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This paper addresses mixture estimation applied to unsu-
pervised local Bayesian segmentation. The great efficiency of
global Markovian-based model methods is well known, but
the efficiency of local methods can be competitive in some
particular cases. The purpose of this paper is to specify the
behavior of different local methods in different situations.
Algorithms which estimate distribution mixtures prior to
segmentation, such as expectation maximization (EM), itera-
tive conditional estimation (ICE), and stochastic expectation
maximization (SEM), are studied. Adaptive versions of EM
and ICE, valid for nonstationary class fields, are then pro-
posed. After applying various combinations of estimators and
segmentations to noisy images, we compare the estimators’
performances according to different image and noise charac-
teristics. Results obtained attest to the suitability of adaptive
versions of EM, ICE, and SEM. Furthermore, the local
methods turn out to be robust in the sense that the parameter
estimation step does not degrade the final segmentation results
significantly, and the choice of EM, ICE, or SEM has little
importance. © 1995 Academic Press, Inc.

1. INTRODUCTION

Image segmentation underlies many important problems
in image processing. Bayesian classification has been
widely applied to image segmentation, resulting in Bayes-
ian segmenfation. From a statistical viewpoint, an image
is composed of different random fields, Let § denote the
finite set of image pixels, X = (X,),=s the random field to
model the real image which cannot be observed, and Y =
(Y,)ses the random field to model the observed image.
Each X, takes its values in a finite set of classes {) =
{1, ...} and each Y, takes its values in R. The problem
of image segmentation is then the problem of estimating the
invisible realization of field X from the visible realization of
field Y. There are two families of Bayesian approaches:
a local family and a global one. When considering a local
family, each X, is estimated from YV,= the restriction of ¥
to a context V, of 5. Assuming V, of small size, the Bayesian
decision rule is computable. Local methods have been used

l6, 12, 13, 19, 28] before application of Markov models to
image processing problems. The family of global methods
allows one to take the whole information available into
account; each X, is estimated from Y. These approaches,
like MAP of Geman and Geman [11], MPM of Marroquin
et al. [17], and ICM of Besag [2], require models by hidden
Markov random fields. The great efficiency of global meth-
ods has been widely described [2, 3, 5,7, 10, 11, 14, 15, 17,
23,29-31], aithough some of our previous work shows that
in some particular situations the local methods are quite
competitive [3, 16]. To be more precise, we consider in [16]
two binary images, one homogeneous (HI) and another
nonhomogeneous (NHI), each corrupted by a white noise
(WN) and a correlated noise (CN). Furthermore, one con-
siders two contextual methods M1, M2, and the global
Gibbsian EM method of Chalmond [5]. The ratios of
wrongly classified pixels are given in Table 1.

Local methods clearly appear as competitive in the
NHI + CN case.

Thus one can imagine that in future complex and auto-
mated image processing systems, local Bayesian segmenta-
tion methods could take some useful place.

The aim of this paper is to present some investigations
confributing to an understanding of the behavior of differ-
ent unsupervised local methods in different situations.
“Unsupervised” means that all parameters needed for seg-
mentation are estimated in a previous step from the noisy
data. In local methods this previous statistical problem is
the mixture estimation one.

We are mainly interested in two points:

(1) Among the three mixture estimation algorithms,
namely expectation maximization (EM, [9, 26]}), stochastic
expectation maximization (SEM, [4, 18]) and iterative con-
ditional estimation (ICE, [22]), which should be used in
the context considered?

(2) In adaptive segmentation one considers that priors
change with s and the needed parameters are then esti-
mated by “adaptive” versions of EM, SEM [24], or ICE.
Is such an adaptive walk to be preferred to classical walk
in the context of unsupervised local segmentation?
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TABLE 1
Rate of Wrongly Classified Pixels by Two Local Methods
(M1, M2) and a Global Method (Gibbsian EM) Applied to
Homogeneous (HI) and Nonhomogeneous (NHI) Images
Corrupted with a White Noise (WN) and a Correlated (CN)
Noise

M1 (%) M2(%) Gibbsian EM (%}
HI + WN 10.7 11 32
H!I + CN 149 156 105
NHI + WN 16.1 17.1 13.6
NHI + CN 133 136 a7

Note. Theoretical rate of blind segmentation is the same for the four
images.

We select from the numerous simulation results given
in [20] and put forth some general conclusions.

