IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 3, MARCH 1997 425

Estimation of Fuzzy Gaussian Mixture and
Unsupervised Statistical Image Segmentation

Heélene Caillol, Wojciech Pieczynski, and Alain Hilliomssociate Member, IEEE

Abstract—This paper addresses the estimation of fuzzy Gauss- membership of theth pixel to theith class, denoted,;s, is
ian distribution mixture with applications to unsupervised sta- the proportion of area belonging to class;. In [23], Pedrycz

tistical fuzzy image segmentation. In a general way, the fuzzy e 5 survey on the use of fuzzy representation in pattern
approach enriches the current statistical models by adding a o . . .
recognition with a sizeable bibliography.

fuzzy class, which has several interpretations in signal pro- e 91 )
cessing. One such interpretation in image segmentation is the When considering the probabilistic framework of interest

simultaneous appearance of several thematic classes on the saméere, random variables = (¢;)scs become random vectors.
site. We introduce a new procedure for estimating of fuzzy Thus for each pixels, ¢, = [Cis]i<i<e. For the sake of

mixtures, which is an adaptation of the iterative conditional imolicity. w nfin r study to th 2 and ¢
estimation (ICE) algorithm to the fuzzy framework. We first simplicity, we confiné our Study 10 the case= < and pu

describe the blind estimation, i.e., without taking into account ¢s = C1s = 1 — (25. In the example of satellite data to be
any spatial information, valid in any context of independent treated subsequently, the fuzzy statistical model allows one to
noisy observations. Then we introduce, in a manner analogous take account of pixels in which, for instance, water and forest
to classical hard segmentation, the spatial information by W0 5.0 gimyitaneously present. To be more precise, let the class
different approaches: contextual segmentation and adaptive blind ” - ith th ical val he cl
segmentation. In the first case, the spatial information is taken ~Water’ be associated with the numerical value 0 and the class
into account at the segmentation step level, and in the second caseforest” with the value 1. Since a classical model may assume

it is taken into account at the parameter estimation step level. that ) = {(), 1}, the fuzzy model assumes that two different
The results obtained with the iterative conditional estimation 55eg gre possible for each pixelas follows.

algorithm are compared to those obtained with expectation- . .
maximization (EM) and the stochastic EM (SEM) algorithms, on ~ * If s belongs to either of both hard classes, tijer= O if
both parameter estimation and unsupervised segmentation levels, s belongs to class “water” of, = 1 if s belongs to class

via simulations. The methods proposed appear as complementary  “forest.” This kind of pixel will be called gure pixel.
to the fuzzy C-means algorithms. « If the both hard classes are present in the pixethen
(s = €, wheree is a real value in ]0, 1] which represents
I. INTRODUCTION the degree of membership sto the class “forest.” Thus,

HE statistical approach to the image segmentation prob- L —¢ IS the degree of membership of to the class

lem requires modeling two random fields. F&r = “v_vater.” In this case, the pixe$ will be called amixed
{1, -+, n} the set of pixels¢ = ((,)ses is the unobservable pixel.
random field whose realizations are the true nature of theAccording to the model proposed in [4], these cases are
observed scene, anil = (X,).cs is the observed randomexpressed by two types of components in the distribution of
field, which is seen as a corrupted versior @ind corresponds ¢s: @ hard component modeled by two Dirac weights in 0 and
to the intensity of the observation. The random varialgles 1, and a fuzzy component defined by a density with respect to
take their values in a set of thematic classes denfitetihis the Lebesgue measure. Thus, the hard component corresponds
field is usually assumed discrete. As the classes are numbéredhe pure pixels and the fuzzy component corresponds to
from 1 to ¢, we will denote? = {wi, -+, w.}. In the the mixed pixels. Such a “blind” model, i.e., only using
case of satellite data, models the true nature of the groundhe marginal distributions of the both random fields, can be
in such a way that the classé¢s;);<;<. are, for instance, successfully used to perform the blind unsupervised segmen-
water, forest, urban area, and so forth. A more general waytttion. “Blind” means that no spatial information is taken into
consider this problem is the fuzzy approach. From this poiatcount, and “unsupervised” means that all parameters needed
of view, each pixels is associated with am-dimensional are estimated from the noisy data.
vector u(s) = [uis]i<i<e. ROUghly speaking, the grade of The present paper extends the work presented in [4] in three

) ) ) directions:
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EM (SEM) [6], {22], are inefficient and ICE has to beit from the X data alone. So let us suppose temporarily
used; that ¢ is observable and let us consider an estimator

3) we propose adaptive unsupervised segmentation, Whif‘c(ki’, X), defined from (¢, X), of the parameters. In a
is extremely efficient in some situations [24], to ougeneral manner, if we want to approximate a random variable
fuzzy model. Z by some function of a random variabld’, the best

Different methods are compared via simulation study ar@Pproximation, when the squared error is concerned, is the
unsupervised fuzzy segmentations of real images are pgenditional expectation. To be more precise, if we denote the
sented. Let us note that the originality of the model weonditional expectation by [Z/IW], we have
use lies in the inclusion of Dirac weights, which allows the 2 . 9

. . ! . ElZ-E(Z/W)]" = EZ — o(W)]-. 1
simultaneous existence of pure and mixed pixels. Indeed, [ (Z/W)l e [ P(W)] (@)

different stochastic or deterministic image models using fuz%é/ ideri h bl ¢ ifyusing X al
membership previously proposed involve only the presence pnsidering the problem o consfructiigusing X alone,

the mixed pixels. This is not necessarily a serious drawbadi’¢ can thus con5|deE[§(C, X)/X]. The problem_|s that

in fact, hard pixels can be produced by some “hardenin§[5(57 X)/X] depends, in a general case, @&nand is then

procedure. However, the conceptual originality of our mod8P_longer an estimator. N _

implies the complementarity, with respect to the existing Thus, let us denoteEé[ /X] the _condltl_onal_expectatlon

methods, of the methods involved. ased orb. It is then po§s_|l_ole to def:)ne an |terat|ve_procedure,
Our works deal with local segmentation methods and i€ [3l: [25], using an initial value™ of 6 and putting

is well known in the hard framework that global methods, SHL(X) = Eg [S(C X)/X] @)

i.e., methods based on hidden Markov models, can be much ’

more efficient. However, we believe that the study of Ioc%hen E[S(C X)/X] is not computable but samplings of

fuzzy segmentation methods is of interest for two reasog ’

