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Estimation of Fuzzy Gaussian Mixture and
Unsupervised Statistical Image Segmentation

Hélène Caillol, Wojciech Pieczynski, and Alain Hillion,Associate Member, IEEE

Abstract—This paper addresses the estimation of fuzzy Gauss-
ian distribution mixture with applications to unsupervised sta-
tistical fuzzy image segmentation. In a general way, the fuzzy
approach enriches the current statistical models by adding a
fuzzy class, which has several interpretations in signal pro-
cessing. One such interpretation in image segmentation is the
simultaneous appearance of several thematic classes on the same
site. We introduce a new procedure for estimating of fuzzy
mixtures, which is an adaptation of the iterative conditional
estimation (ICE) algorithm to the fuzzy framework. We first
describe the blind estimation, i.e., without taking into account
any spatial information, valid in any context of independent
noisy observations. Then we introduce, in a manner analogous
to classical hard segmentation, the spatial information by two
different approaches: contextual segmentation and adaptive blind
segmentation. In the first case, the spatial information is taken
into account at the segmentation step level, and in the second case
it is taken into account at the parameter estimation step level.
The results obtained with the iterative conditional estimation
algorithm are compared to those obtained with expectation-
maximization (EM) and the stochastic EM (SEM) algorithms, on
both parameter estimation and unsupervised segmentation levels,
via simulations. The methods proposed appear as complementary
to the fuzzy C-means algorithms.

I. INTRODUCTION

T HE statistical approach to the image segmentation prob-
lem requires modeling two random fields. For

the set of pixels, is the unobservable
random field whose realizations are the true nature of the
observed scene, and is the observed random
field, which is seen as a corrupted version ofand corresponds
to the intensity of the observation. The random variables
take their values in a set of thematic classes denoted. This
field is usually assumed discrete. As the classes are numbered
from 1 to , we will denote . In the
case of satellite data, models the true nature of the ground
in such a way that the classes are, for instance,
water, forest, urban area, and so forth. A more general way to
consider this problem is the fuzzy approach. From this point
of view, each pixel is associated with an-dimensional
vector . Roughly speaking, the grade of
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membership of the th pixel to the th class, denoted , is
the proportion of area belonging to class . In [23], Pedrycz
wrote a survey on the use of fuzzy representation in pattern
recognition with a sizeable bibliography.

When considering the probabilistic framework of interest
here, random variables become random vectors.
Thus, for each pixel , . For the sake of
simplicity, we confine our study to the case 2 and put

. In the example of satellite data to be
treated subsequently, the fuzzy statistical model allows one to
take account of pixels in which, for instance, water and forest
are simultaneously present. To be more precise, let the class
“water” be associated with the numerical value 0 and the class
“forest” with the value 1. Since a classical model may assume
that , the fuzzy model assumes that two different
cases are possible for each pixel, as follows.

• If belongs to either of both hard classes, then 0 if
belongs to class “water” or 1 if belongs to class

“forest.” This kind of pixel will be called apure pixel.
• If the both hard classes are present in the pixel, then

, where is a real value in ]0, 1[ which represents
the degree of membership ofto the class “forest.” Thus,
1 is the degree of membership of to the class
“water.” In this case, the pixel will be called amixed
pixel.

According to the model proposed in [4], these cases are
expressed by two types of components in the distribution of

: a hard component modeled by two Dirac weights in 0 and
1, and a fuzzy component defined by a density with respect to
the Lebesgue measure. Thus, the hard component corresponds
to the pure pixels and the fuzzy component corresponds to
the mixed pixels. Such a “blind” model, i.e., only using
the marginal distributions of the both random fields, can be
successfully used to perform the blind unsupervised segmen-
tation. “Blind” means that no spatial information is taken into
account, and “unsupervised” means that all parameters needed
are estimated from the noisy data.

The present paper extends the work presented in [4] in three
directions:

1) we generalize the blind unsupervised statistical fuzzy
segmentation to a contextual setting;

2) we adapt iterative conditional estimation (ICE) [3],
[25], a recent general method of estimation in the
case of hidden data, to the model proposed and show
that in some situations the analogous adaptations of
expectation-maximization (EM) [10], [27] and stochastic
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EM (SEM) [6], {22], are inefficient and ICE has to be
used;

3) we propose adaptive unsupervised segmentation, which
is extremely efficient in some situations [24], to our
fuzzy model.

Different methods are compared via simulation study and
unsupervised fuzzy segmentations of real images are pre-
sented. Let us note that the originality of the model we
use lies in the inclusion of Dirac weights, which allows the
simultaneous existence of pure and mixed pixels. Indeed,
different stochastic or deterministic image models using fuzzy
membership previously proposed involve only the presence of
the mixed pixels. This is not necessarily a serious drawback;
in fact, hard pixels can be produced by some “hardening”
procedure. However, the conceptual originality of our model
implies the complementarity, with respect to the existing
methods, of the methods involved.

