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Iterative mitigation of intercell interference in
cellular networks based on Gaussian belief

propagation
Frederic Lehmann

Abstract

The mitigation of two-dimensional intersymbol interference has emerged recently as an important problem in
the field of storage technology and wireless communications. Several solutions based on message passing have
been proposed to perform equalization on two-dimensional channels with intersymbol interference. We present an
algorithm based on Gaussian belief propagation. We show that the proposed algorithm has interesting features
compared to the corresponding message passing solutions available in the literature. Firstly, the complexity of the
proposed equalizer is independent of the size of the constellation used for modulation. Secondly, since the complexity
is not exponential in the size of the state-space, the computational burden is reduced for channels with long memory.
As an application, we consider decentralized intercell interference mitigation in uplink cellular networks, where base
stations communicate with their neighbors to recover theirown users’ signals.

Index Terms

Gaussian belief propagation, two-dimensional channels, multi-access interference, iterative processing.

I. INTRODUCTION

Coding and equalization for two-dimensional intersymbol interference (2D ISI) channels has attracted considerable
interest during the last decade, due to recent developmentsin the area of optical and magnetic storage systems. Since
the materials used in today’s recording technology are expected to reach their physical limits in the near future,
new systems using multi-track optical storage [1] and holographic storage [2] have been proposed. Multiple-input
multiple-output (MIMO) communication systems over frequency selective fading channels can also be viewed as
an instance of 2D ISI [3]. In this paper, we will consider the uplink of a cellular network, where 2D ISI occurs
as a result of intercell interference. This problem was firsttreated in [4], where the presence of adjacent cells is
modeled as a multiple-access interference term and Shannon-theoretic limits are obtained.

Maximum-likelihood detection is generally unfeasible on 2D ISI channels, because this would require to use a
Viterbi algorithm [5] where each row of data is treated as an input symbol, leading to a huge input alphabet [6].
Therefore several suboptimal detection approaches have been proposed in the literature.

A first family of detection algorithms uses 2D filtering techniques to equalize the 2D ISI channel. The minimum
mean-square error (MMSE) equalizer and the decision feedback equalizer (DFE), which are well-known techniques
used to equalize 1D channels with memory, have been adapted for 2D ISI channels in [7] and [8], respectively.
The obtained results are satisfactory as long as the ISI is not too severe.

A second family of 2D equalizers process independently eachrow of received observations by taking into account
symbols estimated in neighboring rows. The decision feedback Viterbi algorithm (DF-VA) runs a Viterbi algorithm
for each row using hard decision feedback from previous rows[9]. The iterative multistrip (IMS) algorithm uses
the same idea, but in a more elaborate manner in order to achieve better performances [10]-[11]. The current row
of observations is associated with a finite number of previous rows to form a strip. Each row of observations is
then processed independently with a soft-input soft-output (SISO) BCJR equalizer [12], generating soft decisions
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for all the rows of symbols in the corresponding strip at a time. Since the strips corresponding to neighboring
rows overlap, multiple soft decisions are generated for each symbol. A factor graph representation of the equality
constraints between the symbols in overlapping rows can be constructed and used to derive an iterative message
passing algorithm. Thus each iteration runs the BCJR equalizer across the strips with soft decision feedback from
the previous iteration. A similar iterative equalizer has also appeared in [6], where the factor graph approach based
on equality constraints between strips is replaced by a trellis representation of vector symbols along the columns.
The stand-alone performances of the IMS equalizer is generally within 2 dB of the optimal performances. Even
better results were obtained in [13] by alternating row and column equalization and by processing more than one
row (or column) of observations per strip. However, the performance improvements came at the price of a higher
computational complexity per symbol.

Recently, a third class of algorithms relying on belief propagation (BP) have appeared in the literature. We assume
that the reader is familiar with the factor graph framework [14] . In [15]-[17], thea posteriori probability mass
function (pmf) of the information symbols is factorized in astraighforward manner, assuming that the ambient noise
is white and the symbols are independent. The resulting bipartite factor graph relates variable nodes corresponding
to the symbols with function nodes corresponding to the equations relating the noisy observations to the symbols.
Standard belief propagation is then applied to infer the unobserved symbols [18]. However, since such a factor
graph typically contains many short cycles, belief propagation may fail to converge. To circumvent this problem,
a different factorization of thea posteriori pmf of the information symbols, combined with generalized belief
propagation (GBP) [19] was proposed in [20].

In this paper, we consider the application of Gaussian belief propagation (GaBP) [21]-[26] to the second family
of 2D equalizers. For the sake of simplicity, we will restrict ourselves to processing the rows of observations
independently, as in the IMS equalizer [10]. A straightforward generalization would allow the processing of multiple
rows of observations per strip as in [13]. In order to apply GaBP, me must assume that all the messages exchanged
on the factor graph representation of the 2D equalization problem are Gaussian distributions. This is obviously
an approximation since this corresponds to replacing the natural discrete state-space of unobserved information
symbols by a continuous state-space. However, the performance loss of iterative equalization using the GaBP-based
equalizer instead of the IMS equalizer is small. The proposed approach has a number of advantages. The complexity
of the GaBP-based equalizer does not depend on the size of theconstellation used for modulation. Moreover, as
we shall see, the complexity of the GaBP-based equalizer is not exponential in the size of the state-space as for
the IMS equalizer. Therefore, when the spatial interference is not restricted to the immediately adjacent cells, a
substantial reduction in computational complexity is obtained.