Fi local hard hod b . ith ‘according to the distribution conditional o = z are
Irst, local hard methods can be competitive with respe Bssible, one can use a stochastic approximation. In fact, the

to global hard ones in several particular situations [3] an onditional expectation at the poirif =  is the expectation

thus, the same is true for fuzzy methods, at least when theér@cording to the distribution af conditional onX = z. Thus,

are few fL.’ZZy pixels. Secqnd, local fuzzy methods pres_q?tcan be approached, by virtue of the law of large humbers,
the following advantage with respect to the correspondi the empirical mean. After having sampld realizations

global fuzzy methods recently proposed [26], [28]: The hargl ..., en of ¢ according to its distribution conditioned on
local model is really a particular case of the fuzzy one ig(’: a; we can put
the sense that it corresponds to a particular value of some
parameter. This is not the case in the global framework: A hard st — 1 B(er, 2) + -+ b(en, 2))]. 3)
hidden Markov field can only be obtained from a fuzzy hidden N
Markov field when some parameter tends to infinity. ThuFhus ICE appears as an alternative to the EM algorithm.
when the real class image is hard, one can use the fuzzy logalfortunately, the theoretical study of the ICE seems difficult
model because the parameter estimation step should makenil no relevant results can be proposed at present. This could
hard automatically and such automated adaptation of the fuzsy due to the fact that the sequence produced by ICE depends
model to the hard reality is undoubtedly more problematic ion the parameterization, which means that for a given problem
the global case. ICE gives a family of different methods. In order to illustrate
The paper is organized as follows. Section Il explains thhis fact, let us shortly discuss the differences between the
principle of the ICE procedure and its implementation in blindwo methods in the case of a simple mixture of Gaussian
contextual, and adaptive cases. Section Ill presents numerigigtributions N (my, 1) and N(m1, 1). The parameter to be
comparisons between ICE and the SEM and EM algorithmsstimated is5 = («, mq, m;), wherea and1 — « are priors.

Section IV is devoted to unsupervised fuzzy segmentationThe sample considered is denoted by, ---, z,. For
based on the preceding estimations. The final section contains: (¢1, -+, ¢,) let us puty = 1je,—wo] + - + i, =uo]
conclusions and future prospects. V = X1l mwe) + -+ Xn g, =wo]> @NA71 g, « -+, T, 1, the
&% based distributions?[¢; = wo/X1 = 7], -+, P[¢n =
II. THE ICE ALGORITHM wo/X,, = z,]. The EM reestimation formulas are
1
A. Principle of the ICE Algorithm T (ML i e+ o) *)
. . xlwl,k+"'+$n7rn,k
In a general manner, let us consider a pair of random mo, k+1 = . (5)
variables(¢, X) whose distribution depends on a parameter MLkt ok
§. The problem is to estimaté from X. The idea behind If { = (1, ---, {,) were observabley could be estimated by

the ICE procedure is the following: The complexity of thek({) = U/n andmg by mo({, X) = V/U. According to the
estimation problem is due to the absence of an observationlGE principle, we have to take the conditional expectation
¢. If ¢ were observable, one could generally use some efficieft these two estimators. In the case &f¢), one obtains
parameter estimation procedure. Indeed, if the estimation (d), i.e., the same formula as in the EM case. Taking the
& from (¢, X) is impossible there is no sense in estimatingonditional expectation ofno(¢, X) = V/U is not feasible
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and one has to resort to the stochastic approximation. Nov
let us consider the changing of paramefer= ¢(6), with ot 1l
A = (A, A2, A3) = («, a/mg, a/mq). It is possible to 1
show that if8°, ..., 6%, ... is the sequence produced by the
EM using §, then \? = ¢(&9), -+, \¥ = (&%), --- is the
sequence produced by the EM usikg= ¢(6). This is not true

in the ICE case: taking, (¢) = U/n, andX\2(¢, X) = V/n

ICE produces the same sequence as EM. In other word
EM does not depend on the parameter used, while ICE doe .
Delmas has shown in a recent paper [9] that this holds true i ¢ - I
the general exponential structure.

Fig. 1. Density of the distribution ofyy = ({5, ;) with respect tas & ».
B. Implementation of ICE in a Fuzzy Context

Two tools are thus necessary to implement the algorithm
exposed above: an estimaﬁ@rfrom the complete datg, X,
and the means to calculatg{é/X]. If the latter calculation is 0 1
not feasible, it is sufficient to dispose of a method of sampling
realizations of, according to its distribution conditional oK.

In the following subsections, we present the ICE algorithm in
blind, contextual, and adaptive cases.

1) Fuzzy Blind ICE Algorithm:Before explaining how the  Returning to the ICE procedure, let us consider a subsample
blind ICE algorithm runs, let us focus on the statisticdh S of m sites. First, we have to prOpose an estimatof 6
modeling of the involved random variables. from complete datd, - -, ¢, and Xy, ---, X,,,. We choose

As stated in the introduction, for each pixelthe random the empirical frequencies as estimators of the prior parameters
variable( takes its values in [0, 1] and contains two types agfnd empirical moments as estimators of the noise parameters.
components: two hard components and a fuzzy oneéd.ef;, To be more precise

class fclass

Fig. 2. Example of an image in whichgy # mxo-

be Dirac weights on 0 and 1 andthe Lebesgue measure on 13

R. By takingv = 69 + 61 + i+ as a measure on [0, 1], tle Ty = — Z Lie;=i)

priori distribution of each(; can be defined by a densityon iyt

[0, 1], with respect tar = 6y + 61 + p. If we assume thaf Z X,

is a stationary process and that the distribution of eacls R io. !

uniform on the fuzzy class, this density can be written m; = W(Q)
h(0) = P[¢ = 0] = mo > (X — )
h(l) :P[CS = 1] = 71 (OA_Z)Q _ JEQ: 7 for i — 0,1 (9)
hie) =1 —mg — 1, for e €]0, 1]. (6) Card Qi)