Our works deal with local segmentation methods and it
is well known in the hard framework that global methods,
i.e., methods based on hidden Markov models, can be much
more efficient. However, we believe that the study of local
fuzzy segmentation methods is of interest for two reasons.
First, local hard methods can be competitive with respect
to global hard ones in several particular situations [3] and,
thus, the same is true for fuzzy methods, at least when there
are few fuzzy pixels. Second, local fuzzy methods present
the following advantage with respect to the corresponding
global fuzzy methods recently proposed [26], [28]: The hard
local model is really a particular case of the fuzzy one in
the sense that it corresponds to a particular value of some
parameter. This is not the case in the global framework: A hard
hidden Markov field can only be obtained from a fuzzy hidden
Markov field when some parameter tends to infinity. Thus,
when the real class image is hard, one can use the fuzzy local
model because the parameter estimation step should make it
hard automatically and such automated adaptation of the fuzzy
model to the hard reality is undoubtedly more problematic in
the global case.

The paper is organized as follows. Section II explains the
principle of the ICE procedure and its implementation in blind,
contextual, and adaptive cases. Section III presents numerical
comparisons between ICE and the SEM and EM algorithms.
Section IV is devoted to unsupervised fuzzy segmentation
based on the preceding estimations. The final section contains
conclusions and future prospects.

II. THE ICE ALGORITHM

A. Principle of the ICE Algorithm

In a general manner, let us consider a pair of random
variables whose distribution depends on a parameter
. The problem is to estimate from . The idea behind

the ICE procedure is the following: The complexity of the
estimation problem is due to the absence of an observation of

. If were observable, one could generally use some efficient
parameter estimation procedure. Indeed, if the estimation of

from ( ) is impossible there is no sense in estimating

it from the data alone. So let us suppose temporarily
that is observable and let us consider an estimator

, defined from , of the parameter . In a
general manner, if we want to approximate a random variable

by some function of a random variable , the best
approximation, when the squared error is concerned, is the
conditional expectation. To be more precise, if we denote the
conditional expectation by , we have

(1)

Considering the problem of constructing using alone,
one can thus consider . The problem is that

depends, in a general case, on, and is then
no longer an estimator.

Thus, let us denote the conditional expectation
based on . It is then possible to define an iterative procedure,
ICE [3], [25], using an initial value of and putting

(2)

When is not computable but samplings of
according to the distribution conditional on are

possible, one can use a stochastic approximation. In fact, the
conditional expectation at the point is the expectation
according to the distribution of conditional on . Thus,
it can be approached, by virtue of the law of large numbers,
by the empirical mean. After having sampled realizations

of according to its distribution conditioned on
, we can put

(3)

Thus ICE appears as an alternative to the EM algorithm.
Unfortunately, the theoretical study of the ICE seems difficult
and no relevant results can be proposed at present. This could
be due to the fact that the sequence produced by ICE depends
on the parameterization, which means that for a given problem
ICE gives a family of different methods. In order to illustrate
this fact, let us shortly discuss the differences between the
two methods in the case of a simple mixture of Gaussian
distributions and . The parameter to be
estimated is , where and are priors.

The sample considered is denoted by . For
let us put ,

, and , the
based distributions

. The EM reestimation formulas are

(4)

(5)

If were observable, could be estimated by
and by . According to the

ICE principle, we have to take the conditional expectation
of these two estimators. In the case of , one obtains
(4), i.e., the same formula as in the EM case. Taking the
conditional expectation of is not feasible
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and one has to resort to the stochastic approximation. Now,
let us consider the changing of parameter , with

. It is possible to
show that if is the sequence produced by the
EM using , then is the
sequence produced by the EM using . This is not true
in the ICE case: taking , and
ICE produces the same sequence as EM. In other words,
EM does not depend on the parameter used, while ICE does.
Delmas has shown in a recent paper [9] that this holds true in
the general exponential structure.

B. Implementation of ICE in a Fuzzy Context

Two tools are thus necessary to implement the algorithm
exposed above: an estimatorfrom the complete data, ,
and the means to calculate . If the latter calculation is
not feasible, it is sufficient to dispose of a method of sampling
realizations of according to its distribution conditional on.
In the following subsections, we present the ICE algorithm in
blind, contextual, and adaptive cases.

1) Fuzzy Blind ICE Algorithm:Before explaining how the
blind ICE algorithm runs, let us focus on the statistical
modeling of the involved random variables.