The main technical contributions of this work are
• A state-space model suitable for the uplink of hexagonal cellular networks with full frequency reuse, where

intercell interference is regarded as causal 2D ISI affecting each base station.
• A 2D interference cancellation method based on a Gaussian approximation of all the messages used in belief

propagation on a factor graph representation of the proposed state-space model.
• The use of higher order modulations and the cancellation of interference, not limited to the nearest neighboring

cells, becomes feasible with an acceptable loss of power efficiency, thanks to a lower computational complexity
of the proposed scheme relatively to regular BP and BCJR-like algorithms.

We have presented a preliminary version of the GaBP-based equalizer, suitable for binary phase shift keying
(BPSK), in the conference paper [27]. In this paper, we provide a unified presentation of the proposed equalization
technique along with a generalization to higher order modulations. We also mention that the resulting 2D equalizer
bears some resemblance to the algorithm by Guo and Ping, suitable only for 1D ISI channels [28].

Throughout the paper, bold letters indicate vectors and matrices, whileIm and0m×n denote them×m identity
matrix and them × n all-zero matrix, respectively.N (x : m,P) denotes a complex Gaussian distribution of the
variablex, with meanm and covariance matrixP.

This paper is organized as follows. First, Sec. II models intercell interference as a 2D ISI problem, which is in
turn cast in a state-space form. In Sec. III, we introduce ourGaBP-based SISO equalizer processing a single row of
observations. Sec. IV is devoted to iterative equalizationfor 2D ISI channels. Finally, in Sec. V, the performances
of the proposed algorithm are assessed through numerical simulations and compared with existing message passing
methods.
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II. SYSTEM MODEL

A. Network Model

We consider a cellular network ofI ×J cells. Within each cell, the users are assumed orthogonal (either in time,
frequency or code). Therefore, without loss of generality,we can consider a single user per cell. In the cell indexed
by (i, j), 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1, the user transmits an i.i.d. (independently and identically distributed) data
symbol bi,j, drawn from the discrete alphabet (constellation)A = {a0, . . . , a|A|−1}, to the intended base station
(BS). With the standard assumption that the multi-access interference is confined to adjacent cells, the received
observation for cell(i, j) can be written as

yi,j =

M−1
∑

m=0

N−1
∑

n=0

hm,n
i,j bi−m,j−n + ni,j (1)

where{hm,n
i,j , 0 ≤ m ≤ M −1, 0 ≤ n ≤ N −1} are the coefficients of the 2D multi-access interference channel and

ni,j is a complex additive white Gaussian noise (AWGN) term with zero mean and varianceσ2. In Appendix A,
we show how the 2D channel, which is a priori non-causal, can be converted to the causal model adopted in (1).

We adapt the network model proposed by Aktas et al. [16], which is able to take into account the effect of path
loss and fading, to the standard hexagonal network structure depicted in Fig. 1. The 2D channel coefficients{hm,n

i,j }
are independently distributed according to a zero-mean complex Gaussian distribution.

The first channel model, denoted by channel A, is representative of an hexagonal network with interference
truncated to the6 nearest neighboring cells. Therefore, the matrix of 2D channel coefficients for cell(i, j) is such
that M = 3, N = 3, and has the form

Channel A:[hm,n
i,j ] =







h0,0
i,j h0,1

i,j 0

h1,0
i,j h1,1

i,j h1,2
i,j

0 h2,1
i,j h2,2

i,j







Moreover, as per the model by Aktas et al., the variances of the 2D channel coefficients are independent of the
cell index(i, j), and are given in matrix form by

Channel A:
[

E
(

|hm,n
i,j |2

)]

=





a a 0
a 1 a
0 a a



 , ∀(i, j)

wherea is parameter of choice.
The second channel model, denoted by channel B, is representative of an hexagonal network with interference

truncated to the18 nearest neighboring cells. Therefore, the matrix of 2D channel coefficients for cell(i, j) is such
that M = 5, N = 5, and has the form

Channel B:[hm,n
i,j ] =















h0,0
i,j h0,1

i,j h0,2
i,j 0 0

h1,0
i,j h1,1

i,j h1,2
i,j h1,3

i,j 0

h2,0
i,j h2,1

i,j h2,2
i,j h2,3

i,j h2,4
i,j

0 h3,1
i,j h3,2

i,j h3,3
i,j h3,4

i,j

0 0 h4,2
i,j h4,3

i,j h4,4
i,j















Again, as per the model by Aktas et al., the variances of the 2Dchannel coefficients are independent of the cell
index (i, j), and are given in matrix form by

Channel B:
[

E
(

|hm,n
i,j |2

)]

=













b b b 0 0
b a a b 0
b a 1 a b
0 b a a b
0 0 b b b













, ∀(i, j)

wherea andb are parameters of choice.
More general channels with longer memory are easily obtained by taking into account interference from neigh-

boring cells even further away from each BS.
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B. State-space Model

For thei-th line of observations{yi,k, 0 ≤ k ≤ J − 1}, we define the statexk of sizeMN × 1

xk =



























bi−(M−1),k−(N−1)
...

bi,k−(N−1)
...

bi−(M−1),k
...

bi,k



























, (2)

which consists in raster scanning columnwise the data symbols illustrated in Fig. 2. Let us define the vector of 2D
ISI coefficients of sizeMN × 1 for cell (i, j)

hi,j =





























hM−1,N−1
i,j

...
h0,N−1

i,j
...

hM−1,0
i,j

...
h0,0

i,j





























, (3)

then we obtain the following state-space representation for the i-th line of observations
{

xk = Fxk−1 + Gik

yi,k = hT
i,kxk + ni,k, 0 ≤ k ≤ J − 1,

(4)

where the new input vector at instantk is defined as

ik =







bi−(M−1),k
...

bi,k






.

