paper is as follows. In the next sec-

tion, we address the generalized mixture estimation problem by
without reference to the image segmentation problem. Such a X ¥ FF (y)
mixture is defined and a method of its estimation based on the i = TR PRy + 78 fE () (1)
SEM is proposed v/ ¥ 2J2\Yi
' 5, =1-7}, ()

Section Il contains a description of Pearson’s system, which ;
is a set of eight families of distributions, and different methods b) Sample, for each < i < n, a realization inQ =
’ = = ) -

for estimating generalized mixtures whose components belong {wy,ws} according to the distribution above and
to this set are proposed. In fact, it is shown that the classical considerz® = (zF, .-, z%) the “artificial” sample
methods EM, SEM, or ICE can be generalized resulting in of X so obtained. "

generalized EM, SEM, ICE (denoted by GEM, GSEM, GICE,

c) ConsiderQ;,Q, the partition ofz* = (z%, ... z¥)

respectively). defined by '

In Section IV, we address the problem of unsupervised
image segmentation, treating “local” and “global” methods.
In the first case, GEM, GSEM, and GICE can be applied
directly and we show that the use of their adaptive versions  d) Calculated*+! = (gk+1 b+l h+l Ghtl ohly

[icQezf=w] and [ic Q< [zF=w] ()

is of interest. The second case, where the segmentation is by
performed by the maximum posterior mode (MPM) [21],
requires modeling by hidden Markov random fields. Different Z Ui
parameter estimation methods have been proposed; let us wy1  Card(Qq) Kt i€O,
mention Gibbsian EM [5], the algorithms of Zhastal. [37], T T b = Card(Qy)
[38], stochastic gradient [35], the algorithm of Lakshmaean
al. [20], the algorithm of Devijver [16], and ICE. We consider Z Yi
two of them (Gibbsian EM and ICE) and show that they can pitt = _€Q: (4)
be generalized in order to deal with the generalized mixtures Card(Q2)
estimation problem we are interested in. Z (y; — pht1)?
Section V contains results of some simulations, and seg- k+1r2  P€EQ1
mentations of three real radar images are presented. (o1)" = Card(Q;)
Conclusions are in the sixth section. Z (g — )2
LG (0k+1)2:i€Q2 ) (5)
. GENERALIZED MIXTURE ESTIMATION 2 Card(Qy)

The “classical” mixture estimation problem can be treated X .
with methods like EM, SEM, or ICE. In this section, we will 3) Stop when the sequencé”) stabilizes.
limit our presentation to GSEM. Furthermore, for the sake
of simplicity, we shall consider the case of two classes aml Generalized Mixture Estimation
two families of distributions; its generalization is immediate Let us considerd = {F},Fy} a set of two families of

and _does not pose any pr(_)blem. Let us note that ! he .reSlaltsstributions, Z a real random variable whose distribution
of this section can be applied to any problem outside ima

segmentation %%Iongs either t(_)Fl or to Fp, andz = (zl,--_-,zn) e R”
' a sample of realizations df. Let us temporarily assume that
) . ) . . we dispose of a decision rulé: R* — ®, which allows us to
A. Classical Mixture Estimation and the SEM Algorithm e cjde from: in what set betweett; and F, the distribution
Let us suppose that the random variahlg$X;,Y;), with of Z lies. Such a decision rule, still calledb“recognition,”
i € N, are independent and identically distributed (i.i.d.)ill be made more explicit in what follows.
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In order to simplify things, we expose the generalized A distribution densityf on R belongs to Pearson’s system
mixture estimation algorithm in the case of two classes aifdit satisfies
two possible families, but the generalization to any number
of classes and any number of possible families is quite
straightforward. Thus, we consider two random variatiey’, fly) dy

where X takes its values if2 = {w,ws} andY in R. The  1he variation of the parameters co, 1, c» provides dis-
distribution of X is given by, = P[X = wi],m = P[X = iputions of different shape and, for each shape, defines the
w2] and the distributions of” conditional to.X = wy,w; are  parameters fixing a given distribution. LEtbe a real random

given by densitied’, f>, respectively. Le = {17, F>}, with  variable whose distribution belongs to Pearson’s system. For
I the Gaussian family an#i; the exponential one. We assume; = 1,2, 3. 4 let us consider the moments bf defined by

that f; is Gaussian(f; € F1) or exponential( f; € F»), and

likewise for f>. Thus, we have four possibilities for “classical” w1 = E[Y] 7)
mixture (both f, fo Gaussian, bothfi, fo exponential, f; g =E[(Y —EY) and ¢>2 (8)
Gaussian angl, exponential f; exponential and, Gaussian)

and we do not know in what case we are. We observe a sam@iel two parameters,;,~, defined by

