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Estimation of Generalized Multisensor Hidden

Markov Chains and Unsupervised Image
Segmentation

Nathalie Giordana and Wojciech Pieczynski

Abstract —This paper attacks the problem of generalized multisensor mixture estimation. A distribution mixture is said to be
generalized when the exact nature of components is not known, but each of them belongs to a finite known set of families of
distributions. Estimating such a mixture entails a supplementary difficulty: One must label, for each class and each sensor, the exact
nature of the corresponding distribution. Such generalized mixtures have been studied assuming that the components lie in the
Pearson system. Adaptations of classical algorithms, such as Expectation-Maximization, Stochastic Expectation-Maximization, or
Iterative Conditional Estimation, can then be used to estimate such mixtures in the context of independent identically distributed data
and hidden Markov random fields. We propose a more general procedure with applications to estimating generalized multisensor
hidden Markov chains. Our proposed method is applied to the problem of unsupervised image segmentation. The method proposed
allows one to: (i) identify the conditional distribution for each class and each sensor, (ii) estimate the unknown parameters in this
distribution, (iii) estimate priors, and (iv) estimate the “true” class image.

Index Terms —Multisensor data, mixture estimation, generalized mixture estimation, hidden Markov chain, Bayesian segmentation,

unsupervised segmentation.

1 INTRODUCTION

H IDDEN Markov chains are a useful tool for tackling
numerous concrete problems, for instance in speech
processing [27], communications [15], and image process-
ing [1], [8], [25]. These all fall in the framework of estimat-
ing some discrete phenomenon from observed noisy data.
The noise is often modelled as Gaussian, but in many appli-
cations, such as radar, sonar, ultrasound, infrared, or mag-
netic resonance images, the noise is not necessarily Gaus-
sian [15], [18]. Furthermore, for a given sensor and a given
class, the nature of the noise distribution can vary with
time. For example, the form of the gray level of the sea sur-
face in radar images can vary with the weather [6]. Thus, it
may be desirable to automatically determine the correct
noise distribution for each class and each sensor at a given
time. Early algorithms treating this problem were proposed
in [6] and [26] and applied to unsupervised image seg-
mentation. They combine mixture estimation algorithms
such as Expectation-Maximization (EM) [7], [28], Stochastic
Expectation-Maximization (SEM) [20], [22], or Iterative Con-
ditional Estimation (ICE) [23], [24], with the recognition of
the form of a distribution in the Pearson system, assuming
that a given sample is generated from a unique distribution.
The present paper lies within the scope of this general
problem. We first propose a multisensor generalized mix-
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ture estimation method based on ICE and valid in a general
hidden data context. We then tailor our method to general-
ized multisensor hidden Markov chain estimation. The ef-
fectiveness of the proposed method is validated by simula-
tions.

The algorithms are then applied to the problem of un-
supervised image segmentation. In image segmentation,
statistical methods are based on random field models:
For the set of pixels S, we consider two sets of random
variables X = (X )ses) Y = (Ys)ses called “random fields.”
Each X, takes its values in a finite set of classes Q = {w,,
..., @} and each Y takes its values in R. The segmenta-
tion problem is then to estimate the unobserved realiza-
tion X = x of the field X from the observed realization Y
=y of the field Y, where y = (y,)s is the observed image.
There are two families of methods: global methods,
which use hidden Markov field models [2], [4], [5], [9],
[11], [16], [19], [31], [32], and local methods, in which each
pixel is classified from observations of a local neighbor-
hood [13], [20], [21], [22], [30]. The efficiency of the global
methods is striking in many cases, although local meth-
ods still remain of interest [3]. We proposed in [1] a third
method, which uses hidden Markov chains instead of
hidden Markov fields, with transformation of the two-
dimensional set of pixels to a one-dimensional set using
Hilbert-Peano scans [29]. The results are comparable to
those obtained with hidden Markov field based methods,
with the added benefit of being sufficiently versatile to
treat spatio-temporal unsupervised segmentation prob-
lems. The use of Markov chains instead of Markov fields
also affords computational advantages. Indeed, several
relevant distributions can be calculated analytically in
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the case of the Markov chains, whereas iterative estima-
tion procedures, like the Gibbs sampler, would be re-
quired using Markov fields. Parameter estimation and
restoration algorithms [1], [10] are thus faster in the
Markov chain case. Furthermore, the use of the EM algo-
rithm is complicated in the hidden Markov field context
and modifications may be required [4], [32].

The paper is organized as follows: In the next section we
address the generalized mixture estimation problem in a
broad setting, in order to present our ICE-based method.
Section 3 describes the hidden Markov chain model. In Sec-
tion 4 we present some particular methods and simulation
results in the case of monosensor hidden Markov chains,
with the multisensor case treated in Section 5. Applications
to the problem of unsupervised statistical image segmenta-
tion are described in Section 6, while Section 7 contains the
conclusions.