The state transition matrices are given by

F =

[

0N−1×1 IN−1

0 01×N−1

]

⊗ IM

and

G =

[

0N−1×1

1

]

⊗ IM ,

where the symbol⊗ denotes the Kronecker product.
The a posterioripmf of the input vectors and the 2D ISI states corresponding to the i-th line can be factorized

as follows (see Appendix B)

p(i1:J ,x1:J |yi,1:J) ∝ p(x0)
J

∏

k=1

p(ik)p(xk|ik,xk−1)p(yi,k|xk). (5)

The corresponding factor graph is depicted in Fig. 3 [14], where the function nodefk represents the factor
p(xk|ik,xk−1) and the function nodegk represents the factorp(yi,k|xk). From (4) we have

{

fk = p(xk|ik,xk−1) = δ (xk − (Fxk−1 + Gik))

gk = p(yi,k|xk) = N (yi,k : hT
i,kxk, σ

2).
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III. G ABP-BASED EQUALIZATION

In this section, we derive a low-complexity 2D equalizer based on GaBP [21]-[26] by approximating all the
messages, exchanged by the sum-product algorithm [14] on the factor graph depicted in Fig. 3, as Gaussian
distributions.

A. Prior distributions

First, we seek a Gaussian approximation of the prior distributions p(x0) and p(ik), k = 1, . . . , J appearing in
the factor graph.

We assume thatp(x0) is known and can be approximated as the Gaussian distribution N (x0 : x̂0,P0), whose
parameters are chosen asx̂0 = E[x0] andP0 = E[(x0 − x̂0)(x0 − x̂0)

H ].
Assuming that symbol-wisea priori log-likelihood ratios (LLRs) are available for the components of ik, i.e.































Laq

a (bi−(M−1),k) = ln
p(bi−(M−1),k = aq)

p(bi−(M−1),k = a0)
, q = 0, . . . , |A| − 1

...

Laq

a (bi,k) = ln
p(bi,k = aq)

p(bi,k = a0)
, q = 0, . . . , |A| − 1

(6)

a Gaussian approximation ofp(ik) of the formN (ik : ı̂k,Qk) is sought. Again, the standard solution consists in
matching the parameterŝık andQk to the mean and the covariance matrix of the discrete-valuedinput vectorik,
respectively. Using the fact that the data symbols are assumed independent yields [29]

ı̂k = E[ik] =







ma(bi−(M−1),k)
...

ma(bi,k)







where
ma(bi−m,k) = E [bi−m,k] , m = 0, . . . ,M − 1,

and

Qk = E[(ik − ı̂k)(ik − ı̂k)
H ]

= diag
(

σa(bi−(M−1),k)
2, . . . , σa(bi,k)

2
)

,
(7)

where
σa(bi−m,k)

2 = E
[

|bi−m,k|2
]

− |ma(bi−m,k)|2, m = 0, . . . ,M − 1.

Using (6), we can easily show that form = 0, . . . ,M − 1

E [bi−m,k] =

|A|−1
∑

q=0

aq
eL

aq
a (bi−m,k)

∑|A|−1
p=0 eL

ap
a (bi−m,k)

E
[

|bi−m,k|2
]

=

|A|−1
∑

q=0

|aq|2
eL

aq
a (bi−m,k)

∑|A|−1
p=0 eL

ap
a (bi−m,k)

.

Remark 3.1:For BPSK modulation, leta0 = +1 anda1 = −1, we obtain the simplified expressions in [27]

ma(bi−m,k) = − tanh

(

La1
a (bi−m,k)

2

)

,

σa(bi−m,k)
2 = 1 − ma(bi−m,k)

2, m = 0, . . . ,M − 1

Remark 3.2:In (7), the diagonal elements ofQk tend to0 when thea priori knowledge about the data symbols
becomes very reliable. In order to ensure numerical stability of GaBP, the diagonal elements ofQk are constraint
to be greater than a threshold, say≥ 10−3.
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B. Forward pass

Let µu→v(.) be the message sent by nodeu to nodev in the factor graph. Fig. 4 illustrates the notation on a
portion of the factor graph around the 2D ISI state variablexk.

Assuming thatµ
xk−1→fk

(xk−1) is parameterized by a Gaussian distribution such that

µ
xk−1→fk

(xk−1) = N (xk−1 : x̂k−1|k−1,Pk−1|k−1), (8)

the forward pass consists in computing a recursive expression for µ
xk→fk+1

(xk).
Let us first apply the sum-product rule at the function nodefk, we obtain

µfk→xk
(xk) =

∫ ∫

p(xk|ik,xk−1)p(ik)µxk−1→fk
(xk−1)dikdxk−1 (9)

We show in Appendix C thatµfk→xk
(xk) admits the following closed form expression

µfk→xk
(xk) ∝ N (xk : x̂k|k−1,Pk|k−1), (10)

where
{

x̂k|k−1 = Fx̂k−1|k−1 + Gı̂k

Pk|k−1 = FPk−1|k−1F
H + GQkG

H .