In order to define the distribution ok, conditional on¢,, With Qo ={j/¢; =0}, Q1 ={j/¢; = 1}, which defines).
let us consider two independent Gaussian random variablediccording to the ICE principle, the updated values of the
X, and X;, associated with the two “hard” values 0 and 1parameters are obtained by taking the expectation conditional

whose densitieg, and f; are, respectively, characterized by® (X1, -+, Xm) = (21,--, zm) based on the current
(mo, o) and (my, o). We will assume values ofé. This gives
X, =X+ (1-¢)Xo (7 rhtl = Z p*(i/z;), fori=0,1  (10)

which means thatX, models the noise of the clags X,

models the noise of the class 1, and, far= ¢ €]0, 1[, where p*(¢/z;) is the density with respect to of the
Xs = eX1 + (1 — ¢)Xo models the noise of the fuzzydistribution of ¢; conditional onX; = z; and based on the
classe. This is relevant with the view according to which;urrent values®, as follows:

fuzzy classe contains, in proportions of class 1 andl —

of class 0. Finally, the density defining the dlstrlbutlon & (/7)) =

X, conditional to{; = e is a Gaussian density(x/e) e f (x5/e)
characterized by the mean(s) = (1 — g)my + emyp and ‘ 4 ‘ e
Finally, for the case considered, the parameters requweth,oE =10, 1] (11)

be estimated are
which are obtained, in practice, by numerical integration. Thus

a = (mo, 1) p*(0/z;) andp*(1/z;) in (10) are the hard components of the
B =(mo, 03, my, o). (8) distribution of ¢; conditional onX; = x;.
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Image 2 noise WMD Image 3 noise WMD ICE Image 4 : noisc WMD,EM
AS, t=0.15 BS, 1=0.23

" 3

%

Image 6 noise CMD ICE Image 7 : noise CMD,SEM
AS, t=0.19 BS, t=0.23

Irage 5 noise CMD

] A X BT - R £ o
Image 8 noise WVD Image 9 noise WVD,ICE Image 10 : noise WVD EM
AD, t=0.23 AS, t=0.4

R ey

Fig. 3. Images 1 through 10.

Concerning the parameters of the Gaussian densities, th&inally the fuzzy blind ICE algorithm runs as follows.
direct computation of conditional expectations of empirical « Give an initial value of the parametes® =
means and variances is not feasible. Thus, we have recourse [73, 79, m3, (¢)2, m?, (69)2].
to a stochastic approximation, in accordance with the law ofe At each stepk, 6! is obtained fromé* and the data
large numbers. Indeed, simulations(pfrealizations according 1, +0r, Ty DY
to its posterior distribution are workable. reestimation of the priors: use (10);
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Image 11 noise CVD Image 12 noise CVD,EM Image 13 : noise CVD,EM
AS, t=0.28 BS, t=0.39

Image 15 noise WVMD,ICE Image 16 : noise WVMD EM
AS, t=0.30 BS, t=0.36

%

lmage 14 noise WVMD

Vet _ ¥ o RO d
Image 17 noise CVMD Image 18 noise CVMD,EM Image 19 : noise CVMD,ICE
AS, t=0.34 CS, t=0.37

Fig. 4. Images 11 through 19.

reestimations of the noise parameters: Let us note that according to the stochastic approximation

a) For eachr; of the samplerzy, ---, z,,, compute of ICE, several samplings should be made and the next values
thea posterioriprobabilitiesp*(0/z ;) andp*(1/z;) of noise parameters would be given by means of different
and sample a value in the sg, 1, £’} according to values obtained in the way described above. Simulation studies
pH(0/z;), p*(1/z;), and1 — p*(0/z;) — p*(1/x;) show that one can use, in general, just one sampling without

(F representing the fuzzy pixels). Lef, ..., ¥ significant alteration of the efficiency of the method. However,
denote the realizations so obtained. the possibility of regulating the stochastic aspect of the ICE
b) Let Qf = {j/ek = 0}, QF = {j/e¥ = 1}; by changingV [see (4)] can have great importance in some
reestimate the noise parameters by particular situations (see Section 1l1-B2).
Z . Remark 1: The fuzzy component of the prior distribution
— ! is assumed to be uniform and this assumption could turn
§“+1 :Lfk out to be strong in some real situations. A generalization is
Card @) possible; in fact, the uniform distribution can be superseded
Z (z; —mhT1)? by a parametric family of distribution&., in such a way
(o) = 15 C torizo, (2 hatPlG € e d] = (1= m - m) [! ho(e) de for any

0 <a<b< 1 ltisjust necessary to propose an estimator

Card@})
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4 = 4(¢) of 4. If E[4/X] is not workable, one will have to (¢, ) = ["((f)z) 7] with
resort to simulations. ” (c’) =(1—¢)mo+
2) Fuzzy Contextual ICE AlgorithmThis section focuses e ©J70 T e

on contextual estimation, which consists of working with m(f) = (1 9)m0+9m1
spatial information by considering a sequence of contexts o(e)? =(1—¢)? 00 +€? 01
(Vi)j=1,...,m-. In the following, these contexts are site pairs o(6)? =(1-6)%0
instead ef smgle S|tes in the blind case exposed_ above. Thus, p(e, 0) =(1 - E)( )poo + (1 - )bpor
each pair of sites will be represented by two pairs of random
+ (1 = 6)p1o + €bp11. (14)

variables, the unobservable couglg, = ({;s, ¢;¢) and the

observation coupl&y, = (X;,, X;¢). Asin the blind case we Finally, all distributions of(X,, X;) conditional to((s, ¢;)

must first define the distribution qf:V, Xy), which will be are defined by the seven parametexs m1, o3, o1, poo, P10,

given by the distribution ofy = ({s, ¢;) and the distributions and pi;.

of Xy = (X,, X;) conditional to¢y = ((,, &). The distribution of(¢,, ¢;, X,, X:) on [0, 1]> x R? admits
The distribution of (. = ((js, ¢;x) can be defined by the following density with respect to the measu@r Q@ ue 1

a densityh on [0, 1]2 with respect to the measure® . (Wherev = éy+ 61 + i, andp is the Lebesgue measure)

