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tion problem is to decide, from the observed image, in
This paper proposes a new unsupervised fuzzy Bayesian which class each pixel lies. In the first case we speak of

image segmentation method using a recent model using hidden fuzzy segmentation, and in the second case of hard segmen-
fuzzy Markov fields. The originality of this model is to use tation. As we can see, fuzzy and hard segmentations are
Dirac and Lebesgue measures simultaneously at the class field not competing but correspond to two different situations.
level, which allows the coexistence of hard and fuzzy pixels in Now, if we wish to use some statistical method we have
a same picture. We propose to solve the main problem of to introduce random variables and probability distribu-parameter estimation by using of a recent general method of

tions. We insist that from the viewpoint we adopt there isestimation in the case of hidden data, called iterative condi-
no connection between fuzziness and the stochastic model-tional estimation (ICE), which has been successfully applied
ing that can be used, although as suggested by some authorsin classical segmentation based on hidden Markov fields. The
[42], probability measures can be considered as modelingfirst part of our work involves estimating the parameters defin-
fuzziness. The aim of this work is to propose a Markovian-ing the Markovian distribution of the noise-free fuzzy picture.

We then combine this algorithm with the ICE method in order model-based unsupervised method of satistical fuzzy seg-
to estimate all the parameters of the fuzzy picture corrupted mentation that is able to cope with situations such as those
with noise. Last, we combine the parameter estimation step in the first example above.
with two segmentation methods, resulting in two unsupervised Thus fuzzy segmentation of images consists in allowing
statistical fuzzy segmentation methods. The efficiency of the each pixel to belong to numerous classes simultaneously.
proposed methods is tested numerically on synthetic images and Let V 5 hg1, . . . , gkj be the set of classes. The problema fuzzy segmentation of a real image of clouds is studied.  1997

is to associate to each pixel a vector (x1, . . . , xk) [ [0,1]k
Academic Press

with x1 1 ? ? ? 1 xk 5 1. Classical, or ‘‘hard,’’ segmentation
then appears as a particular case: all xi are null except
one, which is 1. This generalization turns out to be very1. INTRODUCTION
pertinent in varied situations. Following Kent and Mardia
[23], there are three ways of using fuzzy segmentations:This work addresses fuzzy statistical unsupervised image

segmentation. Beyond probabilistic considerations, let us
(i) One may use a visual representation of fuzzy realityspecify the interest in fuzzy segmentation in some real

(ii) Considering that pixels have unit area and xs,i is thesituations. Let us consider the problem of segmenting a
proportion of the class gi at the pixel s, the total area ofsatellite image into two classes: ‘‘houses’’ and ‘‘trees.’’
the class gi is the sum of xs,iThere may be some pixels with only houses and others

with only trees, but there may also be many pixels, as (iii) It is always possible to harden a fuzzy partition by
in suburbs, in which houses and trees are simultaneously choosing, for each pixel s, the class maximizing xs,1, . . . , xs,k .
present. Thus we have two hard classes, say 0 and 1, and

Our work basically uses the second viewpoint, with thea fuzzy class specified by « [ ]0,1[, which can be seen as
main concern being to find the hard pixels and the fuzzythe proportion of the area of class 1. Such a situation is
ones again following unsupervised segmentation. As anintrinsically ‘‘fuzzy.’’ Let us now consider the problem of
example, let us consider the problem of segmentation of asegmenting into two classes a satellite image of a region
satellite image into two classes: forest and water. Obviouslycontaining lakes and forest. If the boundary pixels can be
there may be pixels containing simultaneously some treesconsidered as negligible, each pixel clearly is ‘‘forest’’ or
and some water and in this case the fuzzy segmentation‘‘lake.’’ Such a situation is intrinsically ‘‘hard.’’ In both

cases the classes are observed with noise and the segmenta- gives in each pixel the proportion of forest and water.
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Numerous techniques for such fuzzy partitioning have been (the Lebesque measure e on ]0,1[). Thus, the probability of
proposed [3, 4, 15, 17, 20] and an overview of the different having hard classes can be positive, which is in harmony
methods can be found in [27]. with the intuitive feeling we have about the image of

On the other hand, statistical methods of segmentation, classes. In contrast, when the pixel is fuzzy, the proportion
especially those using hidden Markov models, can turn out of a given class varies continuously and thus its probability
to be of exceptional efficiency in several situations [2, 5, distribution is given by a density with respect to the Leb-
6, 9–12, 14, 16, 18, 21, 22, 24–26, 28, 29, 32, 36, 39, 41]. esgue measure. This model, which is of the pixel-by-pixel

Finally, fuzzy and statistical aspects of methods can be kind, can be refined in order to take into account the
merged, resulting in fuzzy statistical segmentations [7, 8, information lying in a context of small size [8]. Using such
23, 37]. We insist on the fact that by merging these two local models, it is possible to devise unsupervised local
aspects of things one obtains an original modeling method, methods of fuzzy segmentation, the principle of which is
different from both probabilistic and fuzzy modeling. In- the same as in local hard segmentation methods [6, 18, 26,
deed, fuzziness models the imprecision and probability 28]. Finally, the local model has been recently generalized
models the uncertaintly. Roughly speaking, in the first case by introducing the fuzzy Markov random fields described
one can clearly see the pixel but it is impossible to clearly in [30]. However, we insist that local methods display some
determine what class it belongs to, and, in the second case, advantages in several situations [6, 28]. As in the hard case,
the pixel clearly belongs to one class but cannot be clearly the latter Markovian model allows one to take the entire
seen. When merging the two approaches we are faced with information into account and, at each pixel, the distribution
pixels which cannot be clearly seen and may not clearly of each Xs is still given by a density h with respect to the
belong to any class. See also the remark at the end of measure n 5 d0 1 d1 1 e. Such a fuzzy Markov random
Section 3. field is then classically degraded by Gaussian noise and

The aim of our paper is to present a statistical fuzzy several segmentation methods can be considered [30].
segmentation method which may be considered a general- The aim of our work is to make these methods unsuper-
ization of the well-known Markovian-model-based algo- vised. Thus the main problem is to estimate all parameters
rithms. of the model from Y, the noisy version of X. We propose

The unsupervised approach we present is based on a the using the iterative conditional estimation method
recent models using hidden fuzzy Markov random fields. (ICE), which seems well adapted to the model considered.
In order to solve the main problem of parameter estima- In fact, the principle of ICE does not refer to the likelihood,
tion, we propose using a recent general method of estima- a notion which is difficult to handle in the context of our
tion in the case of hidden data, called iterative conditional study. Let us note that when local unsupervised segmenta-
estimation (ICE [29]). ICE is an iterative method which

tion is concerned, ICE and expectation-maximization (EM
has been successfully applied in classical hidden Markov

[13, 33]) give comparable results [28]. However, in thefields based segmentations [5, 6, 31] and the same ICE
context of local fuzzy unsupervised segmentation, theremethod can be used as the previous parameter estimation
exist some situations in which ICE is preferable to EM [8].step in local Bayesian unsupervised segmentations [28].