Now, applying the sum-product rule to the variable nodexk yields

µ
xk→fk+1

(xk) = µfk→xk
(xk)µgk→xk

(xk)

∝ N (xk : x̂k|k−1,Pk|k−1)N (yi,k : hT
i,kxk, σ

2).

We recognize the correction step of the well-known Kalman filter [30], therefore

µ
xk→fk+1

(xk) ∝ N (xk : x̂k|k,Pk|k), (11)

where










Kk = Pk|k−1h
∗
i,k(h

T
i,kPk|k−1h

∗
i,k + σ2)−1

x̂k|k = x̂k|k−1 + Kk(yi,k − hT
i,kx̂k|k−1)

Pk|k = Pk|k−1 − Kkh
T
i,kPk|k−1.

C. Backward pass

We are now looking for recursions analog to those found in Sec. III-B for the messages in the factor graph
propagated in the backward direction. Let us apply the sum-product rule to the function nodefk+1,

µfk+1→xk
(xk) =

∫ ∫

p(xk+1|ik+1,xk)p(ik+1)µxk+1→fk+1
(xk+1)dik+1dxk+1

=

∫ (∫

p(xk+1|ik+1,xk)p(ik+1)dik+1

)

µ
xk+1→fk+1

(xk+1)dxk+1

=

∫

p(xk+1|xk)µxk+1→fk+1
(xk+1)dxk+1.

(12)

We easily recognize that (12) corresponds to the backwards prediction step in a two-filter Kalman smoother [31],
therefore,µ

xk+1→fk+1
(xk+1) ∝ p(yi,k+1:J |xk+1). It follows thatµ

xk+1→fk+1
(xk+1) is a likelihood, which in general

cannot be assimilated to a Gaussian probability density ofxk+1, as required for GaBP. However, from Bayes rule
we havep(xk+1|yi,k+1:J) ∝ p(xk+1)p(yi,k+1:J |xk+1). Thusp(xk+1)µxk+1→fk+1

(xk+1) can be parameterized by a
Gaussian density ofxk+1 such that

p(xk+1)µxk+1→fk+1
(xk+1) = N (xk+1 : x̂k+1|k+1:J ,Pk+1|k+1:J). (13)

We must rearrange (12) so that (13) appears explicitly in therecursion.
First, we express the forward dynamicsp(xk+1|xk) as a function of the backward dynamicsp(xk|xk+1) using

Bayes rule

p(xk+1|xk) =
p(xk|xk+1)p(xk+1)

p(xk)
. (14)
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We can show that the prior distribution of the 2D ISI states and the corresponding backward dynamics are Gaussian
of the form

{

p(xk) = N (xk : x̂k,Πk)

p(xk|xk+1) = N (xk : F̃k+1xk+1 + ck+1, Q̃k+1)
(15)

(see Appendix D for the demonstration and the expression of the parameterŝxk,Πk, F̃k+1, ck+1, Q̃k+1).
Then, injecting (14) into (12) leads to

p(xk)µfk+1→xk
(xk) =

∫

p(xk|xk+1)p(xk+1)µxk+1→fk+1
(xk+1)dxk+1

=

∫

N (xk : F̃k+1xk+1 + ck+1, Q̃k+1)N (xk+1 : x̂k+1|k+1:J ,Pk+1|k+1:J)dxk+1.

(16)

Noting the the last equality in (16) is the integral appearing in the (backward) prediction step of Kalman filtering [30],
we readily have

p(xk)µfk+1→xk
(xk) = N (xk : x̂k|k+1:J ,Pk|k+1:J), (17)

where
{

x̂k|k+1:J = F̃k+1x̂k+1|k+1:J + ck+1

Pk|k+1:J = F̃k+1Pk+1|k+1:JF̃
H
k+1 + Q̃k+1.

To complete the backward pass, we apply the sum-product ruleto the variable nodexk

p(xk)µxk→fk
(xk) = p(xk)µfk+1→xk

(xk)µgk→xk
(xk)

∝ N (xk : x̂k|k+1:J ,Pk|k+1:J)N (yi,k : hT
i,kxk, σ

2).

Again, we recognize the (backward) correction step of the well-known Kalman filter [30], therefore

p(xk)µxk→fk
(xk) ∝ N (xk : x̂k|k:J ,Pk|k:J), (18)

where










K̃k = Pk|k+1:Jh
∗
i,k(h

T
i,kPk|k+1:Jh

∗
i,k + σ2)−1

x̂k|k:J = x̂k|k+1:J + K̃k(yi,k − hT
i,kx̂k|k+1:J)

Pk|k:J = Pk|k+1:J − K̃kh
T
i,kPk|k+1:J .

D. Smoothing pass

The sum-product algorithm computes thea posteriorimarginal probability distribution of the 2D ISI statexk as
the product of all incoming messages to variable nodexk in Fig. 4

p(xk|yi,1:J) ∝ µfk→xk
(xk) × p(xk)µfk+1→xk

(xk)µgk→xk
(xk)

p(xk)

which, according to (10), (18) and (15), can be rewritten as

p(xk|yi,1:J) ∝ N (xk : x̂k|k−1,Pk|k−1)N (xk : x̂k|k:J ,Pk|k:J)

N (xk : x̂k,Πk)
.