As stated in the introduction, for each pixelthe random
variable takes its values in [0, 1] and contains two types of
components: two hard components and a fuzzy one. Let
be Dirac weights on 0 and 1 andthe Lebesgue measure on

. By taking as a measure on [0, 1], thea
priori distribution of each can be defined by a densityon
[0, 1], with respect to . If we assume that
is a stationary process and that the distribution of eachis
uniform on the fuzzy class, this density can be written

for (6)

In order to define the distribution of conditional on ,
let us consider two independent Gaussian random variables

and , associated with the two “hard” values 0 and 1,
whose densities and are, respectively, characterized by

and . We will assume

(7)

which means that models the noise of the class ,
models the noise of the class 1, and, for ,

models the noise of the fuzzy
class . This is relevant with the view according to which
fuzzy class contains, in proportion, of class 1 and
of class 0. Finally, the density defining the distribution of

conditional to is a Gaussian density
characterized by the mean and
the variance .

Finally, for the case considered, the parameters required to
be estimated are

(8)

Fig. 1. Density of the distribution of�V = (�s; �t) with respect to� 
 �.

Fig. 2. Example of an image in which�0� 6= ��0:

Returning to the ICE procedure, let us consider a subsample
in of sites. First, we have to propose an estimatorof
from complete data and . We choose
the empirical frequencies as estimators of the prior parameters
and empirical moments as estimators of the noise parameters.
To be more precise

Card

Card
for (9)

with , , which defines .
According to the ICE principle, the updated values of the

parameters are obtained by taking the expectation conditional
to based on the current
values of . This gives

for (10)

where is the density with respect to of the
distribution of conditional on and based on the
current value , as follows:

for (11)

which are obtained, in practice, by numerical integration. Thus
and in (10) are the hard components of the

distribution of conditional on .
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Fig. 3. Images 1 through 10.

Concerning the parameters of the Gaussian densities, the
direct computation of conditional expectations of empirical
means and variances is not feasible. Thus, we have recourse
to a stochastic approximation, in accordance with the law of
large numbers. Indeed, simulations ofrealizations according
to its posterior distribution are workable.

Finally the fuzzy blind ICE algorithm runs as follows.

• Give an initial value of the parameter
.

• At each step , is obtained from and the data
by

reestimation of the priors: use (10);
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Fig. 4. Images 11 through 19.

reestimations of the noise parameters:

a) For each of the sampler , compute
thea posterioriprobabilities and
and sample a value in the set according to

, , and
( representing the fuzzy pixels). Let
denote the realizations so obtained.

b) Let , ;
reestimate the noise parameters by

Card

Card
for (12)

Let us note that according to the stochastic approximation
of ICE, several samplings should be made and the next values
of noise parameters would be given by means of different
values obtained in the way described above. Simulation studies
show that one can use, in general, just one sampling without
significant alteration of the efficiency of the method. However,
the possibility of regulating the stochastic aspect of the ICE
by changing [see (4)] can have great importance in some
particular situations (see Section III-B2).

Remark 1: The fuzzy component of the prior distribution
is assumed to be uniform and this assumption could turn
out to be strong in some real situations. A generalization is
possible; in fact, the uniform distribution can be superseded
by a parametric family of distributions in such a way
that for any

. It is just necessary to propose an estimator
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of . If is not workable, one will have to
resort to simulations.

2) Fuzzy Contextual ICE Algorithm:This section focuses
on contextual estimation, which consists of working with
spatial information by considering a sequence of contexts

. In the following, these contexts are site pairs
instead of single sites in the blind case exposed above. Thus,
each pair of sites will be represented by two pairs of random
variables, the unobservable couple and the
observation couple . As in the blind case we
must first define the distribution of , which will be
given by the distribution of and the distributions
of conditional to .

The distribution of can be defined by
a density on with respect to the measure .
This density includes three types of components: four
“hard” components corresponding to the case in which the
two pixels and are “pure,” four “combined” components
corresponding to the case in which one of the pixels is “pure”
and the other one is “mixed,” and the last fuzzy component
corresponding to the case where both pixelsand are
“mixed.” We will suppose in the following that is constant
on each component, as expressed in Fig. 1.

More precisely, the four “hard” components of can be
expressed by for

, the four combined components of become
, , and,

finally, for .
Thus the density function is defined by seven pa-

rameters, namely . These
parameters are bounded by the normalization constraint

, which gives
. Let us note that and

are not necessarily equal: If the pixelsand are on the
same line, then in the case of the example given by the Fig. 2
we have and .