The paper is organized as follows. In Section 2, we give
a brief presentation of local segmentation and mixture
estimation problems. Three mixture estimation algorithms
EM, ICE, and SEM, are described along with their adap-
tive versions. The third section is devoted to data consid-
ered in the study. The fourth section presents some simula-
tion results and comments. Conclusions are given in
Section 5.

2. UNSUPERVISED LOCAL BAYESIAN
IMAGE SEGMENTATION

In this section we recall the principle of local segmenta-
tion and summarize the different parameter estimation al-
gorithms,

2.1. Local Bayesian Segmentation

Let (Xv, Yy) be the restriction of the fields X, Y to
V C §. The Bayesian rule of decision 35 is defined from
the distribution of (X}, Yy), assumed here independent
from the position of Vin §, by

[j(s =3g{yv) = x] & [DF(x;, yv) =

]-.\raéanx ‘DF(xj9 yV)]s (1)

where the discriminating functions DF are

> PIX, =

xeqv-1

DF(x;, yv) = =x, Xv-g=x.Yvy=yy] (2)

for every x; in {) and |V| cardinal of V. Thus the segmented
image is obtained by applying the rule above to each pixel s.

2.2. Mixture Estimation

The calculation of these discriminating functions re-
quires knowledge of the distribution of (Xy, ¥Yy). In the
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following, ¥ will be assumed Gaussian conditionally on
Xy. Letusdenote by V,, ..., V, the sequence of contexts
chosen in § and, in order to simplify things, X; = Xy, ...
X, =Xy, and Y, = Yy,. , Y, = YV the restrictions of
fields X, Y to Vi, .. V For m = Card () and r =
Card(V), the random variables Xi,...,X, take their values
in a finite set of cardinal M = m", and the random variables
Yi,..., Y, in R". Thus the common distribution of
Y1, ..., Y, is a mixture of M = m" Gaussian distributions
on R’. For x;, ..., x); possible values of each X, (or pos-
sible configurations of Xy), let us denote by o =
PIX; = x4}, ..., ay = PIX; = x| the priors and B, =
(my, '), ..., Bar = (b, I'ay) the mean vectors and covari-
ance matrix defining the distributions of ¥; conditioned on
X; = x1,..., Xy, respectively. Gaussian densities defined
by B = (my, 1), ..., Bar = (myy, Tpy) will be written f,

s far-Thus @ = {erq, . . ., oeay) defines priors and g = {8,

.» Bar) defines the distributions of each Y; conditioned on
X; = x1, ..., X, Tespectively.

Finally, 8 = («, B) defines the distribution of (Xy, Yy),
and the problem is to estimate it from Yy, ..., Y,.

Let temporarily assume that X, ..., X, are observable.
The maximum likelihood estimator (MLE) 8 = &(X, Y) is
defined by

HX,Y) = Arg max log[ f{X, Y)], (3)
which gives in our case
) 2 g
& (X) = W 4)
E 1{){ =x]
(X, Y) = —2——— (5
=1 [Xf=xt}

R (¥; = m)(Y; — milx -

R x vy 2 & )

S lix =)

As X'is not observable, EM allows one to define a sequence
(#)kew using the principle

I (Y) = Arg max log[ Eq [ fAX, Y)IY)). N

Let us denote by af the 8% -based probability of X; = x
conditioned on Y;:

af ff(Y)

— 8
q laqfq(Y) ( )

() =

In the case of interest, the sequence (#)ex is given by
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Eltaﬁ j
ati(y) - 2228 ©
ke _ZLai(V)Y
YY) ST (10)
T (Y) = 2 alf( Y)Y~ mE Y (V))TY, - mi (YN (1)

S oY)

According to its principle, the ICE algorithm [22] produces
a sequence (#);en defined by

FU(Y) = Eo [0(X, YV Y]. (12)

Applying (12) to (4) we obtain (9): the reestimation of
priors is exactly the same in the ICE case as in the EM
case. The calculation of (12) applied to (5) and (6) is not
possible and we have to resort to stochastic approximation.
In fact, if x', ..., xV is a sequence of realizations of X =
(X1, ..., X,) according to the #*-based distribution of
X =(X,,..., X,) conditioned eon ¥ = (Y1, ..., Y,)
(we have x' = (xi,...,x)), 6" defined by (12) can be
approached, by virtue of the law of large numbers, by

B 4+ B ]

#1(Y) = N (13)

Simulation studies show that one can take, in this case,
N = 1 without significant perturbation of the results.