Let us remark that fuzzy statistical classification usingAs usual, we consider two random fields X 5 (Xs)s[S hidden fuzzy Markovian random fields has already beenand Y 5 (Ys)s[S . The image to be segmented is a realization
proposed in [23]. The difference with our approach is thatY 5 y of Y and the desired picture is the realization X 5
in the model proposed in [23] a positive probability ofx of the field X. So the values of Y are real. Let us consider
having a hard pixel cannot be obtained, unless one makesthe case of two classes. In the classical case, which will be
a certain parameter tend to infinity. This can be seen as acalled hard in what follows, the Xs take their values into
drawback in situations where there clearly exist a positiveVh 5 h0,1j, where the numbers 0 and 1 correspond to the
probability of having a hard class and a positive probabilityhard classes (for instance the classes pure forest and pure
of having a fuzzy class at a given pixel.city). As mentioned above, in the fuzzy model we take

The organization of the paper is as follows:Vf 5 [0,1], where the numbers 0 and 1 correspond to the
In the next section we review modeling by hidden fuzzyhard classes and ]0,1[ to the fuzzy ones. Otherwise, if Xs 5

Markov fields, as recently proposed in [30]. Section Threexs [ ]0,1[ then xs indicates the proportion of the class 1 in
is devoted to the ICE, a recent general method of estima-the value of the pixel, and so 1 2 xs is the proportion of
tion in the case of hidden data. In Section Four we brieflythe class 0. The statistical approach requires a definition
recall the principle behind Bayesian segmentation and de-of priors, which is a probability distribution on Vf 5 [0,1].
scribe its mechanism in the context of the hidden fuzzyThe originality of the model proposed in [7] is that the
Markov fields model. Two segmentation methods, which indistribution of each Xs is given by a density h with respect
connection with ICE become unsupervised, are described.to the measure n 5 d0 1 d1 1 e, which includes a hard

component (Dirac functions d0, d1 on h0,1j) and a fuzzy one Computer simulation results for synthetic images and a
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fuzzy segmentation of a real image of clouds are presented then it is possible to show, exactly as in the hard case,
that X is Markovian with respect to V. Furthermore, thein Section Five and Section Six contains the conclusion.
distribution of Xs is a distribution on Vf 5 [0,1] given by
a density with respect to the measure n 5 d0 1 d1 1 e.2. HIDDEN FUZZY MARKOV FIELDS

When N increases, the measure nN becomes very difficult
We briefly present below the recently proposed model to handle. However, when we deal with Markovian fields,

of hidden fuzzy Markov fields (HFMF) and specify how all we need is to be able to compute the distribution of
it generalizes classical hidden hard Markov fields (HHMF). each Xs conditional to (Xt)t[Vs,t?s . As we will see in Section
The two models are very similar and very different at the 5, the computation of these distributions is only slightly
same time. They are very close in that the densities defining more complicated than in the hard case.
their distributions are of the same form; thus different Hard Markov fields can be seen as particular cases of
computations are nearly the same. The are very different fuzzy Markov fields in the following sense: the distribution
in that these densities are with respect to two different of each hard Markov field is a limit, as some parameter
measures. Thus our general presentation is rather brief, tends to infinity, of distributions of a family of fuzzy Mar-
although, we better develop different calculations in the kov fields. To be more precise, let us consider a hard
case of a particular model used for simulation in Section 5. Markov field given by the family of functions wC and let

us define wl
f,C by

2.1. Distribution of X

Let us consider the classical case of two classes V 5
wl

f,C (xC) 5 HwC (xC) if xC hard

l if xC fuzzy,
(4)h0,1j, to be called hard in what follows. If X is a Markovian

field with respect to a neighborhood V, its distribution is
given by where xC hard means that all components xs , s [ C are hard

and xC fuzzy means that at least one of these components is
P [X 5 x] 5 h(x) 5 ce2U(x), (1) fuzzy.

Let us consider two sets Ef , [0,1]N, Eh , [0,1]N (which
where U, called energy, is a sum of functions defined on are fuzzy and hard images respectively),
cliques, a clique being either a singleton or a set of pixels
that are neighbors with respect to V. Let us consider the [x 5 (x1, . . . , xN) [ Ef] ⇔ ['1 # i # N such that xi [ ]0,1[ ]
stationary case, i.e., the case where the functions defying

(5)U depend only on the shape of cliques and do not depend
on their position in the set of pixels. Thus, if C is a clique [x 5 (x1, . . . , xN) [ Eh] ⇔ [;1 # i # N, xi [ h0,1j]. (6)
of a given shape and n 5 Card(C), the associated function
wC is a function from Vn 5 h0,1jn into R. On the other We shall insist that an image is fuzzy when one at least
hand, for each pixel s, the distribution of Xs is a distribution pixel is fuzzy (it can contain hard pixels).
on V 5 h0,1j. The problem is to generalize this model in We give below a result which slightly generalizes two
such a way that for each pixel s, the distribution of Xs is propositions presented in [29].
a distribution on Vf 5 [0,1] given by a density with respect

PROPOSITION. There exists a positive constant A suchto the measure
that

n 5 d0 1 d1 1 e, (2)
PX [Eh] $ 1 2 Ae2l (7)

where d0, d1 are the Dirac measures on h0,1j, and e is the and as a consequence limlR1y PX [Eh] 5 1 and limlR1y
Lebesgue measure on [0,1]. PX [Ef] 5 0.