This density h includes three types of components: four

“hard”_ components corresponding to the case in which the gle, 0, x, y) = hie, 0)f (z, y/e, ). (15)

two pixels s and ¢ are “pure,” four “combined” components

corresponding to the case in which one of the pixels is purePIS distribution involves the distributions 6., ¢,) condi-

and the other one is “mixed,” and the last fuzzy componen_
corresponding to the case where both pixelsand ¢ are tional to (X, X;), which will be needed in the ICE procedure,

“mixed.” We will suppose in the following thak is constant and whose densities with respectita » are
on each component, as expressed in Fig. 1. (z, y/e, 6) 9(e, 0, z, y)

More precisely, the four “hard” components afcan be / g(e, 0, z, y) dv () dv (0)
expressed byh(i, 5) = P[¢; = 4, ¢ = j| = mig for [0,1]
i,j = 0,1, the four combined components &f become Thus, the distributions of, conditional to(X,, X,), which
h(0, 8) = h(e, 0) = mor, M1, 0) = h(e, 1) = mp, and, will be needed in the segmentation step, are given by the

(16)

finally, h(e, 8) = wp for e, 8 € ]0, 1[. densities
Thus the density functionh is defined by seven pa- _
rameters, namelyrgg, 791, 710, ¥11, FoF, T1F, TF. These gle/fw, y) = /[0 1 g(e, 0/w, y) di() 17

parameters are bounded by the normalization constrajpt, respect tov.

Jio, 12 e, ) dv () dv (6) = 1, which givesmoo + mo1 + Let us notice that the integration with respectteontains

10 +7r11 +2m0r +2mp +7F = 1. Let us note thadro; and  gymg and Lebesgue integrals. For instance, the calculation
710 are not necessarily equal: If the pixelsandt are on the ¢ w(z, f[o e g(e, 6, z, y) dv(e) dv(6), which is the

same line, then in the case of the example given by the F'gdgnsny of the d|str|but|on of X,, X,), is as follows:
we haverg; # 0 andwo = 0.

As in the blind case exposed in the preceding subsection, let (;, 4) = / g(e, 0, z, y) dv () dv(6)
us define the distributions of the pdiX,, X;) conditionally 0,1]2

to (s, (). As above, we assume that these distributions are Z (i, 4, x, )

normal. In the following, f(z, /e, §) denotes the normal 0<i, j<1

density of (X,, X,) conditional on (¢, &) = (e, 6). In o

an analogous way as in the blind case, let us introduce / (0,0, z, y) +g(1, 0, x, y)] db -

four Gaussian random variablesy}, X2, Xi, and X2,

and let us assume that the distributions of the four Gauss-
ian vectors(X$, X32), (X4, X2), (X}, X2), and (X}, X?)

are the distributions of X;, X;) conditional to({s, ;) = / gle, 0, z, y) de df
(0, 0), (0, 1), (1, 0), (1, 1), respectively. We will assume that [0, 1]2

the distribution of(X,, X;) conditional on(¢;, ¢;) = (e, #)  Returning to the ICE algorithm, let us consider a sequence of
is defined by contexts(V,)g=1, .., Of two neighbors. We denote ki, =
(Xo, X)) =[eXI +(1—e)X}, 6X2 +(1-60)X3]. (13) ((gss Cqe) the restriction of¢ to V, and by Xy, = (X, X t)
o2 pi the restriction ofX to V.
Letus denote byn;; = (m;, my) andl's; = [ ‘z2]thefour — rpe narameter is initialized with

mean vectors and covariance matrices deflnlng the Gaussian 50 :(7r0 A0 20 0 0 0 0 0 0
densities f(z, y/i, j) (for ¢ = 0,1 and j = 0, 1). The Qo Jobr o T E Ry T T er T
Gaussian density(z, y/e, 6) of the distribution of(XS, Xe) 91 915 Poos PLos Pi1) (18)
conditional on({,, ¢;) = (e, #) is then defined by the meanand the problem is to calculate*+! from & and
vector m(e, 8) = [m(e), m(#)] and the covariance matrixxy,, ---, zy, .

g(e, 0, z, y) + g(e, 1, x, y)] de

\
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The empirical frequency estimators of thepriori param- is that the subsampley, ---, z,, used has to be the whole
eters used are image, i.e.,m = Card(S). In fact, priors for each pixel are
. 1 zm: ) fori. j € {0.1, F). (19) required. The parameters needed are
Tij = — - =0, D ori, 72c€4U, 1, .
T m = [Svg =0 )] J § = [ro(s), m1(s), mo, m1, 08, 03] (24)

Thus, the reestimation formulae obtained by computing tHé1e execution of ICE is modified in that that (10) is replaced
expectation of the above estimators conditional to the obsé)

vations Xy, = (Xys, Xqt) = (2¢s, zq¢) are written 1

Rl ko,
i 1 o T (s) = >, prifz)  (25)
7r£“j"'1 = Z ", §/xqs, xqr) fOrd, j €{0,1} (20) Card[W (s)] (W s)
q=1
where g* is §*-basedg defined with (16), and where W (s) is a window centered og.
1 Remark 2: The choice of the reestimation window size
mitt = = > 9" (i, 245, wgr) fori € {0, 1}andj = F can play an important role in the adaptive framework. Small
q=1 window sizes yield better local characteristics, but on the other
e o ) . (21)  hand, the estimation is less reliable. We have experimentally
where g® is 6"-basedg defined with (17). determined that the optimal size of the reestimation window,

Concerning the parameters of the Gaussian densities, agdnconcerns the error rate used, is around 7 pixels.
the blind case, we have recourse to simulations according to

the distribution of ¢y, = ((,s, (i) conditional to Xy, =

(Xgs, Xq¢), which are given by (16), based on the curreritl. NUMERICAL COMPARISONSBETWEENICE, EM, AND SEM

_parameterﬁ’“.an doing so, we_obtaim’{fl, T el mvalues  This section is devoted to numerical applications and in
n {0, 1, 1*;} - We then define a partition Ofk the sampléyarticular, to the comparisons between results using ICE, EM,
zy,, -+, oy, into nine subsamples by putting;; = {g = and SEM. First, we specify how the EM and SEM procedures

1, .-+, m/Cy, = (i, j)}. The parameters are then estimated byre adapted to the model considered. Then the three algorithms
empirical means, standard deviations, and correlations frgffe applied on simulated fuzzy data.

these subsamples.