Finally, the next values of m; and I'; are obtained by
simulating one realization x* = (x1, ..., x}) of X according
to its #*-based distribution conditioned on Y and applying
to x* = (x},...,x}) formulas (5} and (6).

The reestimation of priors by the SEM is obtained by
applying (4) to x' = (x],...,x}), while the reestimation
of m; and T is the same as that of ICE with N = 1 above.
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2.3. Adaptive Versions of EM, ICE, and SEM

We present below adaptive versions of EM, ICE, and
SEM, which will be denoted by AEM, AICE, and ASEM,
respectively. The basic idea, which is exposed in the SEM
case in [24, 25], is to make « depend on pixels and use the
reestimation formulas for priors on a window containing
s. This makes all unsupervised procedures valid in the
nonstationary class field case; however, the field Y remains
stationary conditionally to X. More precisely, the distribu-
tion of Xy depends on the position of V in S, but that the
distributions of Y, conditional to realizations of X, are
independent of this position.

Returning to the notations of the previous subsection,
we associate with each pixel s a window W;. The reestima-
tion of each a, by AEM, AICE, or ASEM runs as the
reestimation of « by EM, 1CE, or SEM, with the difference

_ that W, is the sample used. The reestimations of 8 by EM,

ICE, SEM and AEM, AICE, ASEM, respectively, are
the same.

3. REFERENCE DATA

We consider three images of different homogeneity:
“Ring,” “Gibbs,” and “Letter B” (Fig. 1). Each is cor-
rupted with four different Gaussian noises; two are white
(W), and two correlated {C). One of the white noises is
“means discriminating” (MD:m;, # m,, o} = a3), while
the other is “variances discriminating” (VD:my = m,,
o?+# o3), and likewise for the correlated noises, The
four noises so obtained will be denoted by WMD, WVD,
CMD, and CVD, respectively. We take m; = 1, my = 2
and 0 =03 = 1 in the MD cases and ¢7=1,0% = 4
in the VD ones. We give three examples (Fig. 2) which
show that visual aspects of the corrupted images change
with the noise nature. Furthermore, as we shall see in
the following, the efficiency of different unsupervised
segmentation methods also depends on the four noises
considered.

FIG. 1.

{a) “Ring,” (b) “Gibbs,” and {c) “Letter B.”
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a
FIG. 2.

4. UNSUPERVISED SEGMENTATION RESULTS
4.1. General Results

To each of the 12 noisy images we have applied 12
unsupervised segmentation methods: 6 are blind with re-
spectively EM, ICE, SEM, and their adaptive versions for
the estimation step, and likewise for the 6 unsupervised
contextual segmentation methods. The context used con-
tains the pixel considered and one neighbor,

Before analyzing the results, let us note the following
point. For each statistical image segmentation method
there exists a theoretical error, obtained with the true
parameter values, which depends on the signal-to-noise
ratio, When the noise is too dominant for a given method,
the method becomes unreliable and it is pointless to pro-
ceed to a parameter estimation algorithm. If we want to
compare different unsupervised segmentation methods we
have to deal with limit cases: if the noise is not dominant
they will all be good, whereas if it is too dominant they
will all be bad. In our examples we have chosen the cases
in which the Bayesian theoretical error ratio is about 30%.
Aswe are essentially interested in the efficiency of different
segmentation methods, we do not give here parameter
estimation results which form an intermediary step. All

b C

(a) “Letter B” + WMD, (b} “Letter B + WVD, and (¢) “Letter B” + CVD.

results concerning parameter estimation can be seen in

 [20]

The rates of wrongly classified pixels by different unsu-
pervised methods must be compared with “theoretical”
rates, i.e., obtained from real and noisy images, which are
given in Table 2, 7

Let us note that the theoretical rate above is the rate
obtained using parameters estimated from both real and
noisy images and is not exactly the theoretical Bayesian
rate. In fact, priors in each sample used are not necessarily
stationary, and the problem of compatibility of the model
used can arise. To be more precise, let us consider a sample
of 100 points where the first 50 points are distributed ac-
cording to priors a; = 0.3, @, = 0.7 and the final 50 points
are distributed according to priors &y = 0.7, ap = 0.3. If
we assume sample stationarity, the estimation of priors
will give approximately &, = (1.5, & = 0.5, which will be
used in the discriminating functions. Thus the first 50 noisy
points will be wrongly classified, as with the final 50 points,
and the theoretical rate will be superior to the Bayesian
rate which corresponds to the case where the whole sample
is distributed according to priors «; = 0.5, a; = 0.5. In
particular, this explains why the theoretical rate varies with
images. In Fig. 3 we give all the results that we have ob-
tained. :