1 dfy) ___ y+ta

. 6
co + ay + c2y? ©)

(y1,--+,uyn) € R"™ of realizations ofY’, and the problem is to
2
1) estimate priors; v = Em)’;g Y2 = (M)Q. (9)
2) choose between the four cases above; H2 H2
3) estimate the parameters of the densities chosen. /71 is called “skewness” and. “kurtosis.”

On the one hand, the coefficientscy, c1, c2 are related to

The GSEM we propose runs as follows.
i1, t2,y1, ve by (10)—(13), shown at the bottom of the page.

1) Initialization. On the other hand, givel\ = ~i(v2 + 3)%/4(4y, —
2) At each iteration 371) (272 — 371)(2y2 — 3y1 — 6), the eight families of the
a) sample as in the case of the SEM; setd = {Fy,---, Fs}, whose exact shape will be given in the

b) apply, onQ; and Q,, the rule £’ determining the next section, are defined by
families that f; and f> belong to;

c) use@; and(@- for estimating parameters (mean and
variance if the family is Gaussian, mean if the family

Py EFl] =
EFQ]@

A< 0]
v =0 and <3|

[ [
[Py [
is exponential), in the same way that with SEM. [Py € F3] ©[272 =37 —6=0]
Thus, the GSEM will be defined once we propose a decision [Py € Fy] & [0<A<1]
rule X [Py e F5] e [A=1]
In this paper, we .Wi|| <_:onsider a WeI_I suited to the [Py € Fg] < [A> 1]
Pearson family described in the next section; however, other [Py € F]efn=0 and >3]
possibilities exist [14]. e =Eoand
[Py € Fs] < [y1 =0 and 72 =3] (14)
IIl. SYSTEM OF PEARSON AND & RECOGNITION The eight families are illustrated in the Pearson’s graph
given in Fig. 1.
What is important is that moments, - - -, 14 can be easily

A. System of Pearson estimated from empirical moments, from which we deduce

In this section, we specify the famil we will use in the the estimated values of;, v, by (9). Finally, we estimate
unsupervised radar image segmentation and a decisiot rulethe family using (14). Once the family is estimated, values
Our statement about Pearson’s system we will use is rathra, cg, c1,co, given by (10)—(13) can be used to solve

short, and further details can be found in [17]. for parameters defining the corresponding densities (given
3
(2 +3)vp2 (10)

T 107, — 129, — 18
2
_ pa(dy2 — 3y1) — pa(y2 + 3)v/Aipz + (p1)” (272 — 371 — 6)

(11)
1072 — 129, — 18
o = (72 4+ 3)/ k2 — 2p1(2v2 — 3y, — 6) (12)
! 107, — 1271 — 18
29 —3v; — 6

© 10y, — 1291 — 18
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Fig. 1. The eight families of Pearson’s system functior(-pf, 2 ).

in Section 1lI-B, where the shapes of the eight families a
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with
2_y
sodzien ()
c5 2\ e
by = — 2 <c—1 - \/Z) (18)
2 Co
a—+ by a+ by
= 41 g=——2T72 19 (19
ca(by — by) ca(by — by) (19)

Parameters > 0, ¢ > 0 are called form parameterg; can
take five different forms according t@ ¢q. To be more precise
1) for p>1,q>1 density f; is bell shaped;
2) for 0<p<l1,q>1 density f; is L shaped with
limy—o fi(y) = +o0;
3) for p>1,0<g<1 density f;
lim, ., fi(y) = +o0;
4) for 0<p<1,0<g<1 density f; is U shaped with
limy .o f1(y) = limy_ fi(y) = +00;
5) for p = ¢ = 1 density f; is uniform.
e F5 (Type |l Distributions): These distributions are particu-
lar cases off; obtained forp = ¢ in (17), as follows:

is J shaped with

recalled).
Let us consider an i.i.d. sequence of real random variables 1 (y—b1)P=L(by — y)rt
Yi,---, Y, whose distribution belongs to Pearson’s syster%(y) {3 L ; 2 ép_ig , fory e [by,bo]
We now specify the estimatdr used in step 2 of GSEM (see 0. P a) (b2 = b1) otherwise
Section 1I-B). (20)
1) ConsiderQ,---,Q,, the partition ofz*
2) For each class; use(); in order to estimate:, ; by with
> v blz—a—lx/Z 52:—a+1\/Z (21)
= S0 (15) : ’
= Card(Q) = Ath 4 (22)
Z (ys — i) eabz = b1)
foji = € for i=2,3,4. (16) L5 (Gamma Distributions): Densities are given by
: Card(Q;)
o N 41
3) For each class; calculate4i, 4% from iy, -+, fie; faly) = L(y— 7) WP fory >
according to (9). 3\ = (Z)JF((I) p herwi
4) For each class; use4i, 45 and (14) to estimate which ’ 0 erW|se23
family among#y, - - -, Fg the densityf; belongs to. (23)
5) With the estimated family and the computed, ¢y, c2 )
[(10)—(13)], estimate the parameters of the distributioM/ith
(For eachFi,---,Fg the exact relationship between 1
density parameters and the computec,ci,c is p=c g=— <@ - a) +1 ;=-9 (24)
given in the next section.) fr\a =
F, (Type IV Distributions): Densities are given by
B. Shape of Pearson’s System Densities Faly) = K[Co + caly + C1)2~1/2e2)
In this section, we specify the shape of the eight distribution a—C o
families forming Pearson’s system. " €Xp <—ﬁ arctg{w Fo(y + Cl)})
F (Beta Distributions of the First Kind):Densities  are 072 (25)

given by

1
fi(y) :{ B(p, q)
0

7

(y —b)P~ by — )t
(1;2 — bl)p+q—1

for y € [by, b2]

7

otherwise
(7)

with K such that/p fi(y)dy = 1 and
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RING NoIsy "RING"

GGEM ASEM GSEM

Fig. 2. Ring image, its noisy version, and results of unsupervised segmentations based on GGICE, GGEM, ASEM, and GSEM.

Fy (Inverse Gamma Distributions):Densities are given by  Fy (Gaussian Distributions):Densities are given by

_r —aoW—a—1,—(2/p(y—r)) . 1 )2 /20
£ =1 T(g) (p(y =) € fory > fs(y) = Norr e~ (y=—n)*/20%) (29)
otherwise vemo
(26) with o = —a and 0? = co.
with
o 1 o C. Generalized EM and ICE Algorithms
P=""a 977 Lor= T2y The EM and ICE algorithms are two other mixture estima-
2¢ tion methods that can also be “generalized” to give the GEM

o ) . and GICE. We briefly describe below their operation.
I% (Beta Distributions of the Second KindPensities are 1) GEM: Let Wﬁflv"'v”ﬁn be the distributionsP[X, =

given by wi/Yi = wl,-, PIX, = wi/¥, = ya] computed from
51 (y — rp—t the current parametet*. Priors are reestimated by formula
Je() =19 Blp.q) (y — (r — s))pta’ fory >r (27) (30), which is the same as that in the EM algorithm, and
0 P\ = =3 otherwise the ¢ recognition is the same as that tkle recognition
’ described at the end of Section IlI-A, with the difference that
with ptth pb St it given for j = 1,2,3,4 by formulas
1 (31) and (32), are used instead of those given by formulas
a-— 2—62(61 —Ved —4eoes) 1 (15) and (16).
v ¢ — 4dege C2 ) 1 . )
! 02 7r£“+1:—(7r§“71+---+7r§“7n) (30)
1 5 c? — dcoper n N N
= —g(c]L — ¢/ —degep) s= = i1 T A Tl
2 2 i = % % (31)
’ 7ri,1+"'+7ri,n
where s >0 is the scale parameter a are the form E+1\j, k E+1\j k
param;:ters P Mg N Pl A (g — g TR,
F; (Type VII Distributions): Densities are given by i1 in
(32)

f2(y) = Kleo + cpy?]~(1/22)

a Co 2) GICE: In the context of this paper, the GICE used is
" eXp <_\/ﬁ arctg <\/gy>> (28) 3 “mixture” of GSEM and GEM. In fact, the reestimation of
priors is the same as in GEM, and the family recognition and
with K such thatf, f7(y)dy = 1. noise parameter reestimation is the same as in GSEM.
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B. Global Approach

1) Markovian Model and Global Segmentatioin the
global approach, eacl(; is estimated fromY” = (Y;).es.
The field X = (X;)ses is a Markov random field and we will
consider Ising’s model, which is the simplest one. In order to
simplify notations we will limit our presentation to the case of
two classes; however, the generalization to any other number
of classes poses no particular problem.