As in the blind case exposed in the preceding subsection, let
us define the distributions of the pair conditionally
to . As above, we assume that these distributions are
normal. In the following, denotes the normal
density of conditional on . In
an analogous way as in the blind case, let us introduce
four Gaussian random variables, , , , and ,
and let us assume that the distributions of the four Gauss-
ian vectors , , , and
are the distributions of conditional to

, respectively. We will assume that
the distribution of conditional on
is defined by

(13)

Let us denote by and the four

mean vectors and covariance matrices defining the Gaussian
densities (for and ). The
Gaussian density of the distribution of
conditional on is then defined by the mean
vector and the covariance matrix

with

(14)

Finally, all distributions of conditional to
are defined by the seven parameters, , , , , ,
and .

The distribution of on admits
the following density with respect to the measure
(where , and is the Lebesgue measure)

(15)

This distribution involves the distributions of condi-
tional to , which will be needed in the ICE procedure,
and whose densities with respect to are

(16)

Thus, the distributions of conditional to , which
will be needed in the segmentation step, are given by the
densities

(17)

with respect to .
Let us notice that the integration with respect tocontains

sums and Lebesgue integrals. For instance, the calculation
of , which is the
density of the distribution of , is as follows:

Returning to the ICE algorithm, let us consider a sequence of
contexts of two neighbors. We denote by

the restriction of to and by
the restriction of to .

The parameter is initialized with

(18)

and the problem is to calculate from and
.
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The empirical frequency estimators of thea priori param-
eters used are

for (19)

Thus, the reestimation formulae obtained by computing the
expectation of the above estimators conditional to the obser-
vations are written

for (20)

where is -based defined with (16), and

for and

(21)
where is -based defined with (17).

Concerning the parameters of the Gaussian densities, as in
the blind case, we have recourse to simulations according to
the distribution of conditional to

, which are given by (16), based on the current
parameter . In doing so, we obtain , values
in . We then define a partition of the sample

into nine subsamples by putting
. The parameters are then estimated by

empirical means, standard deviations, and correlations from
these subsamples.

To be more precise,

Card
(22)

Card

(23)

Finally, (20)–(23) define the next value of the parameters

3) Fuzzy Adaptive ICE Algorithm:In this section, we will
take up the blind segmentation point of view. The blind
segmentation proceeds “pixel by pixel” and does not exploit
any spatial information. However, in the adaptive unsuper-
vised framework, the spatial information is taken into account
through the estimation step. In fact, priors are assumed to
depend on pixels, and are estimated from the observations on
windows centered on each pixel. In the model we adopt, the
noise parameters do not vary with pixels. This approach stays
valid in the case of the nonstationary class field. Moreover,
it can strongly improve the unsupervised blind segmentation
results even in the stationary case, especially when the class
field is homogeneous [24]. Thus, the model here is exactly
the same as in Section II-B1, with the difference that the
parameters defining priors depend on. The other difference

is that the subsample used has to be the whole
image, i.e., Card . In fact, priors for each pixel are
required. The parameters needed are

(24)

The execution of ICE is modified in that that (10) is replaced
by

Card
(25)

where is a window centered on.
Remark 2: The choice of the reestimation window size

can play an important role in the adaptive framework. Small
window sizes yield better local characteristics, but on the other
hand, the estimation is less reliable. We have experimentally
determined that the optimal size of the reestimation window,
as concerns the error rate used, is around 77 pixels.

III. N UMERICAL COMPARISONSBETWEENICE, EM, AND SEM

This section is devoted to numerical applications and in
particular, to the comparisons between results using ICE, EM,
and SEM. First, we specify how the EM and SEM procedures
are adapted to the model considered. Then the three algorithms
are applied on simulated fuzzy data.

A. The EM and SEM Principles Compared to ICE

The EM algorithm is a classical procedure [10] and [27],
which consists in the maximization, with respect to the pa-
rameter , of the likelihood of the observations. Starting from
an initial value , it generates a deterministic sequence of
values . As explained in Section II-A, the priors reestimation
formulae with EM and ICE are the same in the hard case. Thus,
we will keep in the “fuzzy” EM the same priors reestimation
formulae as that in fuzzy ICE above.

Concerning the noise parameters reestimation, we propose
the following adaptations of the hard EM to the fuzzy context:

Blind Case:

(26)

(27)

Contextual Case:

(28)
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Fig. 5. Real SPOT image.

(29)

The SEM algorithm [6] is a stochastic version of the EM
algorithm. The principle of the SEM is as follows: at each
step, one draws exactly one sample according to the posterior
distribution, in the same way as in the ICE case when
estimating the noise parameters. The difference with ICE is
that the sample so obtained is also used in order to reestimate
priors. This algorithm has already been applied in [4] in a fuzzy
framework and, in a hard framework, it has given efficient
results [22].

Adaptive versions of EM and SEM are obtained from EM
and SEM in the same way that adaptive version of ICE is
obtained from ICE.