After straightforward algebraic manipulations, we obtainthe following simplification

p(xk|yi,1:J) ∝ N (xk : x̂k|1:J ,Pk|1:J), (19)

where 









Pk|1:J =
[

P−1
k|k−1 + P−1

k|k:J − Π−1
k

]−1

x̂k|1:J = P−1
k|1:J

[

P−1
k|k−1x̂k|k−1 + P−1

k|k:J x̂k|k:J − Π−1
k x̂k

]

.
(20)
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E. Computation of symbol-wise extrinsic log-likelihood ratios

From (2), theM last coordinates ofxk correspond to the data vectorik = [bi−(M−1),k, . . . , bi,k]
T . Therefore, the

a posterioriprobability distribution ofbi−m,k, seen as a complex random variable, has the form

p(bi−m,k|yi,1:J) ∝ N (bi−m,k : mp(bi−m,k), σp(bi−m,k)
2), m = 0, . . . ,M − 1, (21)

where the meanmp(bi−m,k) and the varianceσp(bi−m,k)
2, m = 0, . . . ,M − 1 are easily extracted from (20) by

marginalization. Convertingbi−m,k back to a discrete random variable inA, the expression of the symbol-wisea
posteriori log-likelihood ratio is obtained form = 0, . . . ,M − 1 andaq ∈ A as [33]

Laq

p (bi−m,k|yi,1:J) = ln
p(bi−m,k = aq|yi,1:J)

p(bi−m,k = a0|yi,1:J)

= ln

1
πσp(bi−m,k)2 e

− |aq−mp(bi−m,k)|2

σp(bi−m,k)2

1
πσp(bi−m,k)2 e

− |a0−mp(bi−m,k)|2

σp(bi−m,k)2

.

However, in message passing algorithms, the messages of interest are symbol-wiseextrinsic log-likelihood ratios
obtained form = 0, . . . ,M − 1 andaq ∈ A as

Laq

e (bi−m,k|yi,1:J) = w






ln

1
πσp(bi−m,k)2 e

− |aq−mp(bi−m,k)|2

σp(bi−m,k)2

1
πσp(bi−m,k)2 e

− |a0−mp(bi−m,k)|2

σp(bi−m,k)2

− ln

1
πσa(bi−m,k)2 e

− |aq−ma(bi−m,k)|2

σa(bi−m,k)2

1
πσa(bi−m,k)2 e

− |a0−ma(bi−m,k)|2

σa(bi−m,k)2






, (22)

where the scaling factor0 ≤ w ≤ 1. The reason for introducing the scaling factor is that suboptimum detectors tend
to overestimate the reliability of their soft-outputs, which adversely affects the convergence of iterative methods
using such detectors as building blocks [34]-[35]. We applya well-known solution to this problem, which consists
in extrinsic information weighting [34]-[35].

Remark 3.3:For BPSK modulation, leta0 = +1 anda1 = −1, we obtain the simplified expressions

La1

p (bi−m,k|yi,1:J) = −4Re(mp(bi−m,k))

σp(bi−m,k)2
, m = 0, . . . ,M − 1

and

La1

e (bi−m,k|yi,1:J) = −4w

(

Re(mp(bi−m,k))

σp(bi−m,k)2
− Re(ma(bi−m,k))

σa(bi−m,k)2

)

, m = 0, . . . ,M − 1.

IV. GABP-BASED ITERATIVE EQUALIZATION

A. Proposed iterative method

The algorithm described in the previous section is suitableonly for processing one line of observations. Moreover,
it can be seen from (22) that the GaBP equalizer corresponding to thei-th line of observations generates soft outputs
for the current line, but also for theM−1 previous lines of data symbols. Therefore, once all the lines of observations
have been processed,M soft outputs are available for each data symbol.

In order to describe the equalization process in the contextof a 2D cellular network, we need to construct the
complete factor graph corresponding to all the lines of observations. The complete factor graph is represented
in Fig. 5, for channel A (henceM = 3). The variable nodes corresponding to the data symbols{bi,j} and the
noisy observations{yi,j} of all cells have been linewise raster scanned. In Fig. 5, when processing thei-th line of
observations at any time instantk, the corresponding input vector

ik =







bi−(M−1),k
...

bi,k







receives inputa priori log-likelihood ratiosA0 for bi,k, A1 for bi−1,k, . . . , AM−1 for bi−(M−1),k, whereAm is a
shorthand notation for the quantitiesL

aq

a (bi−m,k) defined in (6). Then, outputa posteriori log-likelihood ratiosE0
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1) Initialize the iteration index:l = 0
2) Initialize the messages sent by the GaBP equalization subgraphs towards the data symbol

nodes:E0(l) = 0, E1(l) = 0, . . . , EM−1(l) = 0
3) for l = 1 : Nt

• The messagesA0(l), A1(l), . . . , AM−1(l), sent by a data symbol node towards a GaBP
equalization subgraph are the sum of all incoming messages,except the message coming
from that GaBP equalization subgraph.

• The messagesE0(l), E1(l), . . . , EM−1(l), sent by a GaBP equalization subgraph towards
a data symbol node, are given by (22).