TABLE 2
Theoretical Rate of Wrongly Classified Pixels
Ring Gibbs Letter B
Blind Contextual Blind Contextual Blind Contextual
MD VD MD VD MD VD MD vD MD VD MD vD
WH CR WH CR WH CR WH CR WH CR WH CR
27,0 252 224 26,5 214 324 30,5 353 27,0 30,2 30,4 459 25,1 234 20,2 24.9 19,6 299

Note. MDD, means discriminating neise; VD, variances discriminating noise; WH, white noise; CR, correlated noise; contextual, context limited

to one pixel.
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FIG. 3. Percentage of wrongly classified pixels in (left) “Ring,” (middle) ““Gibbs,” and (right} “Letter B.” (1) Blind segmentation, (2) blind
adaptive segmentaton, (3) contextual segmentation, and {4) contextual adaptive segmentation.

The most striking result is the great efficiency, in some
situations, of the adaptive methods. They prove extremely
successful in the case of the homogeneous image (letter B)
corrupted with a VD white noise. The contextual adaptive
SEM- and ICE-based methods give an error of 4.15 and
4.38%, respectively, when the theoretical error is 19.6%.

The blind adaptive EM-, SEM-, and ICE-based methods
give an error of 5.21, 5.20, and 5.13%, respectively, when
the theoretical error is 23.4%. We note that in the VD
case its use is always effective, except in the case of very
nonhomogeneous images (image “ring’} and correlated
noise. In the case of leiter B corrupted with MD white
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noise, the unsupervised contextual ASEM-based method
gives 11% as an error rate when the theoretical error is
20.2%. Similar remarks apply to blind segmentation:
AICE- and ASEM-based methods give about 12% when
the theoretical error is 25.1%. This confirms the good be-
havior of ASEM tested in the unsupervised segmentation
of radar images [24, 25).

To be more precise, the results obtained allow us to put
forward the following:

4.2, Comparison between Three Mixture Estimation
Algorithms and Their Adaptive Versions

The calculation.of the mean errors from all data available
for three algorithms gives

EM AEM ICE AICE SEM ASEM r
30,08 2023 2959 20.98 30.04 2008 2574

If we take into account data available for ICE, AICE,
SEM, and ASEM, we obtain

ICE AICE SEM ASEM
31.08 2200 3143 21.17

Thus we can say that the behavior of EM, ICE, and SEM
are comparable, and similarly for AEM, AICE, and
ASEM. Roughly speaking, the choice of EM, ICE, or SEM
has little importance in the context studied. The estimation
step does not strongly degrade the theoretical error and
the use of adaptive versions strongly improves it, which is
very interesting. Furthermore, the adaptive versions are
significantly more efficient that the classical ones. How-
ever, this advantage can vary strongly with image charac-
teristics. We have seen above situations where it is very
important. According to Fig. 3 it is less important in the
case of nonhomogeneous images and correlated noise.

4.3. Choice between Blind and Contextual Methods

For ICE, AICE, SEM, and ASEM, we can separate
mean errors between their blind (BICE, BAICE, BSEM,
BASEM) and contextual (CICE, CAICE, CSEM, CA-
SEM) versions. The results obtained are

BICE CICE BAICE CAICE BSEM CSEM BASEM CASEM
3000 3207 2166 2234 3045 3241 2084 21.50

We can see that in our context blind methods are prefera-
ble to the contextual ones. This is rather surprising from
a theoretical point of view: the theoretical Bayesian error
is smaller in the contextual case than in the blind one,
However, this can be explained by two factors. First, we
use just one neighbor as a context. Thus the small improve-
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ment of the theoretical rate can be offset by the greater
difficulties in the parameter estimation step. Second, the
compatibility of the model at the level of priors stationarity
can be worse in the contextual case than in the blind one.
Let us note that this conclusion remains valid only for the
situations studied: when the noise is less dominant or the

context used larger, results can be significantly different
[18].

44. Influence of the Noise Correlation

According to Fig. 3, we note that the noise correlation
strongly degrades the efficiency of adaptive segmentation
methods. The mean errors computed from Fig. 3 are

ICE AICE SEM ASEM
WN 2925 1537 2911 13.72
CN 3292 2865 3374 28.63

We can see that adaptive methods are very effective with
white noise, and remain of interest with correlated noise.