To be more precise, A. The EM and SEM Principles Compared to ICE

k41
mfjfl = <Z%“+l> The EM algorithm is a classical procedure [10] and [27],
]1 which consists in the maximization, with respect to the pa-
= Z zv, (22) rameters, of the likelihood of the observations. Starting from
Card(@i;) €Q an initial value&®, it generates a deterministic sequence of
eer [(oFTH2 gt valuess®. As explained in Section II-A, the priors reestimation
Fij* = { Z’?,+1 (0,;11)2} formulae with EM and ICE are the same in the hard case. Thus,
”1 J fi1ne - we will keep in the “fuzzy” EM the same priors reestimation
= Card0,) > (wy, = mb @y, —mih. formulae as that in fuzzy ICE above.
9€Q:; Concerning the noise parameters reestimation, we propose

(23) the following adaptations of the hard EM to the fuzzy context:
Finally, (20)—(23) define the next value of the parameters

B = (el i el g e, BINOORE
m’(;—i—lv m’1€+17 O—(’)H—lv O—f—i—lv plga—lv p’f(—)i—lv p’ff—l)' inpk (J/xz)

3) Fuzzy Adaptive ICE Algorithmln this section, we will mitt == (26)
take up the blind segmentation point of view. The blind Zpkj/wi
segmentation proceeds “pixel by pixel” and does not exploit =
any spatial information. However, in the adaptive unsuper- n
vised framework, the spatial information is taken into account Z (i — mf“)?pk il
through the estimation step. In fact, priors are assumed toyktly2 = =L ) (27)
depend on pixels, and are estimated from the observations on’ S
windows centered on each pixel. In the model we adopt, the 213 i/wi

i=

noise parameters do not vary with pixels. This approach Staéfantextual Case: -

valid in the case of the nonstationary class field. Moreover, m

it can strongly improve the unsupervised blind segmentation vaqpk (4, 3/2v,)
results even in the stationary case, especially when the class ,.; q¢=1

field is homogeneous [24]. Thus, the model here is exactly Mij = T m

the same as in Section 1I-B1, with the difference that the Zpk (¢, 3 /xv,)
parameters defining priors depend anThe other difference g=1

(28)
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Fig. 5. Real SPOT image.

m

3 (e, = mE ey, — mEpR (i, /)
it = 1=

Zpk (Lv J/‘/L'Vq)
=1
q (29)

The SEM algorithm [6] is a stochastic version of the EM
algorithm. The principle of the SEM is as follows: at eac
step, one draws exactly one sample according to the poster
distribution, in the same way as in the ICE case wheg
estimating the noise parameters. The difference with ICE
that the sample so obtained is also used in order to reestim&te
priors. This algorithm has already been applied in [4] in a fuzzy. .
framework and, in a hard framework, it has given efficient” :
results [22]. E

Adaptive versions of EM and SEM are obtained from EM#*
and SEM in the same way that adaptive version of ICE is
obtained from ICE. 4

Remark 3: We have seen in Section 1I-B1, Remark 1, thatg
ICE can be used when the fuzzy component of priors is nG
uniform. In fact, it is always possible, using discretization if _ o _ _ o
necessary, to simulate realizationg afccording to (11). Thus, Fig. 7. Fuzzy statistical segmentation of the image in Fig. 5.
SEM also can be used in such situations. The adaptation of

EM seems much more difficult. 2) at each pixel in the fuzzy class sample a valuginl|.

] Thus, the first step gives a three-class image, each pixel
B. Numerical Results being in {0, 1, F'}. The second step is initialized putting 0.5
The three algorithms have been applied on a simulated fuzmyeach pixel labeled’”. Then we scan the set of pixels “line
image corrupted with different Gaussian noises. The procediyg line.” If the current pixel if hard, nothing is done. If it is
used to sample the fuzzy data proceeds in two steps: fuzzy, we look at the sunXt of the four neighboring pixels,
1) considering the fuzzy class as a third hard class, samplbich is in [0, 4] (O if they are all hard and 0, 4 if they are
a classical three-class Markov field using the Gibkall hard and 1). The fuzzy value is then updated sampling in

sampler; 10, 1] according to the density'(z) = a(X — 2)x + b(3),
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Fig. 10. Hard statistical segmentation of the image in Fig. 5 (four classes).

a = 2.5 for step 2). The three-class Markov field used in step
1) is Markovian with respect to the four nearest neighbors,
thus its distribution is defined by functiors on the cliques
{s, t}. The simulated image (Image 1) has been obtained with
oles, er) = —11if 65 = &, and (e, 1) = 1 if €5 # &4
Image 1 is of size 128 128.

The reference fuzzy image obtained by the simulation
procedure above is then corrupted with different Gaussian
noises. We distinguish white (W) noises and correlated (C)
ones. Each of them can beeans discriminatindMD), i.e.,
mo # my and ¢f = o2, variances discriminating(VD),

i.e., mp = my and o3 # o2, or bothmeans and variances
discriminating (MVD), i.e., mg # m; and o3 # o2. For
instance, WMD denotes white means dlscrlmlnatlng noise,
CMVD correlated, means and variances discriminating noise,
and so on.