TABLE I
GABP-BASED ITERATIVE EQUALIZATION

for bi,k, E1 for bi−1,k, . . . , EM−1 for bi−M−1,k are produced, whereEm is a shorthand notation for the quantities
L

aq

e (bi−m,k|yi,1:J) defined in (22).
The algorithm of Table I summarizes the proposed iterative procedure. Since the complete factor graph is

loopy, we performNt iterations, where one iteration corresponds to one round ofmessage computation for all data
symbol nodes, followed by GaBP equalization applied to all the lines of observations (see Sec. III). Hence the
name GaBP-based iterative equalization for the proposed algorithm.

Since we chose to process one line of observations at a time, the receiver will have the same structure as the
IMS decoder originally introduced in [10], except that the BCJR equalizers are replaced with GaBP equalizers.
From a practical point of view, GaBP-based iterative equalization is a form of distributed message passing between
the base stations. To be more specific, for each iteration, during the processing of one line of observations, each
base station performs local processing of the measurement from the mobile device located in its cell. Each base
station then communicates soft information toM − 1 neighboring base stations. From an implementation point of
view, high bandwidth connections, such fast fiber links, arerequired for sharing information between neighboring
base stations, as explained in [38].

B. Convergence analysis

We use extrinsic information transfer (EXIT) charts [36] toanalyze the convergence properties of the proposed
iterative equalizer. For ease of exposition, we will restrict ourselves to BPSK modulation. A generalization to higher
order modulations would be obtained by adapting the technique proposed in [37].

Ignoring the presence of cycle in the graph, we can assume that all quantitiesAm andEm, 0 ≤ m ≤ M − 1, at
any time instant are i.i.d. (identically and idependently distributed). Following [36], we assume thatAm is Gaussian
distributed with varianceσ2

Am
and meanσ2

Am
/2, 0 ≤ m ≤ M − 1. Then, the input mutual information between

the a priori log-likelihood ratiosAm and the corresponding binary data symbols, for0 ≤ m ≤ M − 1, has the
form [36]























IA0 = J(σA0
)

IA1 = J(σA1
)

...

IAM−1 = J(σAM−1
)

where

J(σ) = 1 −
∫ +∞

−∞

e−(ξ−σ2/2)2/2σ2

√
2πσ

log2(1 + e−ξ)dξ.

For a fixed value of signal-to-noise ratio (SNR), we collect the a posteriori log-likelihood ratios after one round
of iterative GaBP equalization, obtained by performing Monte-Carlo simulations on a cellular network withI =
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J = 20, with random 2D channel coefficients drawn according to the channel model in Sec. II-A. Moreover,a
priori log-likelihood ratios,Am, are drawn from a real Gaussian distribution with meanσ2

Am
/2 and varianceσ2

Am
,

0 ≤ m ≤ M − 1. Using the histogram method proposed in [36], the output mutual information between thea
posteriori log-likelihood ratiosEm and the corresponding binary data symbols, for0 ≤ m ≤ M − 1, can be
computed. The results can be presented in the form of mappingfunctionsT0(.), T1(.), . . . , TM−1(.) as follows























IE0 = T0(IA1, IA2, . . . , IAM−1, SNR)

IE1 = T1(IA1, IA2, . . . , IAM−1, SNR)

...

IEM−1 = TM−1(IA1, IA2, . . . , IAM−1, SNR).

The evolution of the input/output mutual information and the predicted bit-error rate (BER),Pb, for the algorithm
of Table I is summarized in Table II [36].

1) Initialize the iteration index:l = 0
2) IE0(l) = 0, IE1(l) = 0, . . . , IEM−1(l) = 0
3) for l = 1 : Nt

IA0(l) = J

0

@

s

X

m6=0

J−1(IEm(l − 1))2

1

A

IA1(l) = J

0

@

s

X

m6=1

J−1(IEm(l − 1))2

1

A

...

IAM−1(l) = J

0

@

s

X

m6=M−1

J−1(IEm(l − 1))2

1

A

IE0(l) = T0 (IA1(l), IA2(l), . . . , IAM−1(l), SNR)

IE1(l) = T1 (IA1(l), IA2(l), . . . , IAM−1(l), SNR)

...

IEM−1(l) = TM−1 (IA1(l), IA2(l), . . . , IAM−1(l), SNR)

Pb(l) = 0.5 erfc

0

B

@

q

P

M−1

m=0
J−1(IEm(l))2

2
√

2

1

C

A

TABLE II
EVOLUTION OF THE INPUT/OUTPUT MUTUAL INFORMATION AND THE PREDICTEDBER

C. Complexity comparison for the proposed and existing methods

For one line of observations, the IMS receiver applies the sum-product algorithm on the factor graph depicted
in Fig. 3, assuming that the input vectors{ik} are discrete-valued. Thus exact Bayesian inference is implemented,
because the factor graph has a tree structure [18]. Since theinput vectors{ik} are discrete-valued, the hidden
states{xk} are also discrete-valued and their dynamics can be represented by a trellis with|A|NM states [5]. The
sum-product algorithm then reduces to the Baum-Welch algorithm [39]. A slightly different state-space model for
2D ISI was introduced in [10], where the likelihood of the observations depends on the state transitions instead of
the states as per our model. This enables to represent the dynamics of the 2D ISI states with a trellis containing
only |A|(N−1)M states. The sum-product algorithm then becomes equivalentto the BCJR algorithm [12]. Thus,
the computational complexity of the IMS receiver isO(|A|NM ) per data symbol and per iteration. Similarly, one
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can show that the complexity per data symbol and per iteration of the BP method [15]-[17] is alsoO(|A|NM ).
Therefore these 2D equalization procedures become untractable even for moderate values ofM , N and |A| (say
for M,N > 3 and |A| > 2).