2 GENERALIZED MIXTURE ESTIMATION

Let us consider a finite set S and random variables (X, Y) =
(Ky)sesr (Ys)ses)- We consider first the monosensor case.
Thus each X, takes its values in Q and each Y, takes its val-
ues in R. The distribution of X depends on a parameter «
and is denoted by n,. The random variables (Y;)..s are in-
dependent conditionally on X and the distribution of each
Y, conditional on X is equal to its distribution conditional
on X,. Thus all distributions of Y conditional on X are de-
termined by the k distributions of Y, conditional on each of
wy, ..., @, respectively, specified by densities fy, ..., f, with
respect to the Lebesgue measure. The problem of mixture
estimation is to find « and f;, ..., f, from Y = vy. In the
“classical” mixture case the general forms of f,, ..., f, are
known and they depend on some parameter 8 which is to
be estimated from Y =y. For instance, if f;, ..., f, are Gaus-
sian, B contains k means and k variances. In the
“generalized” mixture case, by contrast, the general form of
fi, ..., f is not known exactly; however, the form of each fj is
assumed to belong to a given finite set of forms. To be more
precise, let ¥ = {F,, ..., Fy} be a set of families of distribu-
tions. For instance, F; may be Gaussian distributions, F,
gamma distributions, and so on. Then each f; belongs to one
of the families Fy, ..., Fy;, but we do not know which. The
problem of determining of fy, ..., f, is then two-fold: For each
f; find the family F; to which f; belongs, and then find the
parameter which fixes f; in F;.

We propose a general algorithm, called ICE-GEMI
(GEMI for generalized mixture), to solve such problems,
based on the following assumptions.

A;) An estimator & = a(X) of o from X is available.

A,) One may simulate realizations of X according to its
distribution conditional on Y.

Ag) Each family F; of ¥ = {Fy, ..., F} is characterized by a

parameter ,Bj, ie., F= {fﬁJ }ﬁJeBJ' In practice, B isa
subset of R with n; depending on F;: For instance,
n; = 2 if F; are Gaussian.
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A,) M estimators ', ...

sample z = (z,, ..., z;) is generated by a distribution fp,-

, B are available such that if a

in F,, then B = Bj(z) estimates ﬂj.
As) A decision rule D is available, such that, for any

sample z = (zy, ..., z;) and any (f;, ..., fy) € F1 X ... X Fy,

the rule D associates with z the “best suited” density
among fy, ..., fy, according to some criterion.

We call our method ICE-GEMI as it can be seen as a gen-

eralization of ICE, which in turn is a general method for

estimating hidden models and, in particular, for estimating

classical mixtures [23], [24].
The ICE-GEMI algorithm is an iterative method: at step

q, let &’ and 17, ..., ¢ be current prior parameters and cur-
rent densities f, ..., f,. The updating is as follows.

a) Simulate x! a realization of X, according to its distri-

bution, conditional on Y =y and based on «' and

£ R
b) Calculate a%* = Eq[c?(X)|Y: )] where Ei[.|Y =]
denotes the conditional expectation given o = o and

(fp o f) = (0,

ble, calculate a®** = d(xq).

fkq). If this calculation is impossi-

¢)For i = 1, .., k consider S Z{SES

xd = wi}. Let
yl = (ys)sw. For each i = 1, ..., k estimate the M pa-

rameters B = BY(y'), ... 8" = B"(¥f).
d)Fori=1,... k consider D(y{) e {fﬂl, fﬁM}.

e) Update fy, ..., f, by putting

(87 . 4 = (D(f), ... D(¥f))

In the multisensor case each Y, takes its values in R".
Thus Y, = (Yi Y'S“) . We shall assume

Y

S

As) Random variables Y, ...

. are independent con-
ditionally on X..

This means that for a given class the observations in dif-

ferent sensors are independent. Thus each f; of densities

f,, ... fo which are densities on R", is given by m densities

£, ..., f" onR:

G ) = 1) x o () @

Note that in many practical situations (Ag) is probably too
strong an assertion. Taking into account the stochastic de-
pendence among sensors, however, is nontrivial in the
context of our model and further study would be necessary
to solve this problem.