The distribution ofX is given by

Px[z] = cem V@ (34)
with

Uas(z) = Z valzs,z) and

s,t neighbors

Pal@s, Tt) I{

—a, If xy=x4
o if x5 # a1

(39)
Fig. 3. Image 1: SEASAT image of the Brittany coast.

Thus, Px is defined bya. The random variable§Y).cs

will be assumed independent conditionally Xo and further-

In this section, we propose some applications of differef{yre the distribution of eacly, conditional to X will be
generalized mixture estimators to the problem of unsupervisgdy  meq equal to its distribution conditional ah. Under

image segmentation. We shall consider two well known agsese hypothesis all distributions Bfconditional toX are de-
proaches: the “blind” approach and the “global” one. In t ed by the two distributions df, conditional toX, = w;, ws

blind approach the generalized SEM, EM, and ICE algorithmsspectively. Let us denote by, f» the densities of these
above can be applied directly. In the global one we propoggyributions and assume that they belong to Pearson’s system.
two adaptations of Gibbsian EM and ICE. For each methqq]ey are thus given by parameteds = (a!,cl, cl, c}) and

we specify here the reestimation formulas; the initialization 9}2 = (a2, 2,3, 3 T

) . ) : ; ) a’,cg, ¢, c3), respectively.
different algorithms is described in Section V. Finally, all distributions ofY” conditional toX are defined

by 3 = (41, 42) and thusf = 3) defines the distribution
A. Blind Approach 012/ éX Y()/.bh) (a, 3)

IV. UNSUPERVISEDIMAGE SEGMENTATION

The “blind” approach consists of estimating the realization The possibility of simulating realizations df according to
of eachX; from Y. This is the simplest one and, generallyits posterior, i.e. conditional t&, distribution constitutes the
the least efficient. However, its “adaptive” version can be vergain interest of this model.
competitive in some situations [26]. Let ,m» be priors and  2) Generalized Global ICE (GGICE)According to the
/1, f2 be densities of the distribution af; conditional toX,. ICE principle, Igt us suppose thaf is observable. We have

The blind Bayesian strategy is then to proposd = 6(X,Y) = (&(X,Y), 3(X,Y)).
i There exist numerous estimat@rs= &(.X) of the parameter
wi, I mifi(ys) > m2f2(ys) )
G = : 33
sB(Ys) {w% if 71 fL (1) < 72 folys). (33) « from X, such as the coding method [2], the least squares

) ) ) ) error method [12], or the maximum likelihood estimate [35].
This strategy is made unsupervised by the direct use of the o,r model is very simple, we can use an empirical

GSEM algorithm described abov@ne chooses a sequence ofrequency based estimator. In fact, there exists a simple link
pixels s, s2,- -+, s, and considers thay; is the value of the betweena and probabilities X, = w; knowing that the
grey level at pixels;. In an “adaptive” version of the “blind” neighborhood ofs containsw; r times,” wherer can take 0,
approach, one considers that priors depend on the positipry 3 4 a5 values. For instance, if we take 2, we select in
of the pixel in 5. The blind adaptive Bayesian strategy ighe imageX = i a sample of neighborhoods sfcontaining
the same asp above withri,r3 instead ofmi,ma. The g ) and twow,. The probability X, = w; knowing that
GSEM algorithm is modified as follows. Let;,z2,-+,%n the neighborhood of contains twow,” is estimated by the

be the sequence obtained by sampling at a given iterati?fﬂoportion of the sample giving, = w;. On the other hand
In GSEM the priorsry, 72 are reestimated by the frequenciegg probability is given by

computed using all the sample points; in “adaptive” GSEM one

considers, for each;, a windowW, centred ats; andx?*, 75’ =20

are reestimate_d by frquencies computed fi@m) cw, . Let_ 2o f g2 (36)
us note that in “adaptive” GSEM the sequence of pixels

s1, 82, -+, s, has to covels. In the following, the generalized which gives an estimated value of

adaptive SEM, EM, and ICE will be denoted by GASEM, We take forB(X, Y) the same estimator as in the case of
GAEM, and GAICE. independent mixture, Section IlI-A.
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IMAGE | + GASEM

IMAGE | + GGEM IMAGE 1 + GGICE

Fig. 4. Unsupervised segmentation results of Image 1, Fig. 3.