Remark 3: We have seen in Section II-B1, Remark 1, that
ICE can be used when the fuzzy component of priors is not
uniform. In fact, it is always possible, using discretization if
necessary, to simulate realizations ofaccording to (11). Thus,
SEM also can be used in such situations. The adaptation of
EM seems much more difficult.

B. Numerical Results

The three algorithms have been applied on a simulated fuzzy
image corrupted with different Gaussian noises. The procedure
used to sample the fuzzy data proceeds in two steps:

1) considering the fuzzy class as a third hard class, sample
a classical three-class Markov field using the Gibbs
sampler;

Fig. 6. True ground of the image in Fig. 5.

Fig. 7. Fuzzy statistical segmentation of the image in Fig. 5.

2) at each pixel in the fuzzy class sample a value in .

Thus, the first step gives a three-class image, each pixel
being in . The second step is initialized putting 0.5
in each pixel labeled . Then we scan the set of pixels “line
by line.” If the current pixel if hard, nothing is done. If it is
fuzzy, we look at the sum of the four neighboring pixels,
which is in [0, 4] (0 if they are all hard and 0, 4 if they are
all hard and 1). The fuzzy value is then updated sampling in

according to the density ,
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Fig. 8. FuzzyC-means segmentation of the image in Fig. 5.

Fig. 9. Hard statistical segmentation of the image in Fig. 5 (two classes).

where is fixed and is calculated from and to
ensure . The idea behind this way of sampling
is the following: if 0 is dominant in the neighborhood, i.e.,

2, gives greater probability to the values near 0, and,
if 1 is dominant in the neighborhood, i.e., 2, gives
greater probability to the values near 1. The aim of such a
procedure is to ensure a visually good gradation when passing
from one hard class to another. In the example below we use

Fig. 10. Hard statistical segmentation of the image in Fig. 5 (four classes).

2.5 for step 2). The three-class Markov field used in step
1) is Markovian with respect to the four nearest neighbors,
thus its distribution is defined by functions on the cliques

. The simulated image (Image 1) has been obtained with
if , and if .

Image 1 is of size 128 128.
The reference fuzzy image obtained by the simulation

procedure above is then corrupted with different Gaussian
noises. We distinguish white (W) noises and correlated (C)
ones. Each of them can bemeans discriminating(MD), i.e.,

and , variances discriminating(VD),
i.e., and , or both means and variances
discriminating (MVD), i.e., and . For
instance, WMD denotes white means discriminating noise,
CMVD correlated, means and variances discriminating noise,
and so on.

Let be independent Gaussian random variables
with zero mean and unit variance. Images corrupted with white
noises are obtained with

(30)

In order to obtain the images corrupted with correlated noises
we first use the mobile average: for independent
Gaussian random variables with zero mean and unit variance,
let

Card
(31)

Thus, are correlated Gaussian random variables with
zero mean and unit variance. Corrupted images are then
obtained by (30) with instead of . In the
experiments below we have taken Card .
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TABLE I
ESTIMATES OF BLIND MIXTURE. 1 : m0, 2 : m1, 3 : �

2

0
, 4 : �

2

1
, 5 : �0, AND 6 : �1

The experiments have been organized as follows.

• For the blind and the adaptive estimation procedures, start
from an initialization arbitrarily chosen sufficiently apart
from the true values in order to test the dependence on
the initialization; stop the procedure when the estimated
values stabilize, if they stabilize.

• For the contextual estimation procedure, start from the
empirical estimates based on the blind unsupervised seg-
mentation.

1) Blind Estimation: Simulations show that in general the
EM procedure stabilizes more slowly than the ICE and SEM
procedures. This confirms the fact that the EM procedure
is more sensitive to initialization. However, we should note
that the ICE and the SEM procedures, due to their stochastic
properties, fluctuate around their convergence values when the

EM procedure converges regularly. The noise parameters are
correctly estimated, in most situations, by the three procedures,
even though they are sensitive to the correlation of the noise,
which was also shown in the hard framework [24]. In this
case, the EM procedure seems less sensitive to this correlation.
The most important result is that the EM procedure poorly
estimates thea priori parameters and, in particular, does
not recover the fuzzy class. Some results illustrating these
conclusions are presented in Table I, and several others can
be seen in [5].

In blind cases (classical and adaptive) the initialization of
the parameters is as follows: One considers the empirical mean

and the empirical variance of the sample
used. The noise parameters are initialized with

, , , and ,
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TABLE II
ESTIMATES OF CONTEXTUAL MIXTURE: 1 : m0, 2 : �

2

0
, 3 : �0, 4 : �01, 5 : �00, 6 : �01, AND 7 : �0F

being a value small relative to. The starting priors are
equal: .