The ICE-GEMI algorithm in the multisensor case differs
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little from the ICE-GEMI algorithm in the monosensor case.
Roughly speaking, all formulas of the model stay valid,

except that fi(y,) is replaced by fi(ysl, y;“) . Thus, steps (a)

and (b) of the ICE-GEMI described above remain. Steps (c),
(d), and (e) differ slightly, as follows. They become:

¢) Fori=1, ..,k consider §:{sﬂ$g:wi}. Let
y (ys)sm$1 (y; )SDSL‘ and yiq'r = (y;)sDS‘ . For
each sensor r =1, .., mand each class i = 1, ..., k, cal-

culate M parameters

B;Lr — Bl(y:)1 .“,BiM,r — [}M(yl')
d) Apply (d), above, to each sensor, giving

1,q+1 , O+ 1
B ,...,Bimq* .

e) Foreachclassi=1, ...k, consider

g+l _
= fﬁ}vqﬂ X .. X fﬁi”““”

fq+1

and update (fy, ..., fy) with £7, ..., f

Once the sets §' :{SD $g:wi} are known, the

workload for m sensors is m times that of the monosensor
case, resulting in m monosensor updates followed by the m-
sensor update using the product of monosensor functions
so obtained. We should remark that this applies only to the
noise parameter updates, and that the complete m-sensor
estimation algorithm cannot be reduced to the use of the
monosensor algorithm m times; the latter procedure would
give, in particular, m different priors.

3 HIDDEN MARKOV CHAINS

We present here a brief review of the hidden Markov chain
model; for the sake of simplicity, we describe it in the
monosensor case, the generalization to the multisensor case
being immediate.

We shall assume that (X,),cn+ IS @ Markov chain, with
each X, € {w,, ..., @}, and with stationary transition prob-
abilities. We assume that

Cij = P[Xn =, Xn+1 = a)j] (2)
does not depend on n. Thus the initial distribution is given by
mo=P[X = w] = qi (©)
and the transition matrix A = [aij] has entries
Ci:
a. =P[X ., =0X =0|=——
ij [ n+1 j| n |] zcij (4)
1<j<k

The K parameters (Ciji<i< 1< entirely define, by virtue of
Kolmogorov’s theorem, the distribution of X.

We assume that the conditional structure of the (Y, ..., Yy),
given the (X, ..., X)), as described at the beginning of Section 2.

We will denote (Xy, ..., X,) by X, (Y4, ..., Y,,) by Y, and
their realizations by x = (X4, ..., Xp) and y = (yy, ..., Yn)-

Let

oui) = P[Xe= @, Y1 =Yy, oo, Ye= Vil ®)

and
B(i) = P[Yts1 = Yz, s Yo =VYn | X = @] (6)

the so-called forward and backward probabilities, which
can be calculated by the following forward and backward
recursions:

¢ Initialization:

oy(i) = m fi(y,) for 1L <i <Kk

* Induction:
k
t+1 [Z J yt+l)
for 1si<k, 1<tsn-1 (7

» [nitialization:

Byi)=1fori<i<k

¢ Induction:
k
)= 3 34l ®)
for1<|sk 1<st<sn-1
Also, let
- P[Xt =0, Xy = 0¥ = y] -
O‘t(i)aijfj(ywl)ﬁni(j)
IZI,Z;at(l)almfm(ynl)ﬂtu(m) (9)
Thus

a,(B.(1)
1=1
indicating that Wi, j) and &(i) are computable using for-
ward and backward procedures. For the multisensor hid-
den Markov chain model, all formulas stay valid, except

that f,(y,) is replaced by fi(ysl, y’S“) .

4 ESTIMATION OF GENERALIZED
HIDDEN MARKOV CHAINS

4.1 ICE-GEMI Algorithm

We consider first the monosensor case, and verify the as-
sumptions (A;)-(As).

(Aq) The parameter « is given here by (2): o = (Cjj)1ijeks
and it is possible to use the empirical frequencies as
estimators:

1 n- 1
= (11)
-1 tZ ].[thwivxtuzwj]
(A,) It can be shown that, conditional on Y =y, X is a
nonstationary Markov chain with transition matrix at
time t given by
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4 - 03)

b &)
where (i, j) and &(i) are defined in (9) and (10).
Thus X can be simulated.

(A3) and (A,): There are numerous standard families
¥ verifying these conditions.

(As) Lety = (yq, ..., Yn) be a sample and (f;, ..., fy) € F;
X ... X Fyg. Let én be the empirical cumulative distri-

G)=23 4w (0. and et

Gy, ..., Gy be the cumulative distribution functions as-
sociated with the distributions fy, ...,

(12)

bution function

fu. Then one can
base the choice of an f; on any measure of distance be-
tween G, and the G;. For instance, let

K;(y) = Gn(t)—Gj(t)‘

which is the Kolmogorov distance between G, and
G;, and define D by

[ —f]a[. —|?<fMK(y)}

With (A,)-(As) verified, we may apply the corresponding
ICE-GEMI algorithm by following (a)-(e) of Section 2. Note
that in step (b) the calculation of o' = Eq[&(x)|Y: )]is

(13)

feasible. In fact, for each cij we have

Q+1 — Eq[(ﬁ |Y )} nz 14)

which results from (9) and (11).