IMAGE2 " GSEM JASEM

Fig. 5. Image 2 and its unsupervised segmentations.

Finally, the GGICE runs as follows. V. EXPERIMENTS
1) Samplez**+! according toP§j§’_ We present in this section some results of numerical appli-
2) Computeak+! = a(zkF+1). ’ cations. Let us note that in the global case the segmentation is

3) ConsiderQ; = {s € S/z* = w;} andQy = {s € performed by the maximizer of posterior marginals (MPM)
S/z* 1 = w,} and applil 2_5 of the end of Section@"d: in the local case, it is performed by the rule (33).

I-A. Thus, unsupervised segmentation algorithms considered in this
paper mainly differ by their parameter estimation step: We
3) Generalized Gibbsian EM (GGEM) will note them by the parameter estimation method used. For

) . instance, GEM will denote the local segmentation (33) based

The difference between GGICE above and GGEM is Sify, narameters estimated with generalized EM, GGEM wiil
uated at the noise parameter reestimation level. We hayg,qie the global MPM segmentation based on parameters
two noise distributions conditional to the two classes and Weiimated with generalized Gibbsian EM, and so on. The first

are interested in estimating the four first moments of eagfiction s devoted to synthetic images and in the second one
of them. In the case of GGICE, these two problems a[g, jeal with three real radar images.

treated separately by considering the partition@n= {s € The initialization of GEM, GSEM, and GICE is as follows.

k _ _ k _
S/zitt = w1}t andQy = {s € §/a{T! = wy} of the set of \ye a5sume that we have a mixture of two Gaussian distribu-
pixels S. In the case of GGEM each of them is treated by the, s \with &7 denoting the cumulated histogram we take=
use of the whole sef. Let us put H=Y(3), 19 = H71(2) and (69)? = (69)? = (13 — 19)? /4.
plllf =P [Xs = w1 /Y = 1] (37) In order to initialize GGEM and GGICE, we use the
’ segmentation obtained by the blind unsupervised method,

The first four moments of the noise corresponding to the ﬁr\ﬂhich givesa®. The noise parameters are initialized by the

classpif', ui%" uis' ui are given by final parameters obtained in the parameter estimation step of
Z?Jspzf’f the blind unsupervised method used.
k+1 _ sES
P = szf’f (38) A. Experiments on a Synthetic Image
ses Let us consider a binary image “ring” given in Fig. 2. White
and is class 1 and black class 2. The class 1 is corrupted by a beta
kt1vi pyk noise of the first kind (familyf; in Pearson’s system) and the
Z(ys — )P class 2 is noised by a beta noise of the second kind (family
u’fjl = %65 — (39) Fy in Pearson’s system). The parameters defining the noise
Zp‘lf,’s distributions, their estimates with different methods, and the
s€S segmentation error rates are given in Table |. The noisy version
for ¢ = 2,3,4. of the ring image and some segmentation results are presented

Use analogous formulas for the second class. in Fig. 2. We have taken the same means and variances on
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TABLE |
PAR: PARAMETERS, TH: REAL VALUES OF PARAMETERS; ;1702: MEAN AND VARIANCE; 71, y2: SKEWNESS AND KURTOSIS
TYPE: FAMILY IN PEARSON'S SYSTEM; ERROR SEGMENTATION ERROR RATE; ITE: NUMBER OF ITERATIONS OF ALGORITHMS. «x:
PARAMETER OF THE MARKOV DISTRIBUTION OF X. GGICE: Q.oBAL GENERALIZED ICE, GGEM: GENERALIZED GIBBSIAN EM