The proposed iterative method described in Sec. IV-A relieson the GaBP equalizer of Sec. III, which is in essence
a Kalman smoother incorporating a priori information. A detailed complexity analysis of the Kalman smoother is
provided in [40]. Namely, it is shown that the computationalcomplexity cost per recursion of the Kalman smoother
is O(p3), wherep denotes the size of the state vector. Note that this result holds irrespective of the actual content
of the state vector. Remarkably, this implies that the complexity of the proposed method is independent of the size
of the constellation used for modulation. Since the size of the state vector given by (2) isMN , the computational
complexity of the proposed GaBP-based iterative equalization method isO((MN)3) per data symbol and per
iteration. Note that unlike the IMS or the BP method, the complexity of the proposed algorithm has only a modest
cubically (instead of exponentially) increasing complexity as a function of the size of the state-space.

V. SIMULATION RESULTS

The performance of the proposed schemes is assessed by computer simulations in terms of bit-error rate (BER)
versus the normalized signal-to-noise ratio (SNR) defined as

SNR =

∑M−1
m=0

∑N−1
n=0 E

[

|hm,n
i,j |2

]

σ2 log2 |A| ,

which is independent of the cell index(i, j), according to the network model introduced in Sec. II-A. Unless
otherwise stated, iterative equalization is simulated forchannel A, withM = N = 3, corresponding to an hexagonal
network with intercell interference limited to the6 nearest neighboring cells. Also, we assume that the base stations
have perfect knowledge of their 2D channel parameters. The size of the considered cellular network is set to
I = J = 20. Our experiments showed that the influence of the network size on the bit error rate is not significant.
Guard bands, similar to those described in [41], are used to initialize and terminate the equalizer processing each
row of observations in a known state. In particular for the GaBP equalizer of Sec. III, the prior distribution of the
initial state,N (x0 : x̂0,P0), can be chosen such thatx̂0 is the known data vector contained in the guard band and
P0 = 10−3IMN . The weight factor appearing in (22) was set empirically tow = 0.7.

A. Convergence analysis using EXIT functions

We study the convergence properties of the proposed GaBP-based iterative equalization technique by applying
the EXIT function methodology described in Sec. IV-B. For simplicity, we restrict ourselves to BPSK modulation
and channel A (i.e.M = 3). Fig. 6-7 (resp. Fig. 8) illustrate the evolution of the input/output mutual information
(resp. the predicted BER) as a function of the iteration index, whena = 0.5 andSNR = 10 dB. We observe that
the proposed algorithm converges withinNt = 5 iterations. Similar results were obtained for different values ofa
andSNR.

The EXIT methodology assumes the independence of all the messages exchanged on the factor graph of Fig. 5,
by completely ignoring the presence of cycles. Fig. 9 compares the measured BER with the predicted BER obtained
with the EXIT methodology,Pb. Since there is only a minor difference between the two curves, we conclude that
the existence of cycles in the factor graph has only a small impact on the performances of the proposed method.

B. Comparison with existing message passing methods

We first consider the performances of iterative equalization for BPSK modulation.
Fig. 10 shows the bit error rate (BER) performances averagedover all the cells in the network, corresponding to

channel A with parametera = 0.5. Nt = 5 rounds of iterative equalization are performed for the IMS [10]-[11],
BP [15]-[17] and GaBP equalization technique. Our experiments showed that augmenting the number of iterations
did not improve the BER performances for any of the equalization method.
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In order to assess the gap between actual and optimal performances, a single user lower bound on the BER is
also computed by considering that the total energy collected at BS(i, j) originates from the user in cell(i, j). For
BPSK, the expression of this lower bound is given by

PBPSK(σ) = E



Q





√

2
∑M−1

m=0

∑N−1
n=0 |hm,n

i,j |2
σ2







 ,

where the expectation is over all channel realizations. We observe that, at high SNR, IMS-based iterative equalization
is quasi-optimal, while BP-based and GaBP-based iterativeequalization suffer from a 0.9 dB and 1.4 dB loss in
terms of power efficiency, respectively. Considering that GaBP equalization, as opposed to IMS and BP equalization,
has a complexity which is not exponential in the size of the state-space, we conclude that GaBP-based iterative
equalization trades a small loss in terms of power efficiencyagainst a lower implementation cost.

Fig. 11 shows the same results for channel A with parametera = 0.75. At high SNR, both BP-based and
GaBP-based iterative equalization suffer from a 1.2 dB lossin terms of power efficiency, while IMS-based iterative
equalization is again quasi-optimal.

C. Influence of the channel parameters in the Aktas et al. model

Fig. 12 illustrates the BER performance of the proposed iterative GaBP equalizer with BPSK modulation on
channel A, for different values of the channel parametera. We observe that for a fixed SNR, the BER increases
with a, as a result of a higher spatial diversity advantage provided by cooperative base station processing. Also, the
performance loss with respect to the single user bound decreases witha. The results for channel B, with different
values of the channel parametersa andb, are shown in Fig 13.

Results for a more realistic cellular network model, including path loss, shadowing and multipath fading models,
are provided in Sec. V-F.