The multisensor case is analogous, just replacing densi-
ties on R by densities on R".

In the sequel we denote by ICE-KOLM the ICE-GEMI
based on the minimization of the Kolmogorov distance above.

4.2 ICE-PEAR Algorithm

The algorithms proposed in our earlier work in [6], [26] use
the Pearson family, which contains eight subfamilies. The
first four moments of Pearson a distribution determine both
the subfamily to which it belongs and the values of the pa-
rameters [17]. Methods in [26] were based on the SEM algo-
rithm, which is a stochastic variant of the EM algorithm
that can be used to estimate classical mixtures [20]. ICE-
based procedures, which we call ICE-PEAR here, were later
proposed in [6], with applications to independently identi-
cally distributed samples and hidden Markov random
fields. For the model considered in this paper, ICE-PEAR is
slightly different. It resembles ICE-GEMI save for steps (c)
and (d) which become the following:

(c¥) Fori=1, ..,

k, consider §' = {SD $g = wi}. Calcu-

(ys )SESq

Fg} the distribution

late the four first moments from y% = and de-

cide in which family Fy; € {Fy, ...,

lies. Calculate ﬁij(i) from the four first moments and

set ﬁiq+1 - B|J(I)

4.3 ICE-KOLM, ICE-PEAR, and ICE-GAUSS:
Numerical Results
We present some numerical results of unsupervised Maxi-
mum Posterior Mode (MPM) restoration using our meth-
ods. We compare their efficiency, in cases involving non-
Gaussian noise, with a classical method that assumes that
the noise is Gaussian. The classical method used is ICE-
based MPM, so that, when the noise is Gaussian, both ap-
proaches are the same theoretically. We also compare ICE-
KOLM and ICE-PEAR.
The procedure for the MPM restoration is as follows:
i) foreachte {1,..,n}andie {1, ...
(10), Section 3);
ii) for each t € {1, ..., n} let @ be a class maximizing &(i)
with respecttoie {1, ..., k};

iii)take % = (@', ..., @") = MPM(y).

k} calculate &(i) (see

Although we have chosen the MPM algorithm, the so-
called maximum a posteriori (MAP) algorithm could also
be applied. MAP is based on the principle

X = MAR(Y) = Xarg mxaxF[ X= kY= }/

With the analytic solution given by the Viterbi algorithm
[10]. The hidden Markov chain model enjoys a computa-
tional advantage over the hidden Markov field model when
MPM is used at the restoration step, and this is even more
pronounced when using MAP. With the hidden Markov
field model, one must resort to simulated annealing algo-
rithm [11], which can be very time consuming. Note that
Iterated Conditional Mode (ICM [2]) can be used as a fast
approximation to MAP, but then the convergence is not
ensured and the restoration result depends strongly on the
initialization.

To initialize the three methods we take ¢ =

(15)

Lifi=j,

and qJ if i#jfori,j 0{1...k}. We calculate the

2K( )
empirical mean y and the empirical variance o of the sam-
ple, and all noise distributions are assumed Gaussian with
variances equal to 02, and means distributed around u and
distanced < from each other.

We take ¥ = {Fy, F,,
tions of the first kind [14], F, denotes gamma distributions

F3}, where F; denotes beta distribu-

[14], and F; denotes Gaussian distributions, along with the
Markov chain defined by (cy4, €2, €1, C52) = (0.49, 0.01, 0.01,
0.49). The common marginal distribution is (m;, m,) = (0.5,

0.5) and the transition matrix is A = [882 883 .
Observe that the initialization we use gives

(¢ & S1 &) = (025,025 A 25 025 which is far from

the true values. However, the results below show that this
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TABLE 1
GENERALIZED MIXTURE ESTIMATION
AND UNSUPERVISED RESTORATION

Noise 2 Class 1 Class 2 TvpM
Real B(7.3, 0.200) I'(8.10, 100) 214 %
ICE-GAUS | N(141.768) N(179.814) 4.8%
ICE-PEAR | B(7.3;3.8, 46, 357) | N(184.843) 2.7 %
ICE-KOLM | B(6.7, 3.4, 18,208) | I'(10, 8, 100) 25%

Thiind 31.3%

NoOISE 3 CLass 1 CLASS 2 TMPM
Real I'(2,10,100) I'(4,10,100) 34%
ICE-GAUS | N(117,96) N(141,397) 15.6 %
ICE-PEAR | B(1.8, 5.5, 134, 200) | N(155, 490) 11.3%
ICE-KOLM | I'(1.9, 10.2, 100) I(3.9,10.2,99) | 7.2%

Thlind 27.5

N, I, B: Gaussian, gamma, and beta of the first kind distributions respectively. tyypp: the error rate of the MPM restoration. Real: real distributions. ICE-

469

GAUS: estimation with ICE of a “classical”” Gaussian mixture. ICE-PEAR and ICE-KOLM: generalized mixture estimation algorithms. t,jnq: theoretical error

rates of blind restoration of the two noises considered.