In what follows N will designate the number of pixels.
Proof. Let x [ Ef . The density of (3) is writtenLet us consider the function defined on VN

f 5 [0,1]N by
hf (x) 5 ce2Uf(x). The function Uf is of the same shape as
the function U with the following difference: for C a clique hl

f (x) 5 c(l)e2U l
f (x). (8)

with n 5 Card(C), the associated wf,C is a function defined
on Vn

f 5 [0,1]n instead of Vn 5 h0,1jn. If we consider that Let us show that c(l) is bounded by a constant not
hf (x) 5 ce2Uf(x) is the density of PX with respect to the depending on l. For each x0 [ Eh the number hl

f (x0) is
measure nN, i.e., the probability of x0; thus hl

f (x0) # 1. Furthermore, l does
not intervene in the energy defining hl

f (x0); thus hl
f (x0) 5

c(l)e2U(x0) # 1. Putting M 5 eU(x0), we havePX 5 hfnN, (3)
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c(l) # M. (9) c(x, y) 5 ke2Uf(x) p
s[S

cxs
(ys). (13)

With C the set of cliques, let us consider, for each C9 ,
2.3. Distribution of X a PosterioriC and y [ Eh, the partial sums oc[C9 wc(yc). As these sums

are of finite number, there exists a [ R such that oc[C9
Putting p

s[S

cxs
(ys) 5 e

O
s[S

Log cxs
(ys)

5 e2Vx(y) andwc(yc) $ a for all C9 , C and y [ Eh. Let us return to x [
Ef and oc[C wl

f,c(xc). Let C9 , C be the subset of cliques
Wy (x) 5 Uf (x) 1 Vx (y),on which all components of xc are hard and let C0 , C be

the subset of cliques on which one at least component of
(13) is writtenxc is fuzzy. As oc[C0 wl

f,c(xc) $ l, by construction of
wl

f,c(xc) we can write
c(x, y) 5 ke2Wy(x). (14)

U l
f (x) 5 O

c[C
wl

f,c(xc) 5 O
c[C9

wc(xc) 1 O
c[C0

wl
f,c(xc) $ a 1 l

The density of the distribution of X a posteriori (i.e.,
conditional on Y 5 y) with respect to nN is thus given by(10)

and finally c y(x) 5
ke2Wy(x)

E
[0,1]N ke2Wy(x) dnN (x)

, (15)

hl
f (x) 5 c(l)e2Ul

f (x) # Me2(a1l). (11)
which can be written

As hl
f is the density of PX with respect to nN we have

c y(x) 5 k(y)e2Wy(x) 5 k(y)e2(Uf(x)1Vx(y)). (16)PX [Ef] # nN [Ef]Me2(a1l). On the other hand, nN[Ef] 5
nN [[0,1]N ] 2 nN [Ed] 5 3N 2 2N. Finally, PX [Ef] #

Thus the energy in (16) is of the same kind as that in (1).(3N 2 2N )Me2(a1l), which completes the proof with A 5
The additional term Vx(y) is(3N 2 2N )Me2a.

2.2. Distribution of (X, Y) Vx (y) 5 2O
s[S

Log cxs
(ys), (17)

We have now to define the distribution of (X, Y). The
distribution of X having been defined above, we need only where cxs

is Gaussian with mean (1 2 xs)m0 1 xs m1 and
define distributions of Y conditional on X. As is usual variance (1 2 xs)s 2

0 1 xss
2
1 . As in the case of hard Marko-

made in the hard case we will assume: vian fields, the Markovian nature of the posterior distribu-
tion of X is thus preserved and one can use the Gibbs(i) The random variables (Ys) are independent condi-
sampler in order to simulate its realizations.tionally on X.

The exact running of the Gibbs sampler is described in
(ii) The distribution of each Ys conditional on X is equal the case of a particular model used for experiments in

to its distribution conditional on Xs. Section 5. However, its principle remains valid for every
hidden fuzzy Markovian field.Distributions of Y conditional on X are then defined by

distributions of Ys conditional on Xs . Assuming that distri-
3. PARAMETER ESTIMATION USING ICEbutions of (Xs, Ys) are independent of s and denoting by

N(m, s 2) the normal distribution of mean m and variance
3.1. Definitions 2, we will take for the distribution of Ys conditional on

Xs 5 xs [ [0,1] Iterative conditional estimation is a general procedure
for parameter estimation in the case of hidden data that

N((1 2 xs)m0 1 xs m1, (1 2 xs)s 2
0 1 xs s 2

1), (12) we describe below in some detail.
The idea behind this procedure is the following: the

complexity of the estimation problem is due to the absencewhere m0, m1, s 2
0, s 2

1 are given parameters. Thus m0, m1,
s 2

0, s 2
1 define all distributions of Y conditional on X. of the observation of X. If X were observable, one could

generally use some efficient parameter estimation proce-For m0, m1, s 2
0, s 2

1 fixed, let us denote by cxs
the Gaussian

density defined above. The density c of the distribution dure. In fact, if the estimation of u from (X, Y) is impossible
there is no sense in estimating it from the Y data alone.of (X, Y) with respect to nN J eN (n being the measure

on [0,1] defined by (2), e the Lebesgue measure on R, and So let us suppose temporarily that X is observable and let
us consider û 5 û(X, Y), an estimator of the parameter u.N the number of pixels) is then given by
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As an estimator û 5 û(X, Y) is a random variable whose (X, Y) and the problem is to estimate it from Y. According
to the previous section, we can use the ICE procedure once:construction does not use u. In a general manner, if we

want to approach a random variable Z by some function
(i) we have an estimator û 5 û(X, Y) of u 5 (a, b)of a random variable W, the best approximation, where

from (X, Y)the squared error is concerned, is the conditional expecta-
(ii) we can perform, for each u 5 (a, b), simulations oftion. To be more precise, if we denote the conditional

realizations of X according to its posterior distribution.expectation by E [Z/W ] we have

Let us begin with the second point. According to the
E [Z 2 E [Z/W ]]2 5 min

w
E [Z 2 w(W)]2. (18) general hypotheses the distribution of X is a Gibbs distribu-

tion. The proof of this is exactly the same as in the hard
case. It is than possible to use a fuzzy Gibbs sampler [30,As we consider the problem of estimating u using Y
35], which is a simple adaptation to our model of thealone, we have to approach û 5 û(X, Y) by a function of Y.
classical hard Gibbs sampler. The same procedure can beICE proposes using precisely the conditional expectation
used to simulate realizations of X according to its poste-E [û(X, Y)/Y ]. The drawback is that this conditional expec-
rior distribution.tation depends on u, which leads to the following itera-

In order to solve point (i) let us consider problems oftive procedure:
estimating a and b separately. We take as estimator â 5
â(X) of a (from X, the fuzzy noise-free field) the iterative(i) initialization u0

(19) procedure [1], which is an adaptation to the fuzzy case of
(ii) uk11 5 Euk

[û/Y 5 y]. the stochastic gradient algorithm [40],

(a) a0, X 5 x0 given

(21)
When Euk

[û/Y 5 y] is not computable but samplings of X
according to the distribution conditional on Y 5 y are