Let (B;)scs be independent Gaussian random variables
with zero mean and unit variance. Images corrupted with white
noises are obtained with

X, = [(1 - CS)O'O + C50'1]BS + [(1 - Cs)mo + Csml]. (30)
Fig. 9. Hard statistical tation of th Fig. 5 (two cl . . . . .
9 ard statistical segmentation of the image in Fig. 5 (two Casses?n order to obtain the images corrupted with correlated noises
we first use the mobile average: fdB;);cs independent
wherea > 0 is fixed andb(X) is calculated from: and ¥ to Gaussian random variables with zero mean and unit variance,

ensuref0 x)dz = 1. The idea behind this way of sampllngIet

is the foIIowmg. if 0 is dominant in the neighborhood, i.e., W, = 31
i ili «/Card Z (31)

3} < 2, f gives greater probability to the values near 0, and, tev,

if 1 is dominant in the neighborhood, i.€; > 2, f gives Thys,(W,),cs are correlated Gaussian random variables with
greater probability to the values near 1. The aim of suchzgro mean and unit variance. Corrupted images are then
procedure is to ensure a visually good gradation when passitgiained by (30) with(W,)scs instead of(B;)scs. In the
from one hard class to another. In the example below we useperiments below we have taken C&vd) = 9.
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TABLE |
ESTIMATES OF BLIND MIXTURE. 1 : mq, 2 : my, 3 : 02,4 : 02,5 : mo, AND 6 : Ty

True Value ICE SEM

- n w

(=]
O o= o N o W ow»

Table I 1: Noise WMD Table I 2: Noise CMD

W

o v = N m e wn

N

=]

Table I 3: Noise WVD

Table I 5: Noise WMVD Table I 6: Noise CMVD

The experiments have been organized as follows. EM procedure converges regularly. The noise parameters are
« For the blind and the adaptive estimation procedures, sta@rrectly estimated, in most situations, by the three procedures,
from an initialization arbitrarily chosen sufficiently aparteven though they are sensitive to the correlation of the noise,
from the true values in order to test the dependence wiich was also shown in the hard framework [24]. In this
the initialization; stop the procedure when the estimateghse, the EM procedure seems less sensitive to this correlation.
values stabilize, if they stabilize. The most important result is that the EM procedure poorly
+ For the contextual estimation procedure, start from th&timates thea priori parameters and, in particular, does
empiric_al estimates based on the blind unsupervised s@@t recover the fuzzy class. Some results illustrating these
mentation. conclusions are presented in Table |, and several others can
1) Blind Estimation: Simulations show that in general thepe seen in [5].
EM procedure stabilizes more slowly than the ICE and SEM In blind cases (classical and adaptive) the initialization of
procedures. This confirms the fact that the EM procedutiee parameters is as follows: One considers the empirical mean
is more sensitive to initialization. However, we should notg: and the empirical varianc&? of the samplg(z1, - -, z,,)
that the ICE and the SEM procedures, due to their stochasiiged. The noise parameters are initialized wit§ = 7 —
properties, fluctuate around their convergence values when 82, m? = m + 62/2, 6} = 6 —n, and o = & + 7,
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TABLE 1
ESTIMATES OF CONTEXTUAL MIXTURE: 1 : mgq, 2 : 05, 3:po,4: por,d: ™o, 6: w1, AND T : Top

1,2 1,2
! 1
0,8
0,8
0,6
0,4 0.6
0,2 0,4
4] a,2
-0,2
0
0.4 1 2 3 4 5 6 7
Table II 1: Noise WMD Table I 2: Noise CMD
1,6 2,5
1,4
1,2 2
1
0,8 1,51
0,6
0,4 1
0,2 0,5
4] | I
-0,2 0 4
0,4 1 2 3 4 5 6 7
Table IT 3: Noise WVD Table II 4: Noise CYD
1,4 1,2
1,2 1
1
0,8
0,8
0,6 0.6
0,4 0,4
0,2 0,2
0 0
-0.2 1 2 3 4 § 6 7 8
Table II 5: Noise WVMD Table II 6: Noise CVMD

7 being a value small relative t6. The starting priors are the blind case, except in the case of variances and means dis-

equal:ry = 70 = 7% = & criminating noise, which seems to perturb the three procedures,
2) Contextual Estimation:The prominent remark is that in and especially the EM.

all correlated situations the SEM and EM procedures do not

converge, due to a poor estimation of the prior probabilities,

even if the starting prior values are close to the real valugs. Segmentation Rule

In this case, the ICE algorithm can be stabilized after few 1 .« are two main approaches for statistical image seg-

iterations of the procedure. Furthermore, the estimation of tpr?entation: the global approach [1], [3], [7], [11], [12], [14],

noise parameters (particularly correlation) can be improv 97], [18], [20], [21], [25], [26], [28], [29], [31], and the local

by increasing the number of the samplers according to tgge 131, [4], [22], and [24]. A global method takes into account

posterior distribution [see (3)]. Finally, the ICE procedure ifhe values ofX in the entire image. For instance, the MPM

clearly more reliable than the EM and the SEM ones in th@gorithm [21] estimates the value of ea¢h s being in the

IV. Fuzzy STATISTICAL UNSUPERVISEDSEGMENTATION

contextual estimation case. set of pixelsS, by the class whose probability conditional
In contextual estimation, the starting values of the paramgr X = 1 is maximal. Another global algorithm, the MAP
ters are deduced from a blind segmentation. [14] algorithm, estimates the value @f by e € QCard(5)

3) Adaptive Estimation:In this section, we can only com-whose probability conditional toX =  is maximal. Both
pare the estimation of the noise parameters to the true valus® Bayesian with two different loss functions. Let us recall
There is no significant differences between these results ahdt in the local framework, the expected value of eégclis
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TABLE Il
ADAPTIVE ESTIMATES: 1 : mg, 2 : my, 3 : 03, AND 4 : o?

w
w

N
n

<]
S o = o N oo @ g

=]
S v = Ny Wow

Tableau III 1: Noise WMD Tableau III 2: Noise CMD

w

N
w

St = m N w o,
N

=}

o
S~ NG W o s

Table III 3: Noise WVD Table II 4: Noise CVD

Table III 5: Noise WVMD Table III 6: Noise CVMD

estimated from the observed values ¥f= x restricted to a or 1, stop. If it is “fuzzy” determine its exact value maximizing

neighborhood’; of s. A blind method is a local noncontextualthe restriction ofp(¢/z,) to ]0, 1[.

method, i.e.,V, = {s}. In the contextual case the rule is the same with/x,)
However, when considering the MPM method, the contexeplaced byg(e/zs, z;) [see (17)]. In the adaptive case it is

tual method, or the blind method, the segmentation stepS#ll the same with the difference thate/x,) also depends

the same. In fact, these three methods define three differ€Ats through priors.