TABLE 2
RECOGNITION OF THE TWO SENSOR GENERALIZED MIXTURES
AND THE TWO SENSOR ERROR RATES OF THE MPM

Sensor 1 Sensor 2

Class 1 Class 2 Class 1 Class 2 TvMPM

Real I'(4, 10, 100) N(180, 400) (8, 10, 100) B(7, 3, 0, 200) 0.46 %
ICE-GAUS N(140, 379) N(180, 405) N(140, 764) N(179, 855) 3.14%
ICE-KOLM | T(3.5,12,98) | N(180, 400) I'(10.2, 8, 95) B(6.3, 2.3, 36, 198) | 1.45%
Real I'(2, 10, 100) | T(4, 10, 100) B(9, 2, 0, 255) B(7, 3, 0, 255) 1.9%
ICE-GAUS N(120, 158) N(140, 408) N(178, 128) N(209, 709) 8.8%
ICE-KOLM | T(2.4,9.5,98) | T(4,9.8,100) || B(4.3,2.8,18,288) | B(2.8, 1.5, 125,258) | 7.3%

Based on real parameters or estimates with ICE-GAUS and ICE-KOLM.

poor initialization has little effect on the efficiency of the
different methods. The chain is corrupted by two noise se-
quences (Noise 2, Noise 3), whose distributions are pre-
sented in Fig. 1. The noises Noise 1 and Noise 4 are used in
Section 6.2 and Section 6.4. Their influence is measured by

the theoretical blind error rates 7;,q, Which are theoretical
Bayes error rates when using the true parameters and esti-

mating each x, fromy;, i.e., without reference to any context.

In order to generate different noises used we apply
methods described in [17]. Table 1 and other results pre-
sented in [12] lead to the following remarks:

1) The noises used are rather strong. Comparing i, to
different 7p\S obtained with real parameters, one
can note the advantage in using the Markovian model
considered.

2) ICE-KOLM is quite efficient in recognizing the nature
of the mixture components, while ICE-PEAR can en-
counter some difficulties.

3) Once the correct components are determined, the
noise parameters appear correctly estimated.

4) The restoration results obtained from generalized

mixture estimation are always better than those ob-
tained from Gaussian mixture estimation.

5) The error rates of MPM based on the ICE-KOLM es-
timates are often very close to the error rates of MPM
based on the true parameters, which attests to the sta-
bility of the whole procedure.

5 MULTISENSOR GENERALIZED
HIDDEN MARKOV CHAINS

The restoration of multisensor hidden Markov chains is of
interest in many situations. For example, in image process-
ing, sensors can be of different natures, such as radar, infra-
red, optical, or ultrasound, and thus the distributions corre-
sponding to a given class can have different natures. Also,
the nature of the noise can vary with the class, with the sen-
sor for a given class and, for a given class and sensor, with
time. We briefly present in this section some numerical re-
sults comparing ICE-KOLM and ICE-GAUS in the multisen-
sor case. Table 2 and additional results presented in [12] lead
to the following remarks about two-sensor experiments:
1) Again, results obtained from generalized mixture es-
timation are better than those obtained from Gaussian
mixture estimation.
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Fig. 1. Noise distributions used in simulations.

2) The error rates of MPM based on the ICE-KOLM es-
timates are still close to the error rates of MPM based
on the true parameters; however, this is less striking
than in the monosensor case. Stability of the whole
procedure is retained. When there are more than two
sensors, the problem of choosing a maximum number
of “useful” sensors could arise.

6 UNSUPERVISED GENERALIZED
IMAGE SEGMENTATION

We present in this section, some applications of generalized
mixture estimation, with ICE-KOLM and ICE-PEAR, to
unsupervised image segmentation. As we use the Markov
hidden chain model, all results of the previous sections ap-
ply almost immediately. To transform a set of pixels into a
support set for a hidden Markov chain, we proposed in [1]
the use of the Hilbert-Peano scan and showed that results
obtained, in the case of Gaussian noise, were better than
those obtained using classical raster scans. The model is
intuitively less satisfying than the hidden Markov field
model, but several simulations performed in the Gaussian
case reveal that it is competitive [1].

6.1 Monosensor Image Segmentation

Let S be the set of pixels, and s,, ..., S, be pixels ordered ac-
cording to the Hilbert-Peano curve, the first three stages of
whose construction in S is presented in Fig. 2, starting with
a four pixel image, and at each step multiplying the image
by four. Continuation of this sequence creates the Hilbert-
Peano scan on an image of size 2'x 2", for any n. Other Hil-
bert-Peano scans can be defined on images of any size [29].