(b) an11 5 an 1
c

(n 1 1)
[U 9f (xn11) 2 U 9f (x0)],possible, one can use a stochastic approximation. In fact,

the conditional expectation is the expectation according
to the conditional distribution. Thus it can be approached,

where U 9f (x) is the gradient of Uf (x) with respect to a,by virtue of the law of large numbers, by the empirical
and xn11 is a realization of X simulated by the fuzzy Gibbsmean. After having sampled m realizations x1, . . . , xm of
sampler, according to its prior distribution and using theX according to its distribution conditioned on Y 5 y, we
current parameter an . In the hard case, a convenient choicecan consider
of the parameter c ensures the convergence to the true
values of the parameters [40].

uk11 5
1
m

[û(x1, y) 1 ? ? ? 1 û(xm, y)]. (20) We choose as estimator b̂ 5 b̂(X, Y) of b the empirical
means and variances (m̂i , ŝ 2

i ), which are defined from
(XQi

, YQi
) (with, for i 5 0, 1, Qi 5 hs [ S/Xs 5 ij) by

As we will see, the calculation of E [û(X, Y)/Y ] is not
possible when considering the statistical fuzzy image seg-
mentation based on the model described in the previous
section. Thus we will have to use (20), which is feasible m̂i (X, Y) 5

O
s[Qi

Ys 1[Xs5i]

O
s[Qi

1[Xs5i]
(22)

because of the possibility of simulating realizations of X
according to its posterior distribution by Gibbs sampler.

Let us note that most of the recently proposed estimation
methods are iterative: the next value of the parameter

ŝ 2
i (X, Y) 5

O
s[Qi

(Ys 2 m̂i)2 1[Xs5i]

O
s[Qi

1[Xs5i]
. (23)is computed from the current one and the data by the

application of some criterion. In the case of the estimation–
maximization (EM) algorithm, this criterion is the increase
of the likelihood of the distribution of Y [13, 33].

Thus û 5 û(X, Y) is defined by (21)–(23).
Finally, according to the ICE principle, the estimation

3.2. Parameter Estimation in FHMRF Using ICE
of u from Y alone is as follows:

Let us denote by a the set of parameters defining Uf
(i) take u0 5 (a0, b0) as an initial value of uwhich gives the distribution of X, and by b 5 (e0, e1, s0,

s1) parameters defining distributions of Y conditional on (ii) compute uk11 5 (ak11, bk11) from uk 5 (ak, bk) and
Y 5 y in the following way:X. The parameter u 5 (a, b) defines the distribution of
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(1) Using the Gibbs sampler, simulate m realizations The Bayesian strategy is then a strategy ŝB which minimizes
E [L*(X, ŝ(Y)], with respect to ŝ. Following the law ofx1, x2, . . . , xm of X according to the posterior distribution

corresponding to uk 5 (ak, bk) and Y 5 y. large numbers, E [L*(X, ŝ(Y)] can be seen as the average
severity of the errors committed when using ŝ on a long(2) For each xj estimate a by (21) (which requires r

new simulations by the Gibbs sampler). Let a(x1), a(x2), run. Thus ŝB is a strategy which minimizes the latter mean,
which is quite satisfying from an intuitive point of view.. . . , a(xN) be the values so obtained.

(3) For each xj estimate b (from xj and Y 5 y) by For instance, in the case of hard hidden Markov random
fields, the MAP [16] is the Bayesian strategy correspondingformula (22) and (23). Let b(x1, y), b(x2, y), . . . , b(xN , y)

be the values so obtained. to the loss function
(4) uk11 5 (ak11, bk11) is given by

L*(x, x9) 5 H0 if x 5 x9

1 if x ? x9ak11 5
1
m

[a(x1) 1 a(x2) 1 ? ? ? 1 a(xm)] (24)

and the MPM [25] is the Bayesian strategy correspondingbk11 5
1
m

[b(x1, y) 1 b(x2, y) 1 ? ? ? 1 b(xm, y)]. (25)
to the loss function

(iii) if the sequence uk 5 (ak, bk) approaches steady L*(x, x9) 5 O
s[S

L(xs, x9s) (26)
state, stop.

Remark 1. Let us note that the method ICE 1 stochas-
withtic gradient can be seen as a generalization to the noisy

case of the stochastic gradient, which applies to the noise
free case. In fact, when the noise vanishes, i.e., variances

L(xs, x9s) 5 H0 if xs 5 x9s

1 if xs ? x9s.
(27)tend to zero, the m realizations x1, x2, . . . , xm of X sampled

using the Gipps sampler according to the posterior distri-
bution corresponding to uk 5 (ak, bk) and Y 5 y (see In this work we will consider L* of the form given by (26).
(ii, 1) of the procedure above) are no longer stochastic Thus L* is defined once L(xs, x9s) is defined, for each xs,realizations, but are all equal to x0 (see (21, b)), i.e., the x9 in [0,1]. In this case the Bayesian strategy is the strategy
observed fuzzy image. Thus, if m 5 1, one obtains exactly which minimizes E [L(Xs, ŝs(Y)] for each pixel s [ S. In
the Stochastic Gradient; i.e., the next value of the parame- the hard case things are relatively simple: for k classes, L
ter is given by (21, b), and is the final value (k 5 1). If m is given by a k 3 k matrix. In the fuzzy case concerning
is superior to 1, there is very little difference: a(x1), a(x2), us, even in the case of two classes, things are more compli-
. . . , a(xm) are different estimates, with x1 5 x2 5 ? ? ? 5 cated. There are two different natures of pixels (hard and
xm 5 x0, of a by (21). As the procedure (21) stops when fuzzy) and L will depend on what we are looking for. For
the sequence stabilizes, a(x1), a(x2), . . . , a(xm) change instance, if we strongly wish to detect the fuzzy class, L(xs,little and thus ak11 5 (1/m) [a(x1) 1 a(x2) 1 ? ? ? 1 a(xm)] x9s) will be sizeable on ]0,1[ 3 h0,1j; if the detection of class
differs little from each of them. 0 has grater importance that the detection of the class 1,

Thus ICE 1 stochastic gradient stays valid in the noise we will have to consider L(1, x9s)lL(0, x9s) for x9s [ ]0,1[;
free case and should automatically ‘‘degenerate’’ into sto- and so on. Let us note that this presents a complication,
chastic gradient. This is of interest in practical applications. but also a richness showing the flexibility of the Bayes-
For instance, if one wishes to classify different images using ian methods.
the estimated parameters, it is possible to assume that they For a given L, the practical search for the Bayesian
are noisy, and if they are not, the ICE 1 stochastic gradient strategy ŝB is the following. As
will automatically become the stochastic gradient.