2) Contextual Estimation:The prominent remark is that in
all correlated situations the SEM and EM procedures do not
converge, due to a poor estimation of the prior probabilities,
even if the starting prior values are close to the real values.
In this case, the ICE algorithm can be stabilized after few
iterations of the procedure. Furthermore, the estimation of the
noise parameters (particularly correlation) can be improved
by increasing the number of the samplers according to the
posterior distribution [see (3)]. Finally, the ICE procedure is
clearly more reliable than the EM and the SEM ones in the
contextual estimation case.

In contextual estimation, the starting values of the parame-
ters are deduced from a blind segmentation.

3) Adaptive Estimation:In this section, we can only com-
pare the estimation of the noise parameters to the true values.
There is no significant differences between these results and

the blind case, except in the case of variances and means dis-
criminating noise, which seems to perturb the three procedures,
and especially the EM.

IV. FUZZY STATISTICAL UNSUPERVISEDSEGMENTATION

A. Segmentation Rule

There are two main approaches for statistical image seg-
mentation: the global approach [1], [3], [7], [11], [12], [14],
[17], [18], [20], [21], [25], [26], [28], [29], [31], and the local
one [3], [4], [22], and [24]. A global method takes into account
the values of in the entire image. For instance, the MPM
algorithm [21] estimates the value of each, being in the
set of pixels , by the class whose probability conditional
to is maximal. Another global algorithm, the MAP
[14] algorithm, estimates the value of by
whose probability conditional to is maximal. Both
are Bayesian with two different loss functions. Let us recall
that in the local framework, the expected value of eachis
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TABLE III
ADAPTIVE ESTIMATES: 1 : m0, 2 : m1, 3 : �

2

0
, AND 4 : �

2

1

estimated from the observed values of restricted to a
neighborhood of . A blind method is a local noncontextual
method, i.e., .

However, when considering the MPM method, the contex-
tual method, or the blind method, the segmentation step is
the same. In fact, these three methods define three different
posterior distributions of each , which are obtained with
the conditioning by , , and ,
respectively, but, once this distribution known, the problem of
attributing of a class to is the same in the three cases. In this
paper, we will restrict ourselves to one possible segmentation
method, namely themaximum posterior likelihoodmethod.
This has been successfully compared in [4] to three other
methods, and we conjecture that it remains of interest in
contextual and adaptive cases. Nevertheless, the other methods
presented in [4] can be used.

In the blind case the “maximum posterior likelihood”
method is as follows: Let us consider given by
(11). Putting , the decision
rule is

(i) let . If put
. If ;

(ii)

Thus, the rule is following: First decide, maximizing the
posterior probability, if the pixel is 0, 1, or “fuzzy.” If it is 0

or 1, stop. If it is “fuzzy” determine its exact value maximizing
the restriction of to .

In the contextual case the rule is the same with
replaced by [see (17)]. In the adaptive case it is
still the same with the difference that also depends
on through priors.

Finally, an unsupervised segmentation method is obtained
by adding to the segmentation rule above one of the parameter
estimation methods of the previous sections.

Let us briefly discuss the relation of such methods to the
fuzzy -means methods. The fuzzy-means algorithm was
first proposed by Dunn [13] for the case 2 [see (32)],
as an extension of hard classification ( 1) called Isodata.
The general form of the fuzzy -means algorithm, i.e., for any

greater then one, was proposed by Bezdek [2] and studied
by Hunstberger, Jacobs, and Canno [16], among others. In the
latter methods the fuzzy partition is obtained by maximizing
a given objective function . Recalling that a fuzzy partition
is , with (cf., Introduction),
is written

(32)

where is a weighting exponent and are the center
values of the classes. The weighting exponent controls the
magnitude of the fuzzy aspect of the image: The greater its
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magnitude, the more fuzzy will be the segmented image. If
1, this reduces to a classical hard segmentation.

The fuzzy -means algorithm runs as follows:

1) initialize the matrix with ;
2) update with

where

(33)

3) calculate

(34)

4) repeat the Steps 2) and 3) until , with
a fixed threshold.

The procedure converges to at which the objective
function has a local maximum.

We can see that the statistical method we propose and the
fuzzy -means method are very different in their principles,
and undoubtedly their behavior can be quite distinct in differ-
ent situations. In particular, the fuzzy-means method does
not use any probabilistic model and the noise is not explicitly
modeled.