Thus X = (X,)ss is the random field of classes and Y =

(Y,)ses is the observed field, i.e., Y =y is the digital image to
be segmented. Considering
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Fig. 2. Construction of the Hilbert-Peano scan.

(Xp o0 X)) = (xi x§)

as a Markov chain and making the usual assumptions
about

(Yo%) = (0 Y)

we see that problem of image segmentation is now one of
generalized hidden Markov chain restoration.

6.2 Synthetic Images

Consider the family ¥ = {F;, F,, F3} of Section 4, and two
synthetic images: “Letter B” and “Ring.” Each is corrupted
by Noise 3 and Noise 4 of Section 4.3.

As mentioned above (Section 4.3, Table 1), the noise
perturbations are quite sizeable: for priors equal to 0.5, the
blind classification error rates are 31.3 percent and 27.5 per-
cent, respectively. Images, their noisy versions with Noise
4, and segmentation results are presented in Fig. 3. Tables 3
and 4 display the families estimated by ICE-KOLM and
ICE-PEAR and the error rates given by MPM based on the
true distributions, ICE-GAUS-MPM, ICE-PEAR-MPM, and
ICE-KOLM-MPM. We also present the results obtained
with an unsupervised hidden Markov-field based algo-
rithm, called ICE-FIELD, in which the parameter-estimation
step is done by ICE and the segmentation step with MPM.
Note that we use the Ising model, which is the simplest one,
and more complex models could produce better results.
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Letter B

Ring Ring+Noise 4

Fig. 3. Segmentations of “Letter B” and “Ring.”

ICE-GAUS-MPM

Image “Clouds”

Note that ICE-KOLM is always more efficient than ICE-
PEAR. This advantage is generally slight, but can also be
pronounced, as in the Letter B+Noise 3 case. On the other
hand, both ICE-KOLM and ICE-PEAR perform better than
ICE-GAUS. In some cases, such as Letter B+Noise 4 and
Ring+Noise 3, ICE-GAUS gives very poor results and the
advantage of the generalized mixture based methods is
quite apparent. Otherwise, these two simple examples
show that we have to be very careful in comparing our
method with the classical methods based on hidden
Markov fields with Gaussian noises. The former clearly
gives better results in the case of Letter B, but the second
takes the upper hand in the case of Ring. As the noise is the
same in both cases, this reveals that the structure of images,
which determines the prior distribution, plays an important
role.

6.3 Real Images

We now present the results of different segmentations of
three real images. Our purpose is two-fold; on the one hand
we show that ICE-KOLM yields better results than ICE-
GAUS, and on the other hand, we compare the efficiency of
ICE-KOLM with that of ICE-FIELD. We do not address the
important problem of estimating the number of classes in
this paper, although we refer to [20] for a procedure, pro-

ICE-GAUS-MPM

gy

RPN

ICE-KOLM-MPM ICE-FIELD-MPM

ICE-KOLM-MPM ICE-FIELD-MPM

ICE-KOLM-MPM

ICE-FIELD-MPM
Fig. 4. Segmentations of clouds (seven classes). ICE-KOLM detects one beta distribution and six normal distributions.

posed using estimating classical mixtures with SEM, that
can be quite useful for fixed images. According to the dif-
ferent visual impressions, we can say that no clear general
tendency appears and the hierarchy of efficiencies of the
methods considered is subject to each particular image.
Concerning the image Clouds, Fig. 4, the efficiency of the
three methods seems comparable. As nearly all distribu-
tions detected by ICE-KOLM are normal, the equivalence
between ICE-KOLM and ICE-GAUS is not surprising. The
fact that the results obtained with both ICE-KOLM and ICE-
GAUS are comparable to results obtained with ICE-FIELD
indicates that they are competitive and should be used in
images of this kind because of their speed. In “San Fran-
cisco” image, Fig. 5, ICE-GAUS gives clearly better results
than ICE-FIELD, which reflects how hidden Markov chains
can be suitable even outside the generalized mixture con-
siderations. This could be due to the fact, as noted in [3],
that the hidden Markov field based methods can encounter
difficulties in detecting very fine details and the hidden
Markov chain based methods seem to be better suited to
such situations. Furthermore, ICE-KOLM-MPM is clearly
more effective than ICE-GAUS-MPM. This is undoubtedly
due to the fact that ICE-KOLM detects beta and gamma
distributions and leads us to two conclusions. First, noise of
different forms associated with different classes can exist in
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Rt

Image “San Francisco” ICE-FIELD-MPM

G :

-

-

-

ICE-GAUS-MPM ICE-KOLM-MPM

Fig. 5. Segmentations of San Francisco (four classes). ICE-KOLM detects one normal, one beta, and two gamma distributions.