E [L*(X, ŝ(Y))] 5 E [E [L*(X, ŝ(Y))/Y ]]

(28)
4. UNSUPERVISED SEGMENTATION

5 O
s[S

E [E [L(Xs, ŝs(Y))/Y ]],
Unsupervised segmentation is obtained by augmenting

the ICE parameter estimation above by a method of seg-
ŝB will be the solution once ŝB minimizesmentation. Probabilistic models allow the use of Bayesian

methods of segmentation, whose general principle we
E [L(Xs, ŝs(Y))/Y 5 y] (29)briefly recall. One considers a function L* : [0,1]N 3

[0,1]N R R1, called a loss function. L*(x, x9) models the
severity of assuming that the real value is x9, when it is x. for each Y 5 y.
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The calculus of (29) thus requires knowledge of the a authors propose a family of unsupervised hard segmenta-
tion methods applicable in complex situations; in particu-posteriori distribution of each Xs . In the case concerning

us, the latter distributions are given by densities hs,y , where lar, it is possible to take texture into account. They use
the hidden Markov field model and propose estimatingY 5 y, with respect to n. Let us assume temporarily that

these distributions are known. (29) is then written the parameters with an original variant of the iterative
expectation–maximization (EM) algorithm. At each itera-

hs,y (0)L(0, ŝs(y)) 1 hs,y (1)L(1, ŝs (y))

(30)
tion EM gives the posterior marginals, which are probabil-
ity measures ps 5 (p1

s , . . . , pk
s ) on the set of hard classes

1 E1

0
hs,y (t)L(t, ŝs (y)) dt. V 5 hg1, . . . , gkj. These probabilities are called ‘‘indicator

vectors’’ and the authors briefly indicate that this can be
considered a ‘‘soft’’ segmentation, as opposed to theLet us consider
‘‘hard’’ segmentation obtained by their maximization. In
particular, such a soft segmentation can be considered atL(xs, x9s) 5 uxs 2 x9u. (31)
the final iteration of EM. As the function gi R pi

s 5 PY5y

[Xs 5 gi] takes its values in [0,1], it can also be seen as a(30) then becomes
fuzzy set. Finally, the probability ps 5 (p1

s , . . . , pk
s ) consid-

ered at each pixel can be seen as a fuzzy segmentation. Thus
hs,y(0)uŝs(y)u 1 hs,y(1)u1 2 ŝs(y)u 1 E1

0
hs,y(t)ut 2 ŝs(y)u dt. fuzziness is obtained as an interpretation of a probability

measure. This is different from the viewpoint of this paper,(32)
in that we consider fuzzy and probabilistic aspects of things
simultaneously. A pixel can be hard or fuzzy, outside anyFinally, segmentation is performed by attributing to each
probabilistic consideration. Wishing to use statistical pro-pixel s [ S a number ŝB,s(y) [ [0,1] which minimizes
cessing, we then define a probability distribution on fuzzy(32), the latter problem being solved numerically. In the
classes, which is different from interpreting a probabilityfollowing, this algorithm will be called ALG1.
measure on hard classes as their fuzziness. This conceptualThe second segmentation algorithm that we will test in
difference results in concrete differences in the behaviorSection 5, and which was proposed in [7], is the following:
of the methods. For instance, taking two classes V 5 hg1,

(i) choose from h0, 1, F j (F for fuzzy) according to the g2j considered in this paper and a fuzzy image containing
classical Bayesian rule: the chosen element maximizes the about 60% of fuzzy pixels (Im 8 of the next section), we
probability hs,y(0), hs,y(1), 1 2 hs,y(0) 2 hs,y(1). can notice that the method we propose releases their ap-

proximate proportion (Table 3 of the next section), even(ii) if the chosen element is in h0,1j stop, otherwise
in rather strongly noisy cases (Im 9 and Im 14 of the nextchoose in ]0,1[ the element which maximizes the restriction
section). The hard version of the Zhang, Modestino, andof hs,y to ]0,1[.
Langan algorithm applied to Im 9 and Im 14 would give

This algorithm will be called ALG2. no fuzzy pixels and, what is more, the soft version of this
As in the hard case, the densities hs,y cannot be calculated algorithm would give all pixels fuzzy. The latter is due to

analytically and we have to estimate them in a previous the fact that all realizations of a hard Markovian field have
step. This estimation is performed from realizations of X a strictly positive probability and, as a consequence, in the
simulated according to its posterior distribution by a Gibbs proposed fuzzy segmentation ps 5 (p1

s , p2
s) we have p1

s ?
sampler, in a way analogous to that followed in the hard 0 and p2

s ? 0 for all pixels.
MPM [25]. Thus the two methods are conceptually quite different.

Finally, all parameters of the model described in Section However, the indicator vector approach could be followed
2 being known, the segmentation step itself becomes: by some specific transformation and could conceivably

give, in practice, results comparable to those obtained with(i) Estimate hs,y for each s [ S
the method we propose in some situations. For instance,(ii) perform the segmentation with ALG1 or ALG2.
some of the pixels obtained with ps 5 (p1

s , p2
s) above could

Let us notice that the method exposed in [7] is different be hardened by considering that a pixel is hard when its
in that we deal with blind, say pixel by pixel, fuzzy segmen- probability is superior to a given threshold.
tation. However, once hs,y known, the problem of classify-
ing s is strictly the same. Two other fuzzy Bayesian segmen- 5. EXPERIMENTS
tations can be found in [8].

5.1. Model Used
Remark 2. Let us specify how this method differs from

the method of fuzzy segmentation briefly suggested in a We consider hidden fuzzy Markov fields with respect to
eight nearest neighbors and we do not take into accountrecent paper by Zhang, Modestino, and Langan [42]. The
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cliques whose cardinal is superior to two. We have then
five kinds of cliques: singletons, ‘‘horizontal’’ neighbors,
‘‘vertical’’ neighbors, ‘‘north–east’’ (which are the same as
‘‘south–west’’) neighbors, and ‘‘north–west’’ (which are
the same as ‘‘south–east’’) neighbors. We have to define
five kinds of w which will define the energy of the fuzzy
Markov field X. FIGURE 2

Concerning singletons we will consider

g(x, xn) 5 w(x) 1 whor (x, x3) 1 whor (x, x7)
w(xs) 5 Hh0 if xs 5 0

h1 if xs 5 1
and w(xs) 5 l if xs [ ]0,1[. (33)

1 wver (x, x1) 1 wver (x, x5) 1 wen (x, x2) (37)

Concerning pairs of neighbors, we will consider two 1 wen (x, x6) 1 wwn (x, x4) 1 wwn (x, x8).
cases: both are hard or at least one is fuzzy. Taking hori-
zontal neighbors we consider The distribution of Xs conditional on XV 5 xV is then

For (xs, xt) [ h0,1j2 (both pixels hard): defined by the density with respect to n

whor(xs, xt) 5 H2ah
hor if xs 5 xt

ah
hor if xs ? xt .