4.5. Influence of MD and VD Aspects

As above, we compute different mean errors in the MD
and VD cases:

ICE AICE SEM ASEM
MD 3140 2350 3192 22.05
VD 3077 2051 3093 2030

We observe that the improvement in results obtained
with adaptive algorithms is independent of the MD or VD
aspects of noise. On the other hand, the methods remain
stable with respect to an MDD or VD nature of the noise.

4.6. Influence of Class Image Homogeneity

Calculation of mean errors gives

ICE AICE SEM ASEM
Ring 30.34 2174 3030 2036
Gibbs 3377 2835 3424 2780
Letter B 29.14 1594 29.73 15.36

We note that homogeneity plays an important role, espe-
cially in the behavior of the adaptive estimation algorithms-
based methods.

4.7. Examples

We give in Fig. 4 some examples of visual aspects of
normal and adaptive unsupervised segmentations.
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FIG. 4. “Letter B” + WVD (Fig. 2b). {a) segmented with blind EM and (b) segmented with blind AEM. “Letter B* + WMD (Fig. 2a}. {c}
Segmented with contextual EM, and (d) segmented with contextual AEM.

We can observe a real visual improvement of results
when applying an adaptive version of EM.

5. CONCLUSIONS

We have presented in this paper some results of a
simulation study of the behavior of different unsupervised
local Bayesian segmentation methods in different situa-
tions. Situations differed in the homogeneity of images,
independence or correlation of the noise, and its means
discriminating or variances discriminating nature. Ac-
cording to the results obtained, all these factors have
some influence on the behavior of the different methods
studied. Unsupervised segmentation methods were distin-
guished only by the estimation step. Using Gaussian
mixture estimation, we have studied three different aigo-
rithms EM, ICE, and SEM along with their adaptive
versions AEM, AICE, and ASEM, where AEM and
AICE are new. The results obtained aliow us to put
forth the following four conclusions:

1. Choice of EM, ICE, or SEM has little importance;

2. Adaptive versions of EM, ICE, or SEM should be
used;

3. When the context used is reduced to one neighbor,
blind methods are preferable to contextual ones;

4. The methods considered remain stable when image
characteristics change.

In spite of the first conclusion, let us note that EM, ICE,
and SEM are three different general mixture estimation
methods, and their effectiveness can differ in other sifua-
tions. The equivalence of their behavior here may be due
to the robustness of the segmentation methods considered:

although the estimated parameters are different, their dif-
ferences are too small to influence the effectiveness of the
segmentation method used. Some robustness curves we
present in [20] tend to confirm such an explanation. The
second conclusion confirms the results presented in [24,25].
The problem of automatically choosing the best window W,
remains open. Results exposed in [24, 25], though, show
that the adaptive SEM-based unsupervised segmentation
method is relatively “robust” with respect to the window
size considered. The third conclusion should be interpreted
with care. As we showed in [18], in many situations the
use of larger context, containing four nearest neighbors,
can be beneficial. Furthermore, as stated in Section 4.1,
we studied only the limit cases and we cannot say under
which circumstances regarding the signal-to-noise ratio
this conclusion remains valid. The fourth conclusion
means that different characteristics of images do not
disturb significantly the effectiveness of unsupervised
methods. More precisely, the rates of Fig. 3 follow the
theoretical rates of Table 2. This confirms results of
some of our previous work [3, 16]. The general behavior
of local methods is different from that of global methods
which are extremely effective in certain situatons, but
can also give bad results when images are nonhomoge-
neous and the noise is correlated,

Finally, the general conclusion is that when the noise s
pronounced we have to use blind adaptive unsupervised
segmentation methods and the choice of mixture estima-
tion algorithms EM, ICE, or SEM has little importance.

These results give a partial answer to a general question:
which methods for which images? A good answer to this
question will undoubtedly take greater importance in fu-
ture automated image processing systems,
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APPENDIX

Real Images Segmentation Results

Image A

Image B

Image C

Image D
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4 classes

2 classes

3

5

classes

classes

Segmentation of A with Blind ICE

2 classes

4 classes

Segmentation of A with Blind AICE

2 classes

3 classes

4 classes

5

classes

Segmentation of B with Blind ICE

2 classes

4 classes

|
1

5 classes

Segmentation of B with Blind AICE
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2 classes | 3 classes

4 classes | 5 classes

Segmentation of C with Blind EM
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