posterior distributions of eacl,, which are obtained with ~ Finally, an unsupervised segmentation method is obtained
the conditioning byX = z, X, = =,., and X, = z,, DY adding tothe segmentation rule above one of the parameter

respectively, but, once this distribution known, the problem &stimation methods of the previous sections.

attributing of a class te is the same in the three cases. In this L€t US briefly discuss the relation of such methods to the
paper, we will restrict ourselves to one possible segmentatiBVrzy C-means methods. The fuzzy-means algorithm was
method, namely themaximum posterior likelihoodnethod. first proposeql by Dunn [13] f_o_r th_e case = 2 [see (32)],
This has been successfully compared in [4] to three ot |-?Ian extension of hard classification & 1)_ calle_d Isodata.
methods, and we conjecture that it remains of interest i e general form of the fuzzgy-means algorithm, i.e., for any

contextual and adaptive cases. Nevertheless, the other metlﬁ% reater then one, was proposed by Bezdek [2] and studied
. y Hunstberger, Jacobs, and Canno [16], among others. In the
presented in [4] can be used.

In the blind the “maximum teriorlikelin d,,Iatter methods the fuzzy partition is obtained by maximizing
€ case he ‘maximum posterior Tkeinoody given objective functior). Recalling that a fuzzy partition
method is as follows: Let us considens/z,) given by

i = s/s ’ th s — is i<e f,ltdt y
(L1). PUtingp(F/z,) — 1 — p(0/,) - p(1 /), the decision - o = (=+)ees: With & = [enliize (cf. Introduction),

g is written
rule {; = §(z;) Is e n
(i) let w = argmaxycqo,1, ry p(A/zs). If w € {0, 1} put Qle) = Z Z eMess — myl? (32)
5(xs) = w. f w = F; i=1 s=1
(i) 3(zs) = argmaxeeio, 1 p(t/xs)- wherem > 1 is a weighting exponent anc; are the center

Thus, the rule is following: First decide, maximizing thevalues of the classes. The weighting exponent controls the
posterior probability, if the pixel is 0, 1, or “fuzzy.” If it is 0 magnitude of the fuzzy aspect of the image: The greater its
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magnitude, the more fuzzy will be the segmented image. If TABLE IV
m = 1’ thls reduces to a ClaSSICal hard Segmentatlon. RATE oF WRONGLY CLASSIFIED PixeLs. WMD, CMD, WVD, CVD, WVMD,
. . AND CVMD: DIFFERENT NOISES WITH SAME PARAMETERS AS IN BS: BLIND
The fuzzy C-means algorithm runs as follows: SEGMENTATION, AS: ADAPTIVE SEGMENTATION, CS: GONTEXTUAL
1) initialize the matrixe = [Eis] with £9; SEGMENTATION, DIV: THE ESTIMATION PROCEDURE DOES NOT STABILIZE

2) updates® with
WMD CMD WVD CVD | WVMD | CVMD

[ ey = mb| (m-1)/2 BS | 022 | 023 | 038 | 038 | 035 | 036
k-l—l s
€is IcE | _as | 015 | 019 | 023 | 028 | 030 | 034
|5 — mk|
g=1 cs | 018 | 022 | 037 | 039 | 033 | 037
BS | 023 | 023 | 040 | 039 | 036 | 037

where
EM AS 0,15 | 020 { 029 | 029 | 032 | 034
n
Z (Ek )mx CS 0,18 div 0,38 div 0,32 div
15 s
« BS 022 | 023 | 038 | 038 | 035 | 036
mf ==L . (33) SeM | _As | 017 | 019 | 029 | 031 | 031 | 034
k \m cs 0,19 div 0,36 div 0,33 div
(Eis)
s=1
3) calculate

consistent with ones intuition. What is more striking, they are
et — e¥|| = max |eFt — k) (34) also more efficient than contextual segmentations (CS). This
4;8 would be expected if the image were nonstationary, i.e., if its
4) repeat the Steps 2) and 3) unjfi*+! — *|| < ~, with V|s_ua_l aspect were different accordlng to the place in pixels set.
~ a fixed threshold. This is clearly not the case in examples we have chosen. The

Th d i at which the obiecti CS would perhaps be better if more than one pixel were used;
€ procedure converges at whic € ODJECIVE 14 4o so, however, would be rather tedious in the fuzzy model
function @ has a local maximum.

I e consider. When considering the three ICE, EM, SEM-based
We can see that the statistical method we propose and

the first is slightly more efficient than the other two. In
fuzzy C-means method are very difierent in their prlnCIpIesract calculating for each of them the mean of six error rates
and undoubtedly their behavior can be quite distinct in diffe (r:orrespondmg to different noises, we find 0.248 for ICE-based
ent situations. In particular, the fuzzy-means method does S, and 0.265, 0.268 for EM and SEM, respectively.
not use any probabilistic model and the noise is not explicn@ The general conclusion is that the adaptive ICE-based
modeled.

segmentation should be used in the framework considered.

C. Segmentation Results D. Segmented Images

The resulting segmented image is compared with the simu-,

lated reference image by computing the following error rate: We present in Figs. 3 and 4 some of the more revealing

segmented synthetic images. For each type of noise the best

Z | C _¢ segmented image, with respect to the error rate, and the worst
= o segmented image have been selected. For each image, the
t= Card(5) (35) procedure of estimation (ICE, EM, or SEM) and the type