(34) hxn(x) 5
e2g(x,xV)

E1

0
e2g(x,xV) dn(x)

(38)

For (xs, xt) [ [0,1]2 2 h0,1j2 (at least one pixel fuzzy):
or

whor(xs, xt) 5 2af
hor (1 2 2uxs 2 xtu), (35)

and the same formula for vertical, north–east, and north– hxn(x) 5
e2g(x,xV)

e2g(0,xV) 1 e2g(1,xV)E1

0
e2g(x,xV) dx

. (39)
west neighbors with corresponding parameters ah

ver, af
ver,

ah
en, af

en, ah
wn, af

wn.
Finally, the distribution of X is defined by For instance, if xn 5 (0, 0, x3, x4, x5, 1, 1, 1) with x3, x4, x5

in ]0,1[, as in Fig. 2, g(x, xn) isa 5 (h0, h1, l, ah
hor, af

hor, ah
ver, af

ver, ah
en, af

en, ah
wn, af

wn). (36)

Let us detail the parameter estimation and segmentation g(0, xV) 5 h0 2 af
hor(1 2 2x3) 1 ah

hor 2 ah
ver

steps in the particular model above. We basically have
2 af

ver (1 2 2x5) 1 ah
wn 2 af

wn(1 2 2x4) (40)to specify how the Gibbs sampler runs. In fact, it allows
sampling of X according to its prior and posterior distribu- g(1, xV) 5 h1 1 af

hor (1 2 x3) 2 ah
hor 1 af

ver (1 2 x5)
tions which is sufficient, according to the general descrip-

1 ah
ver 1 af

wn(1 2 x4) 2 ah
wn (41)tion of ICE and MPM in Sections 3 and 4, implement them

and perform an unsupervised segmentation. g(x, xV) 5 l 2 af
hor(1 2 2ux 2 x3u) 1 af

hor (1 2 x)
First, let us indicate the sampling of X according to its

prior distribution, which is needed in ICE (see (ii, 2) in 2 af
ver (1 2 2x) 2 af

ver (1 2 2ux 2 x5u)
the description of ICE, Section 3.2). As in the hard case,

2 af
en (1 2 2x) 1 af

en(1 2 x) 1 af
wn (1 2 x)we have to specify the sampling of Xs according to its

distribution conditional on (Xt)t[V, where V is the set of 2 af
wn (1 2 2ux 2 x4u). (42)

eight nearest neighbors of s.
Thus let us consider xn 5 (x1, x2, x3, x4, x5, x6, x7, x8) as The integral in (39) is calculated by discretization. Thus

in Fig. 1 (we omit s because of stationarity). Let one disposes of hxV (0) 5 P [Xs 5 0/XV 5 xV], hxV (1) 5
P [Xs 5 1/XV 5 xV], and for x [ ]0,1[, of hxV(x), which is
a density with respect to the Lebesgue measure. The sam-
pling of Xs is then performed as follows:

(i) sample in h0, 1, F j according to the distribution
hxV(0), hxV(1), 1 2 hxV(0) 2 hxV(1). If Xs 5 0 or Xs 5 1
stop. If Xs 5 F :

(ii) sample in ]0,1[ according to the density hxV(x). The
FIGURE 1 latter sampling is performed by discretizing hxV.
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FIG. 3. Realizations of fuzzy Markov fields.

When the posterior distribution of X is considered the where fx (ys) is the density of the normal distribution
N [(1 2 x)m0 1 xm1, (1 2 x)s 2

0 1 xs 2
1].principle of sampling by the Gibbs sampler remains. For-

mula (38), (39) stay valid with g replaced by Remark 3. When the proposed method is applied to
real situations two questions arise; (i) how to determine

g y
s (x, xV) 5 g(x, xV) 1 fx (ys), (43) the form of energy and, in particular, the number of param-
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eters a in (36), and (ii) what can be said about the statistical 5.3. Unsupervised Fuzzy Segmentation
behavior of the parameter sequence produced by ICE. We present in this section the results of parameter esti-
Concerning the first point, the form of functions defined mation and unsupervised segmentation of two synthetic
on cliques (33)–(35) has been determined experimentally; images. The visual impressions are presented in Fig. 4 and
other forms have been tested that give visually less satis- in Fig. 5. The first image, Im 8, contains a strong proportion
fying results [35]. However, this problem remains open of fuzzy pixels and Im9 and Im14 are quite noisy. In fact,
and in each particular situation the question arises. As the it is practically impossible to see anything in Im9 and Im14.
whole procedure is rather time consuming, it seems difficult Basically, the aim of the study concerning Im8 is to answer
to consider more parameters that those defined by (36). three questions: are the real parameter based methods
On the other hand, some of them may be superfluous in efficient in such noisy cases? How does the parameter
simple situations. Concerning the behavior of the sequence estimation step degrade the efficiency of the segmenta-
produced by ICE, nothing can be said in the context of its tions? Is the correct proportion of the fuzzy pixels re-
general definition. The study of its convergence is difficult tained? The second purpose of this section is to verify that
even in the case of a simple hard mixture and the only the unsupervised fuzzy segmentation method we propose
theoretical result we can put forth is its equivalence to the stays valid for hard class images. Roughly speaking, the
EM algorithm for particular parameterizations of some question is: Does the algorithm retain hard pictures? It is
particular models [8]. However, ICE is better suited to the not possible to answer this question a priori; in fact, we
model considered in this paper because, contrary to EM, have seen in Section 2.1 that hard fields are not strictly
its principle is not based on likelihood, which is difficult particular cases of fuzzy fields, but can only be obtained
to interpret. when some parameter tends to infinity.