CLASS | CLASS 2

LOCAL METHODS
PAR b |l |\n v |x |veele (o8 | |7 | m |TYPE|ERR |ITE
TH 130 1500 {0.28]3.51]0.67]6 130 | 500 [0.03]3.02[0.33} 1 32
INIT 121 | 361 0.5 |8 140 | 361 0.5 |8
GSEM 130 [ 501 {0.32]3.6 [0.61]6 130 1497 [0.01]2.95]0.39] 1 33 1000
GEM 120 [432 {0.0513.69]0.5 |4 140 1347 [0.11]3.76]0.50] 4 40 100
GICE 130 [491 {0.29]3.6 |0.67}4 129 1516 10.02]12.92]0.33]| 1 33 1000

GLOBAL METHODS
PAR 4 o | n v e |tvel# (o [n |Y |o [TyPE|ERR|ITE
INIT 130 [ 501 |0.32]3.6 {-0.49] | 130 1497 10.01[2.95(-0.49] ]

GGEM | 130 {500 [0.29]3.55}-0.7 |6 130 499 10.03[294[-07 |1 }4.7 |300
GGICE | 130|499 |0.27[3.52{-0.9 |6 130 [ 501 10.01]3.01]-09 |1 f4.1 |300
TABLE 1l
PARAMETERS ESTIMATED FROM IMAGE 1, HG. 3

CLASS 1 CLASS 2 ]
L.OCAL METHODS
PAR U o> v % ix lteeel# o> v | ¥ | x |TyerlITE
INIT 45 1296 0.5 |8 81 1296 0.5 |8
GSEM 34 125 [0.21]3.19]0.25] 1 81 1460{ 0.91[4.25]0.75]| 1 200
GEM 34 101 10.30{3.34]0.27] | 83 14441 0.9014.27 1 0.73| 1 200
GICE 35 109 {0.3013.30]0.30} | 84 142310.91[4.30]10.70]| 1 200
GLOBAL METHODS
PAR Ul 17 v e |rveeld o |7 | Y. | o {ryeg|liE
INIT 34 125 10.21(3.19]-0.49] | 81 1460 0.91]4.25|-0.49] 1
GGEM 35 125 10.43{3.56}0.80] | 89 1311 1.11]14.52]-0.80] 1 30
GGICE |35 127 10.48[3.69}-0.801( 1 58 1317{ 1.10{4.50 |-0.80| 1 30

purpose: The human eye is essentially sensitive to the twoor compared to the results of global methods: This is not
first moments and, in fact, it is difficult to see anything in theurprising, and is due to the segmentation method and not to
noisy version of the ring image. the parameter estimation step.

According to Table I, the behavior of the GSEM and the
GICE is quite satisfactory when results obtained with GEM. Segmentation of Real Images

are clearly worse. In particular, GEM does not find the right \ye present in this section some examples of unsupervised
families (£, and Fg). Furthermore, the GSEM- and GICE-segmentation of three real radar images. The first one, given
based segmentation error rates are very close to the theorefigatig. 3, does not seem particularly noisy and adaptive local
one. On the other hand, the behavior of both the GGICE agdgmentation seems to be competitive compared to global
GGEM methods is very good. This is undoubtedly due tgethods. The second one, given in Fig. 5, is more difficult
a good initialization with GSEM; however, the estimates qb segment, and the third one, given in Fig. 7, is very noisy.
skewness and kurtosis are still improved. We do not disposerrom the results of Table I, we draw the following remarks.
of the theoretical segmentation error rate, as the ring image i) Starting from Gaussian distributions (type 8) GSEM,
not a realization of a Markov field. However, the error rates ~ GEM and GICE all find beta distributions of the first
obtained seem quite satisfactory. As a conclusion, we may say kind (kind 1) for both classes. Furthermore, all param-
that the new difficulty of noise nature recognition is correctly eters get stabilised in these three methods at approxi-
treated by the methods proposed, and the final segmentation mately the same values which can be relatively far from
quality is not affected significantly. We also present in Fig. the initialized values. From this we may conjecture, on
2 the result of segmentation with generalized adaptive SEM  one hand, that real distributions are best represented by
(GASEM) whose quality is nearly comparable with the quality beta distributions of the first kind and, on the other hand,
of global methods. The result obtained with GSEM is very that the parameters are correctly estimated.
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IMAGE 1 + GEM IMAGE 1 + GAEM

IMAGE | + NGEM " IMAGE 1 + GGEM

Fig. 6. Segmentation of the Image 1 into four classes by generalized EM (GEM), generalized adaptive EM (GAEM), normal Gibbsian EM (NGEM),
and generalized Gibbsian EM (GGEM).