C. Segmentation Results

The resulting segmented image is compared with the simu-
lated reference image by computing the following error rate:

Card
(35)

The results presented in Table IV show that segmentation
based on the ICE estimates gives the best results, particularly
in the adaptive framework. In the blind case, the EM procedure
leads the highest error rates, but the difference is not as appre-
ciable as one would expect, considering the poor estimation
of the prior parameters. The adaptive segmentation always
improves the blind segmentation, the improvement being less
noticeable in the case of correlated noise. This fact was also
pointed out in a hard framework in [24]. The contribution of
the contextual segmentation is significant in some situations
(noise WMD and noise WVMD), but in many cases, princi-
pally all correlated noises, contextual segmentation offers little
improvement over blind segmentation. The same conclusion is
presented in [24] in a hard case, in such a way that we may
conclude that fuzzy segmentation has the same properties as
hard segmentation.

According to the results of Table IV, the great efficiency
of adaptive segmentations (AS) is the prominent conclusion.
They are clearly better that the blind segmentations (BS),

TABLE IV
RATE OF WRONGLY CLASSIFIED PIXELS. WMD, CMD, WVD, CVD, WVMD,

AND CVMD: DIFFERENT NOISES WITH SAME PARAMETERS AS IN BS: BLIND

SEGMENTATION, AS: ADAPTIVE SEGMENTATION, CS: CONTEXTUAL

SEGMENTATION, DIV: THE ESTIMATION PROCEDUREDOES NOT STABILIZE

consistent with ones intuition. What is more striking, they are
also more efficient than contextual segmentations (CS). This
would be expected if the image were nonstationary, i.e., if its
visual aspect were different according to the place in pixels set.
This is clearly not the case in examples we have chosen. The
CS would perhaps be better if more than one pixel were used;
to do so, however, would be rather tedious in the fuzzy model
we consider. When considering the three ICE, EM, SEM-based
AS, the first is slightly more efficient than the other two. In
fact, calculating for each of them the mean of six error rates
corresponding to different noises, we find 0.248 for ICE-based
AS, and 0.265, 0.268 for EM and SEM, respectively.

The general conclusion is that the adaptive ICE-based
segmentation should be used in the framework considered.

D. Segmented Images

We present in Figs. 3 and 4 some of the more revealing
segmented synthetic images. For each type of noise the best
segmented image, with respect to the error rate, and the worst
segmented image have been selected. For each image, the
procedure of estimation (ICE, EM, or SEM) and the type
of segmentation method (BS for blind segmentation, AS for
adaptive segmentation, and CS for contextual segmentation)
are specified.

We observe that the nature of the noise has a noticeable
effect on the visual aspect of the noisy images. On the
other hand, the difference between the best and the worst
segmentation is always visible, and, in some cases, quite
significant. The general impression is that EM often makes
images lose their homogeneity on the one hand, and their
fuzzy aspect on the other.

Other results of similar studies can be seen in [5].
We present finally in Figs. 5–10 examples of unsupervised

fuzzy and hard segmentations of a satellite image (SPOT).
The parameters have been estimated by the ICE algorithm
and the segmentation method is the blind posterior maximum
likelihood.

The real image represents an agricultural area which may
be considered as containing two classes: cultivated area and
uncultivated area. The first class contains different kinds of
cultures and the second class contains mainly water. According
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to the model we propose the fuzzy pixels simultaneously
contain cultivated land and water, i.e., cultures on a very damp
ground, marsh, etc.

The classical two-class segmentation (see Fig. 9) allows
one to distinguish the two hard classes, although a great
deal of information is lost. In particular, different plots of
the ground in the “cultivated” class cannot be distinguished.
Furthermore, different “borders” visible in both real and “true
ground” images (see Fig. 6), such as rivers or roads, are
lost, even when increasing the number of hard classes (see
Fig. 10). These borders are preserved by both-means (23)
and statistical (see Fig. 7) fuzzy segmentations and one can
observe that the statistical segmentation is more efficient for
this particular problem (see lower left part of the image).
Furthermore, the fuzzy statistical segmentation is the only one
allowing the detection of some borders invisible in the real
image and confirmed by the “true ground” image (see center
of the image).

Fuzzy statistical segmentation also seems to better detect
different parcels in the class “cultivated” than the-means
segmentation (see lower-left part of the image).

Finally, we put forth the following.

1) Both fuzzy segmentations render fine details better than
hard segmentation, even when the hard segmentation
uses several classes.

2) Fuzzy statistical segmentation better detects different
borders than the -means method, probably because of
the Dirac measures.

3) When the noise is prominent, fuzzy statistical segmen-
tation seems to be more efficient than-means at the
parcel detection level.

4) Fuzzy -means segmentation is easier to perform and
more efficient in terms of computer time.

Let us notice that our conclusions cannot be seen as general
ones; indeed, we have presented only one image. Several
other results can be seen in [5]. As a general conclusion we
may say that both fuzzy segmentation methods are of interest
compared to hard segmentation. As the principles of both fuzzy
segmentation methods are very different, they should be seen
more as complementary than as competing.