Image “Amazonia” ICE-FIELD-MPM

ICE-GAUS-MPM ICE-KOLM-MPM

Fig. 6. Segmentations of Amazonia (four classes). ICE-KOLM detects one normal, one beta, and two gamma distributions.

.
L
'

ICE-GAUS
(Sensor 2)

Sensor 2

ICE-KOLM
(Sensor 2)

ICE-GAUS
(Sensors 1, 2)

ICE-KOLM
(Sensors 1, 2)

Sensor 2 ICE-GAUS ICE-KOLM ICE-GAUS ICE-KOLM
(Sensor 2) (Sensor 2) (Sensors 1, 2) (Sensors 1, 2)

Fig. 7. Unsupervised monosensor and two-sensor MPM segmentation.

a same image. Second, their detection with ICE-KOLM can
improve the final unsupervised MPM segmentation results.

Comparison of computer times is not very reliable be-
cause our computer programs are not optimized and,
what is more, the time used by every method is subject to
different numbers of iterations subjectively chosen.
Working with Ultra Spark, Enterprise 2 and in the case of

“San Francisco,” which is of 256 x 256 size, the respective
times for ICE-GAUS-MPM, ICE-FIELD-MPM, and ICE-
KOLM-MPM are about one minute, 15 minutes, and 50

minutes. This shows that ICE-GAUS-MPM is very inter-
esting with respect to ICE-FIELD-MPM and that ICE-
KOLM-MPM is rather time expensive. However, in con-
trast to ICE-GAUS-MPM and ICE-FIELD-MPM, the time
of ICE-KOLM-MPM could undoubtedly be reduced. In

particular, we use the whole subsets §*, which maybe is a
little superfluous and the use, at each iteration, of subsets
of §' could speed up the whole procedure significantly.
In the case of the “Amazonia” image, Fig. 6, the result
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TABLE 3
FAMILIES ESTIMATED BY ICE-KOLM AND ICE-PEAR
Letter B
Noise 3 Noise 4
Class 1 Class 2 TvPM Class 1 Class 2 TvPm
Real Distributions Gamma Gamma 8.25% Beta Normal 2.90 %
ICE-GAUS Normal Normal 15.84 % Normal Normal 26.30 %
ICE-PEAR Beta Normal 11.70 % Beta Normal 2.90 %
ICE-KOLM Beta Gamma 5.35% Beta Normal 2.53%
ICE-FIELD Normal Normal 10.66 % Normal Normal 15.24 %

Error rates given by the real distributions-based MPM, ICE-GAUS-MPM, ICE-PEAR-MPM, and ICE-KOLM-MPM in the case of the “letter B.”

TABLE 4
FAMILIES ESTIMATED BY ICE-KOLM AND ICE-PEAR
Ring
Noise 3 Noise 4

Class 1 Class 2 TvPm Class 1 Class 2 TvPm

Real Distributions Gamma Gamma 13.08 % Beta Normal 4.80 %
ICE-GAUS Normal Normal 30.75 % Normal Normal 6.10 %
ICE-PEAR Beta Normal 19.91 % Beta Normal 5.04%
ICE-KOLM Gamma Gamma 17.90 % Beta Normal 5.00 %
ICE-FIELD Normal Normal 10.90 % Normal Normal 3.40 %

Error rates given by the real distributions-based MPM, ICE-GAUS-MPM, ICE-PEAR-MPM, and ICE-KOLM-MPM in the case of the “Ring.”

TABLE 5
DENSITY RECOGNITION WITH ICE-KOLM
Letter B Sensors

Sensor 1 Sensor 2 1,2

Class 1 Class 2 TlMpM Class 1 Class 2 rZMPM rlepM

Real Distributions Gamma Gamma 8.25 % Normal Gamma 1.20 % 0.89 %
ICE-GAUS Normal Normal 15.90 % Normal Normal 2.30 % 3.70 %
ICE-KOLM Gamma Gamma 11.70 % Normal Gamma 2.10 % 1.70 %

Ring

Real Distributions Gamma Gamma 13.08 % Normal Gamma 3.77% 3.97 %
ICE-GAUS Normal Normal 30.75 % Normal Normal 4.73 % 4.28 %
ICE-KOLM Gamma Gamma 17.90 % Normal Gamma 3.57 % 3.90 %

Real distribution-based segmentations, ICE-GAUS-based unsupervised segmentations, and ICE-KOLM-based unsupervised segmentations.

obtained with ICE-FIELD-MPM seems visually better than
that obtained with ICE-GAUS-MPM, which suggests that
the Markov field model is more appropriate than the
Markov chain model. Otherwise, ICE-KOLM detects three
different forms of noise distributions, which actually
makes ICE-KOLM-MPM more effective than ICE-GAUS-
MPM and shows again the advantage of generalized
mixture estimation. The comparison between ICE-FIELD-
MPM and ICE-KOLM-MPM is difficult; the latter seems to
restore fine details better, but it is difficult to see in the
real image whether such details exist.