of segmentation method (BS for blind segmentation, AS for
The results presented in Table IV show that segmentatiadaptive segmentation, and CS for contextual segmentation)
based on the ICE estimates gives the best results, particulantg specified.
in the adaptive framework. In the blind case, the EM procedureWe observe that the nature of the noise has a noticeable
leads the highest error rates, but the difference is not as appffect on the visual aspect of the noisy images. On the
ciable as one would expect, considering the poor estimatiother hand, the difference between the best and the worst
of the prior parameters. The adaptive segmentation alwaegmentation is always visible, and, in some cases, quite
improves the blind segmentation, the improvement being lesignificant. The general impression is that EM often makes
noticeable in the case of correlated noise. This fact was alstages lose their homogeneity on the one hand, and their
pointed out in a hard framework in [24]. The contribution ofuzzy aspect on the other.
the contextual segmentation is significant in some situationsOther results of similar studies can be seen in [5].
(noise WMD and noise WVMD), but in many cases, princi- We present finally in Figs. 5-10 examples of unsupervised
pally all correlated noises, contextual segmentation offers litlezzy and hard segmentations of a satellite image (SPOT).
improvement over blind segmentation. The same conclusiorlise parameters have been estimated by the ICE algorithm
presented in [24] in a hard case, in such a way that we magd the segmentation method is the blind posterior maximum
conclude that fuzzy segmentation has the same propertiedilkadihood.
hard segmentation. The real image represents an agricultural area which may
According to the results of Table IV, the great efficiencpe considered as containing two classes: cultivated area and
of adaptive segmentations (AS) is the prominent conclusiaimcultivated area. The first class contains different kinds of
They are clearly better that the blind segmentations (BS)ltures and the second class contains mainly water. According
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to the model we propose the fuzzy pixels simultaneously Finally, v. = T.[(é0 +u)®(e—1)1Be_l + Ve_1], Wherep is
contain cultivated land and water, i.e., cultures on a very dartie Lebesgue measure éh By puttingr = 6y + 1+ we have
ground, marsh, etc. ®(e—1)

The classical two-class segmentation (see Fig. 9) allows ve =Tc[v* 1.y +¥e-1]. (37)
one to distinguish the two hard classes, although a gr
deal of information is lost. In particular, different plots o
e el Sretihich Impisy, — b Thusya — (. 0) and we

' ecover the model of this paper.

ground” images (see Fig. 6), such as rivers or roads, ar inally, », = 6, and (37) define a sequence of measures,

lost, even when increasing the number of hard classes (%%%h . L ' . L
. v. being valid in thee-dimensional case. Tha priori
Fig. 10). These borders are preserved by hGimeans (23) distribution of {; is then defined by a density with respect to

and statistical (see Fig. 7) fuzzy segmentations and one

= o - € measure,.
observe that the statistical segmentation is more efficient OfAt each pixels the observed field¥, is assumed to be a

. . . S
this particular problem (se_e_lower left par_t Of_ the Image)s‘um of independent Gaussian variabfes«— N(m;, 0?), as
Furthermore, the fuzzy statistical segmentation is the only o Slows:
allowing the detection of some borders invisible in the rea '
image and confirmed by the “true ground” image (see center ¥ i: o X
s — 143 g
=1

?ﬁtthe case: = 2, we haver, = T»(é0 + 1+ + 1), where the
easures; weighs the borderlingg; = {1} of B; = [0, 1],

of the image). (38)

Fuzzy statistical segmentation also seems to better detect
different parcels in the class “cultivated” than tiemeans so thatE[X,] = > ;_, e;m; and ValX,] = 3°5_, €202,
segmentation (see lower-left part of the image).

Fina"y, we put forth the fOIlOWing. F. Re|axing Unit Hypothesis

1) Both fuzzy segmentations render fine details better thanlnsofar as the grade of membership is interpreted as

hard segmertaltlon, even when the hard segmentatig o ortion of the area of the site belonging to the
uses several Classes. classi, the constrainty ;_, ¢;; = 1 is well founded. As

2) Fuzzy statistical segmentation better detects diﬁerzﬁﬁinted out by Krishnapuram and Keller [19], this constraint
borders than thé’-means method, probably because g |\t sjitable in some applications, for instance, when the

the Dirac measures. . memberships have typical interpretations. In the same vein,
3) When the noise is prominent, fuzzy statistical Segme[y e original formulation of the fuzzy representation by
tation seems to be more efficient thahmeans at the g, gek [2], the grades of membership are not relative and
parcel detection level. . . there is, thus, no relation between them. In the fuzzy statistical
4) FuzzyC-means segmentation is easier to perform anf,qeling proposed in the present paper, the probabilistic
more efficient in terms of computer time. aspect in not connected with the fuzzy representation. Thus,
Let us notice that our conclusions cannot be seen as gengal constraint that eacf takes its values in the-dimensional
ones; indeed, we have presented only one image. Sevgjgt simplex is easy to relax by defining a suitable measure
other results can be seen in [5]. As a general conclusion W& the considered subspace of the hypercithel]c. For
may say that both fuzzy segmentation methods are of intergfdtance, the possibilistic approach proposed by Krishnapuram
compared to hard segmentation. As the principles of both fuzg\q Keller [19] can be extended to a “possibilistic statistical”
segmentation methods are very different, they should be Se@Iproach by consideriniy + 1 + 6,]° as a measure on the

more as complementary than as competing. hypercube. Priors would be then defined by some density
h with respect to this measure, and the observation process
E. Extension to C-Class Problems would be defined in the same way as in the previous section

In this section, we present an extension of our fuzﬁf" (38)], with maX <i<e & < 1 instead OfEi’:l, i =1 Let _
statistical modeling to any number of classes. In this framHS N0t that merging Krishnapuram and Keller's approach with

work, ¢, takes its values in the-dimensional unit simplex our .method leads to an original and more complex quel. In

S. ={e € [0,1/ ¢, & = 1}. Let us consideB,_; = pa_rtlcular, as our approa10h allows us to model the noise and

e € [0, 1]t/ 0 ; < 1} and the one-to-one function Krlshn_apuram and K_ellers method encounters some problems

T B _’1 .5 d(za?ilned Ey when images are noisy, suph a merged new model could turn
o ‘ out to be useful in very noisy image cases.

(517 T Ee—l) i Te(Elv Tty Ee—l)
—ler ety L= (a1 4o He)]. (36) V. CONCLUSION

We have proposed in [4] a fuzzy statistical image model
Thus, we may define the measueon S, as the image by, that simultaneously takes into account fuzzy and probabilistic
of a measure oB._;. The latter measure includes the Dira@spects. The originality of our approach with respect to the
weight on the vector 0 aR*~! in order to weight the summit Kent and Mardia method [18] is the simultaneous inclusion
of (0,---,0,1) of S, the Lebesgue measure @h_;, and of Lebesgue and Dirac measures in priors, which allows the
the measure,._; which weighs the boundary._; of B._;. hard model to appear as a particular case of the fuzzy one. We
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