E. Extension to C-Class Problems

In this section, we present an extension of our fuzzy
statistical modeling to any number of classes. In this frame-
work, takes its values in the-dimensional unit simplex

. Let us consider
and the one-to-one function

defined by

(36)

Thus, we may define the measureon as the image by
of a measure on . The latter measure includes the Dirac
weight on the vector 0 of in order to weight the summit
of of , the Lebesgue measure on , and
the measure which weighs the boundary of .

Finally, , where is
the Lebesgue measure on. By putting we have

(37)

In the case 2, we have , where the
measure weighs the borderline of ,
which implies . Thus and we
recover the model of this paper.

Finally, and (37) define a sequence of measures,
each being valid in the -dimensional case. Thea priori
distribution of is then defined by a density with respect to
the measure .

At each pixel the observed field is assumed to be a
sum of independent Gaussian variables , as
follows:

(38)

so that and Var .

F. Relaxing Unit Hypothesis

Insofar as the grade of membership is interpreted as
the proportion of the area of the site belonging to the
class , the constraint is well founded. As
pointed out by Krishnapuram and Keller [19], this constraint
is not suitable in some applications, for instance, when the
memberships have typical interpretations. In the same vein,
in the original formulation of the fuzzy representation by
Bezdek [2], the grades of membership are not relative and
there is, thus, no relation between them. In the fuzzy statistical
modeling proposed in the present paper, the probabilistic
aspect in not connected with the fuzzy representation. Thus,
the constraint that each takes its values in the-dimensional
unit simplex is easy to relax by defining a suitable measure
on the considered subspace of the hypercube . For
instance, the possibilistic approach proposed by Krishnapuram
and Keller [19] can be extended to a “possibilistic statistical”
approach by considering as a measure on the
hypercube. Priors would be then defined by some density

with respect to this measure, and the observation process
would be defined in the same way as in the previous section
[cf., (38)], with max 1 instead of 1. Let
us note that merging Krishnapuram and Keller’s approach with
our method leads to an original and more complex model. In
particular, as our approach allows us to model the noise and
Krishnapuram and Keller’s method encounters some problems
when images are noisy, such a merged new model could turn
out to be useful in very noisy image cases.

V. CONCLUSION

We have proposed in [4] a fuzzy statistical image model
that simultaneously takes into account fuzzy and probabilistic
aspects. The originality of our approach with respect to the
Kent and Mardia method [18] is the simultaneous inclusion
of Lebesgue and Dirac measures in priors, which allows the
hard model to appear as a particular case of the fuzzy one. We
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then proposed some unsupervised statistical fuzzy “pixel by
pixel” segmentation methods in which the previous estimation
of the fuzzy mixture was performed with the SEM algorithm
[6], [22]. In this paper, which is an extension of the results
described in [4], we have focused on two points. First, we
proposed two fuzzy mixture estimation algorithms, which are
the ICE algorithm [3], [25], and an adaptation of the EM algo-
rithm [10], [27] to the fuzzy context. The three methods, SEM,
ICE, and EM, have been tested in different situations and the
results obtained, which attest to their suitability, can be useful
in any situation, eventually beyond image processing. Another
aspect of this work was to include the contribution of spatial
information in the segmentation methods and to compare blind,
contextual, and adaptive estimation, and segmentation. With
respect to segmentation error rates, the adaptive ICE-based
approach provides the best results. The contextual approach,
which improves on blind results in some situations, especially
in the case of white noise, is not suitable in most cases due to
its complexity and the surplus of necessary parameters. This
fact was also pointed out in a hard context [22]. We must
remark that in the hard case, contextual segmentation with
just one neighbor is not relevant and it becomes necessary
to consider a larger context [22] to improve noticeably the
segmentation, which is not realistic in a fuzzy framework.

The segmentation methods we presented in this paper are
local and it is well known, in the hard case, that global
hidden Markov model-based methods [1], [7], [8], [11], [12],
[14], [17], [18], [20], [21], [25], [29], [31] are much more
efficient in several situations. However, it has been established
[3] that local methods can be competitive in some situations
and we conjecture, as the hard framework can be seen as a
particular case of the fuzzy one, that the same is true in the
fuzzy context. Otherwise, it is possible to define fuzzy hidden
Markov models, which include Lebesgue and Dirac measures
in priors and consider the corresponding global methods [26],
[28].

The segmentation method we presented is different from
the fuzzy -means algorithm [2], [13], [16] and appears,
according to the results of segmentation of a real image, as
complementary.

As for topics of further work, let us point out the possi-
bility of merging of our algorithms with Krishnapuram and
Keller’s approach [19]. This allows one to relax our hypothesis
according to which the sum of grades of membership is one.
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