6.4 Synthetic Multisensor Images Segmentation

Multisensor ICE-GAUS, ICE-KOLM based segmentations
of noisy Letter B and the Ring are presented in Table 5.
These results allow conclusions analogous to those in Sec-
tion 5. ICE-KOLM recognizes the correct families, and the
efficiency of the corresponding unsupervised segmentation

is close to that of the method based on the true parameters.
Visual results of segmentations are presented in Fig. 7.

6.5 Real Multisensor Image Segmentation

We consider in this section unsupervised segmentation of a
real multisensor radar image of the area surrounding the
town of Sunbury, Pennsylvania. The colors in the image are
assigned to different frequencies and polarizations of the SIR-
C radar. We only consider two sensors which seem comple-
mentary by their different visual aspects, as presented in
Fig. 8. We present the results of two-sensor ICE-GAUS and
ICE-KOLM based MPM segmentations in 2, 3, and 4 classes
in Fig. 9. Rational comparison of the results is difficult in
the absence of clear knowledge of the ground truth. How-
ever, note that the nature of the components varies with the
class, and the ICE-KOLM based MPM segmentation seems
richer.
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Sensor 1

Sensor 2

Fig. 8. Sensor 1: Blue color horizontally transmitted, vertically received. Sensor 2: Red color horizontally transmitted, vertically received.

Two classes

Three classes

Four classes

Two-sensor ICE-GAUS-based MPM segmentations.

‘

Two classes

Four classes

Two-sensor ICE-KOLM-based MPM segmentations.

Fig. 9. Two-sensor ICE-GAUS- and ICE-KOLM-based MPM segmentations. Components detected by ICE-KOLM are following. Two classes:
Sensor 1 (Gamma, Normal), Sensor 2 (Beta, Beta). Three classes: Sensor 1 (Gamma, Gamma, Normal), Sensor 2 (Gamma, Normal, Beta). Four
classes: Sensor 1 (Gamma, Normal, Normal, Normal), Sensor 2 (Gamma, Beta, Beta, Normal).

7 DIsSCuUSSION

We addressed in this work the problem of estimating gen-
eralized multisensor mixtures with applications to gener-
alized multisensor hidden Markov chains and, more spe-
cifically, to unsupervised statistical image segmentation
problems. The contribution of this paper rests, with respect
to earlier works [1], [6], [26], on three points:

1) A more general family, based on Iterative Conditional
Estimation (ICE), of generalized mixture estimation
methods is proposed. In particular, this family is valid
in the i.i.d. case, hidden Markov fields, hidden
Markov chains, and any family ¥ = {F,, ..., Fp}, pro-
vided each F; is parametrized and can be estimated
separately.

2) The effectiveness of a particular method based on ICE
and Kolmogorov distance in the frame of generalized
multisensor hidden Markov chains is shown using
simulations.

3) Applications to unsupervised image segmentation
generalize results obtained in the Gaussian monosen-
sor case [1].

Concerning the results obtained using generalized hid-
den Markov chains, we may state, as a general conclusion,
that component recognition and parameter estimation are
quite efficient. However in the multisensor case further in-
vestigations would be desirable in order to choose judi-
ciously which sensors among those available should be used.

Concerning the unsupervised image segmentation, the
results presented allow us to put forth two conclusions.
First, the form of the noise can indeed change with the class
in real images, which renders the proposed techniques
more effective than classical methods which assume the
same form of noise for all classes. Second, little can be said
about the relative value of the proposed method and classi-
cal hidden Markov field based approaches in the general
case, but when inhomogeneous zones, like urban areas, are
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present in the image the Markov chain based methods can
be more appropriate than the Markov field ones.

We close with directions for future work. As concerns
the proposed general method, it would be desirable to in-
troduce nonparametric components and study how they
are detected and estimated with ICE-GEMI. Another direc-
tion is the unsupervised generalized segmentation of se-
guences of multisensor images, or even 3D multisensor im-
ages. The flexibility of the proposed model renders it well
suited to such tasks: it suffices to define a Hilbert-Peano
scan in a three-dimensional set of pixels. Preliminary re-
sults of spatio-temporal segmentation of mono-sensor
Gaussian images, presented in [1], are encouraging, al-
though the important problem of estimating the number of
classes remains. Devising a reliable method for estimating
the number of classes remains of definite interest.
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