The error rates are defined by

5.2. Realizations of Fuzzy Markov Random Field

t 5
1
N O

s[S
uxs 2 ŝs (y)u (44)We present in Fig. 3 seven realizations of fuzzy Markov

random field. The first one, presented as Im 1, is an image
of size 128 3 128 and 16 grey levels have been used in

with N the number of pixels.expressing of the fuzzy membership. Its aim is to show that
According to the results contained in Table 2, we notethe intuitive feeling of the fuzzy reality can be rendered by

good noise parameter estimation in both MD and VDthe model used. In fact, one can clearly see the hard classes
cases. Priors parameters concerning the cliques ‘‘single-(black and white) and the fuzzy classes. That is likely made
tons’’ (h0, h1, l) are well estimated, and priors parameterspossible by the simultaneous use of Dirac and Lebesgue
concerning the cliques ‘‘pairs’’ (ah, af ) are rather poorlymeasures.
estimated. However, the degradation of the segmentationParameters used in simulations are given in Table 1. The
results, when using the estimated parameters instead of theimages Im2, Im3, Im5 show that different proportions of
real ones, seems acceptable. This shows good robustness of

fuzzy pixels can be obtained; in particular, Im3 is nearly
the segmentation methods with respect to ah, af.

a realization of a hard field. Im4 and Im7 show that spatial
anisotropy can be taken into account by the model. Remark 4. In the VD case the unsupervised ALG2

Several other realizations of fuzzy Markov fields can be gives better results that the real parameters based one,
which can appear as surprising. Such situations are notseen in [30].

TABLE 1
Parameters Used in Simulation of Im1–Im7

h0 h1 l ah
hor ah

ver ah
wn ah

en af
hor af

ver af
wn af

en F (%)

Im1 0 0 0 15 15 0 0 16 16 0 0 59
Im2 0 0 0 8 8 8 8 8.7 8.7 8.7 8.7 74
Im3 0 0 0 8 8 8 8 8.3 8.3 8.3 8.3 03
Im4 0 0 0 3 3 3 20 3.5 3.5 21 3.5 57
Im5 20.7 20.7 1.4 8 8 8 8 8 8 8 8 70
Im6 20.6 20.6 1.2 20 3 3 3 20 3 3 3 40
Im7 20.6 20.6 1.2 3 3 20 3 3 3 20 3 40

Note. F (%): rate of fuzzy pixels.
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TABLE 2
Real and Estimated Parameters of Image 7 Corrupted with MD and VD Noise, Respectively

Priors parameters Noise parameters Error rates

h0 h1 l ah af m0 s0 m1 s1 ALG1 ALG2

Real 0 0 0 8 9 1 1 3 1 9.44 9.67
Esti 20.31 20.30 0.61 1.1 1.2 1.04 0.98 2.89 1.10 13.04 12.87
Real 0 0 0 8 9 1 1 1 2 16.18 23.41
Esti 20.25 20.28 0.53 1.0 1.2 1.03 0.95 0.99 1.89 18.76 20.74

Note. ALG1, ALG2: error rates of ALG1, ALG2 based on real or estimated parameters. Number of iterations in ICE (see (24),
(25)): 10. Value of the constant in the stochastic gradient (see (21)): c 5 Card(S)21. Number of iterations in both ALG1 and ALG2: 50.

impossible from the theoretical point of view, once the about 61%, and this proportion is about 56% in Im 16 and
49% in Im 18. Visual comparison of the results concerningcriterion used in order to measure the similarity between

images is not adapted to the loss function used. Here we the MD case is more difficult. The segmentation of the Im
8 1 MD with ALG 1, resulting in Im 11, appears closeruse the criterion defined by (44), which is adapted to the

loss function defined by (31) and (26), the latter function to Im 8. Indeed, the grey level variations in Im 13 are
sometimes abrupt, which does not occur in the Im 8.defining ALG1. To be more precise, the rate defined with

(44) is adapted to ALG1 in the following sense. On the We have seen in Section 2 that the fuzzy hidden Marko-
vian model becomes a hard hidden Markovian model whenone hand, this rate tends to E [uXs 2 ŝs (y)u/Y 5 y] when

N tends to infinity. On the other hand, the real parameters a certain parameter tends to infinity, which means that,
strictly speaking, a hard hidden Markovian model can notbased on ALG1 is exactly the method which minimizes

E [uXs 2 ŝs (y)u/Y 5 y]. Thus, for N large enough, the unsu- be seen as a particular case of the fuzzy one. Thus a ques-
tion arises: When the true nature of the class field is hard,pervised ALG 1, which finally is an algorithm other than

ALG1, must give worse results than ALG1. This is verified is the parameter estimation procedure efficient enough to
make the estimated fuzzy model close enough to a hardby the numerical results obtained.

The most striking visual impression concerning the re- one to obtain a hard segmentation? Thus we apply our
fuzzy unsupervised method to a hard image (Im 19) cor-sults in Fig. 4 is the great efficiency of the real-parameters-

based algorithm ALG1. The segmented image is very rupted with MD noise (Im 20) and VD noise (Im 21).
Estimates and error ratios are given in Table 4 and Imsmooth in both MD and VD cases (Im 10 and Im 15) and

seems more real that the real image. In the unsupervised 22, Im 23 represent the fuzzy unsupervised segmentation
results. Images 19–23 are presented in Fig. 5.case the difference between ALG1 and ALG2 is less appar-

ent. According to Table 2, ALG 1 is more efficient in the According to the results presented in Table 4, we note
that the algorithm does not confuse the fuzzy aspect ofVD case and ALG2 takes the upper hand in the MD case.

The first case gives Im 16 for ALG1 and Im 18 for ALG2. classes with the noise. Let us point out that the noise level
is comparable to those studied using hard unsupervisedIn fact, visually Im 16 seems closer to the real image than

Im 18. This could also be due to the fact that the proportion hidden Markov based segmentation methods. As the re-
sults of the segmentations are fairly hard fields, we can sayof the fuzzy pixels is better retained in Im 16 than in Im

18. In fact, according to Table 3, the real proportion is that our fuzzy model can be very close to a hard model

TABLE 3
Rates of Fuzzy and Hard Pixels in the Real Image and in the Real Parameter or Estimated Parameter

Based Segmentations with ALG1 and ALG2

Real parameter segmentation Estimated parameter segmentation

Noise 1 Noise 2 Noise 1 Noise 2

Real Image ALG1 ALG2 ALG1 ALG2 ALG1 ALG2 ALG1 ALG2

0 (%) 27.15 28.7 29.2 0 0.3 37.0 38.1 19.65 24.46
1 (%) 11.45 12.4 12.4 7.1 8.1 22.6 22.6 24.54 26.54
F (%) 61.40 58.9 58.4 92.9 91.6 40.4 39.3 55.81 49.00



FIG. 4. Supervised and unsupervised segmentations of noisy fuzzy Markov fields.
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FIGURE 4—Continued

provided the parameters are correctly chosen. Finally, if a segmentation again by applying a hard hidden Markov
we know nothing about fuzzy or hard nature of the class model based method.
field, we take no risks by applying our fuzzy method. How-