TABLE llI
PARAMETERS ESTIMATED FROM IMAGE 2, FG. 5

CLASS | CLASS 2

LOCAT. METHODS

PAR U o |B 1B |n |rveele | o [B B | =z |ryee|lin
INIT 56 | 484 0.5 18 78 484 0.5 |8

GSEM 32 109 [0.10[3.01]|0.15(4 76 684 |2.34(7.4210.85{6 100
GEM 53 495 10.2713.12]0.44} ! 82 760 [2.59(7.28(0.56(6 100
GICE 31 102 10.0713.10]0.14} 1 76 686 [2.30[7.40(0.86(6 100

GLOBAL METHODS

PAR g 1ot | B 1B |e |tvesle o8 | B [B | o |ryee|ITE
INIT 66 686 [0.66]5.36]|-0.394 85 1216] 1.10]4.90 [ -0.33 6

GGEM 31 118 10.24(13.211-0.571 75 704 [2.1417.19]1-05|6 30

75 1701 [2.17]17.23]-0.516 30

GGICE |32 [123 |0.23]3.18]-0.6

2) Global methods keep beta distributions of the first kindnes. Parameters are perhaps better estimated but no clear
given with the initialization by GSEM and thus we carexplanation appears when analyzing the results in Table I,
imagine that these distributions are well suited to thepart from the fact that-? is close to values estimated by
image considered. GGEM and GGICE. The use of adaptive GSEM improves

As in the case of the synthetic ring image, the GSEM-bastite segmentation quality, which approaches the quality of

local segmentation, the only one represented on Fig. 4, givglebal segmentation methods. The efficiencies of the latter
visually slightly better results that the GEM- and GICE-baseshes appear quite satisfying (see Fig. 4).
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iy s

ande ¥
IMAGE 3 + GAICE

IMAGE 3 & NAICE

Fig. 7. Image 3 (Amazonia) and its segmentation into three classes by generalized global ICE (GGICE), generalized adaptive ICE (GAICE), &nd classica
adaptive ICE, which uses Gaussian densities (NAICE).

Concerning Image 2, all methods apart GSEM find betmnjecture, as the Gaussian case is a particular case of the
distributions of the first kind (type 1) for the first clasgyeneralized one, that the results obtained with GGEM are
distribution and beta of second kind (type 6) for the secormbtter. As a curiosity, we note that the results obtained by
class distribution; thus, we can reasonably assume that tH&$xEM look like the results obtained by NGEM.
are well suited, among distributions of Pearson’s system, toAs a second example, we present in Fig. 7 some results
real distributions. Image 2 is rather noisy and the differencd segmentation into three classes of an ERS 1 image of a
between global and local methods appears clearly. We néteest area of Amazonia. ICE is the basic parameter estimation
that global methods provide visually better results that the locakthod used, and we compare GGICE, GAICE, and NAICE.
ones, and, among the latter, the adaptive manner of paramétgrabove, “N” means that only Gaussian densities are used,

estimating provides some improvement. which means that NAICE is the traditional AICE. Image 3 is
Let us briefly examine how the different methods work iiwery noisy and comparison between the results of the these
the case of more than two classes. segmentations is difficult in absence of the ground truth. Only

We present in Fig. 6 the segmentations of the Image 1 inte can say is that GGICE produces a result that seems visually
four classes by GEM, GAEM, GGEM, and NGEM respecthe most consistent.
tively. NGEM means “normal Gibbsian,” or “normal global”
EM, in that no generalized mixture problem is considered and
all noise densities are assumed Gaussian. Thus, note that GEM/e have proposed in this work some new solutions to the
is generalized and local, and NGEM is traditional and globdiroblem of generalized mixture estimation, with applications
According to Fig. 6, we note that GEM meanly indicates th® unsupervised statistical image segmentation. A distribution
presence of two classes and, as in the case of two clag@¥gure is said to be “generalized” when the exact nature of
segmentation, the results obtained by GAEM are visually closemponents is not known, but each of them belongs to a given
to the results, which means that the use of generalized mixtdiftite set of families of distributions. The methods proposed
estimation instead of the classical Gaussian mixture estin@lows one to
tion can have strong influence. Although their comparison is1) identify the conditional distribution for each class;
difficult in the absence of the truth of the ground, we may 2) estimate the unknown parameters in this distribution;

VI. CONCLUSIONS
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