Remark 5. We do not address in this work the im-ever, we do not claim that the fuzzy method proposed is
portant problem of estimating the number of classes. Somebetter than the hard ones; on the contrary, according to
methods for this purpose have been proposed by others,the theory, it is equal or worse. Thus, if the fuzzy method

gives a hard result, it would be undoubtedly wise to make particularly Won and Derin who present in [39] a very

FIG. 5. Unsupervised fuzzy segmentation of a hard noisy Markov field.
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TABLE 4
Real and Estimated Parameters of the Hard Image 18 Corrupted with MD and VD Noise, Respectively

Priors parameters Noise parameters
E R

h0 h1 l ah af m0 s0 m1 s1 ALG1 H C1 H C2

Real X X X 2 X 1 1 2 1 0.41 0.59
Esti 20.58 20.59 1.17 20.51 0.08 0.89 0.95 2.07 0.98 3.9% 0.39 0.60
Real X X X 2 X 1 1 1 4 0.41 0.59
Esti 20.48 20.48 0.96 20.57 20.03 0.98 1.00 1.06 4.22 3.4% 0.407 0.584

Note. E R: error rate of ALG 1 based on estimated parameters. H C1, H C2: rates of hard pixels in real and segmented images. Number of
iterations in ICE (see (24), (25)): 10. Value of the constant in the stochastic gradient (see (21)): c 5 Card(S)21. Number of iteration in both ALG
1: 100. X: does not exist.

general unsupervised hard segmentation algorithm. In par- the sky can be seen through clouds can be considered as
fuzzy class. When it is fine weather, one can consider thatticular, their method estimates the number of classes in

both noisy and textured cases. Such a method could per- images are noise-free, at least when they are optical images.
haps be applied in a fuzzy context: indeed, the fuzzy noisy However, according to the remarks in Section 3.2, we can
class presents some texture, and thus it should be identified consider that they are noisy. We use the model of Section
as a third class. 5.1; thus, the parameters to be estimated are a 5 (h0, h1,

l, ah
hor, af

hor, ah
ver, af

ver, ah
en, af

en, ah
wn, af

wn) and b 5 (e0, e1,5.4. Real Image Segmentation
s0, s1). The segmentation step is performed with ALG1.
The real image and the segmentation result are presentedSeveral realizations of the fuzzy Markov field look like

clouds, and thus we propose in this section a segmentation in Fig. 6.
We can see that the estimates of the standard deviationsresult of a real clouds image. The sky and the opaque cloud

can thus be considered as hard classes, and the spots where are small compared to the difference between the estimates

FIG. 6. Fuzzy segmentation of a real image.
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of the means. Thus the algorithm ICE 1 ALG1 sees the
real images as a fuzzy image with a little noise. However,
the noise is present and the fact that the estimates of the
standard deviations are different attest to the fact that the
classes sky and clouds produce different noises.

Let us specify one possible application of such segmenta-
tions of clouds. An important problem in meteorology is
that of automatically classifying clouds. One could imagine
that different kinds of images produce different parame-
ters. As the parameter estimation is automated, it should
be possible to perform an automated classification from
the estimates obtained.

5.5. Generalization to k Classes

Let us briefly specify how the case of more than two
classes can be handled. The general form of the pdf of X
given in Section 2 is stored, with the difference that for a
clique C, with n 5 Card(C), the function wf,C associated
with C is a function defined on Vn

f 5 ([0,1]k)n. All functions
wf,C define then the density given by (1), Section 2, which
is a density with respect to some measure n ^N

k , where N
is the number of pixels. For the case k 5 2, the measure
nk is the n defined by (2), Section 2. Thus we have to define

FIG. 7. Fuzzy Markov field with three hard classes.a measure nk on [0,1]k. Different measures can be defined
using Dirac and Lebesgue measures and each of them will
define, for the same functions wf,C , a fuzzy Markov field.

parameters. Furthermore, the fuzzy Markov random classFor instance, considering three classes (k 5 3), one possi-
field model appears as a generalization of classical Markovbility is to consider n3 as the sum of 8 Dirac measures on
models in the sense that they are obtained when somevertices of [0,1]3, 12 Lebesgue measures on the segments
parameter tends to infinity. The noisy versions of the fuzzyconnecting these vertices, and the Lebesgue measure on
class field are then obtained in the same way as in the[0,1]3. Choosing such a measure, we relax the unit hypothe-
classical case. One can envisage an unsupervised segmenta-sis, made through this paper, according to which the sum
tion of such a fuzzy hidden Markov random class field onceof fuzzy values is one. Note that such situations cannot be
given a segmentation method and a parameter estimationstudied by the use of some probability measure. We present
method. Bayesian methods of segmentation can be defined,in Fig. 7 an example of realization of a fuzzy Markov field
using different loss functions, and we have proposed onewith three classes. The unit hypothesis is kept and we
of them. The essential novelty of this paper is that weassume that each pixel cannot belong to more than two
solve the parameter estimation problem by using iterativefuzzy classes: thus n3 is the sum of three Dirac measures
conditional estimation [29, 31]. The principle of ICE re-on the vertices (1,0,0), (0,1,0), (0,0,1) and three Lebesgue
quires that we be able to simulate the class field accordingmeasures on the segments connecting these vertices.
to the posterior distribution, on the one hand, and that we
be able to estimate the parameters from both noisy and6. CONCLUSION
noise-free class fields, on the other hand. As a fuzzy version
of the Gibbs sampler can be used, the first point is solved.In this paper, we presented an unsupervised statistical

fuzzy image segmentation algorithm. The method is sup- The second point is treated by adapting the stochastic
gradient algorithm of Younes [40] to the fuzzy noise-freeported by a recent model of hidden fuzzy Markov fields

[30], the original feature of which was the simultaneous field and by using empirical moments for estimating the
noise parameters.introduction of Dirac and Lebesgue measures at the class

field level. The aim of such a fuzzy Markov random class Simulation studies on synthetic images show that the
proposed unsupervised fuzzy segmentation algorithm doesfield was to allow the simultaneous existence of hard pixels

and fuzzy pixels, according to the intuitive feeling that in not confuse the fuzzy aspect of the classes with the noise.
This means that, on the one hand, when the original syn-real images such situations can occur. Simulations show

that hard and fuzzy pixels can be obtained simultaneously thetic image has a given proportion of fuzzy pixels, a great
deal of this proportion is found again after the unsuper-and their proportions vary with some Markovian energy
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vised segmentation. On the other hand, when the original 19. A. Hillion, Les approches statistiques pour la reconnaissance des
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