D. Higher order modulations

We study the performances of GaBP-based iterative equalization using QPSK and 8-PSK with Gray labeling.
For QPSK and 8-PSK, the expression of the single user lower bound is obtained as

PQPSK(σ) = E



Q





√

∑M−1
m=0

∑N−1
n=0 |hm,n

i,j |2
σ2







 ,

P8−PSK(σ) = E





2

3
Q





√

2 sin(π/8)2
∑M−1

m=0

∑N−1
n=0 |hm,n

i,j |2
σ2







 .

Fig. 14 and show the BER performances of GaBP-based iterative equalization, on channel A with parameter
a = 0.5, for QPSK modulation. The suboptimality of GaBP-based iterative equalization vs. the single user lower
bound leads to a power efficiency loss of 3 dB for QPSK modulation, afterNt = 6 iterations.

Fig. 15 shows the same results for 8-PSK modulation. The suboptimality of GaBP-based iterative equalization
vs. the single user lower bound leads to a power efficiency loss of 2.6 dB for 8-PSK modulation, afterNt = 10
iterations.

No further improvements could be observed by augmenting thenumber of iterations. IMS and BP-based iterative
equalization have not been implemented, due to their prohibitive complexity when higher order modulations are
used.

E. Long memory channel example

In order to further illustrate the complexity advantage of the proposed algorithm over existing IMS and BP-based
iterative equalization, we now consider channel B with parametersa = 0.5 and b = 0.1, corresponding to an
hexagonal network with intercell interference limited to the 18 nearest neighboring cells. For this experiment, we
use again BPSK modulation for simplicity. In this case, IMS equalization would be a formidable task, since each



13

BCJR equalizer would have to work on a trellis with220 states (i.e. more than one million possible discrete states).
For similar reasons, BP equalization would also be intractable.

We compare two tractable approaches with reasonable computational complexity

• the proposed GaBP-based iterative equalization with full 2D channel memory
• an IMS algorithm with an embedded reduced-state BCJR with truncated 2D channel memory inspired by [42],

where at the current iteration, an estimate of the residual 2D ISI and its variance are obtained by computing
soft-decisions based on the LLRs computed at the previous iteration.

Fig. 16-17 show the BER performances afterNt = 5 rounds of iterative equalization on channel B. The proposed
GaBP-based method with full5×5 channel memory outperforms the reduced-state IMS with truncated3×3 memory.

F. Realistic propagation modeling in a cellular network

In Sec. II-A, channel A and channel B were introduced as simple propagation models for the uplink of hexagonal
cellular networks. We now consider a realistic propagationmodel including the effect of path loss, shadowing and
multipath fading [43], [17]. Assuming full frequency reuse, each BS receives the desired signal from the user in its
cell and intercell interference from the users in all other cells. The channel coefficient from the user in cell(i, j)
to the BS in cell(k, l) can be modeled as

h(i,j)→(k,l) =
√

P(i,j)→(k,l)α(i,j)→(k,l), (23)

whereP(i,j)→(k,l) (resp.α(i,j)→(k,l)) denotes the power (resp. the multipath fading coefficient)of the signal received
at the BS in cell(k, l) from the user in cell(i, j). Assuming flat Rayleigh fading, the coefficientsα(i,j)→(k,l) are
drawn independently from a complex circular Gaussian distribution with zero mean and unit variance [43]. In order
to model the propagation path loss and shadowing due to largeobstacles [43], we let

P(i,j)→(k,l) = K
P

(i,j)
TX

dγ
(i,j)→(k,l)

10
Ψ(i,j)→(k,l)

10 ,

whereK is a constant,P (i,j)
TX is the transmit power of the user in cell(i, j), d(i,j)→(k,l) is the distance between the

user in cell(i, j) and the BS in cell(k, l) andγ is the path loss exponent. The shadowing exponentsΨ(i,j)→(k,l)

are drawn independently from a real Gaussian distribution with zero mean and standard deviationσΨ dB [43]. In
our simulations, the distance between base stations is 1 km,γ = 3.5 and σΨ = 4 dB. Assuming perfect power
control of the user in each cell with its intended BS, we obtain the constraints

P(i,j)→(i,j) = Γ, ∀(i, j),

whereΓ is a constant, so that the SNR of a user with the intended BS isΓ/σ2. These constraints are sufficient to
specify entirely the value of all channel coefficients in (23).

Fig. 18 shows the BER performances afterNt = 5 rounds of the proposed iterative GaBP equalizer with BPSK
modulation obtained via Monte Carlo simulations, where each user location is drawn uniformly at random in the
hexagonal cell it belongs to. For a 2D channel memory truncated to(M = 3, N = 3), very poor results are obtained.
For a 2D channel memory truncated to(M = 5, N = 5), at low and medium SNR values the BER approches the
single user bound, while at high SNR where the truncated interference plays a dominant role, an error floor occurs.

VI. CONCLUSION

In this paper, we introduced a soft-output 2D equalization method, which is suitable for iterative equalization
on 2D ISI channels. The proposed method processes each line of observations using Gaussian belief propagation
(GaBP) on a suitable factor graph representation. Since theactual state-space is discrete, parameterizing the messages
exchanged on the factor graph as Gaussian distributions is acrude approximation. Nevertheless, satisfactory
performances were obtained for intercell interference cancellation for the uplink of wireless cellular networks
with distributed BS processing.

The benefit of the proposed algorithm is twofold. Firstly, the GaBP equalizer has a complexity which is
independent of the size of the constellation used for modulation. Secondly, the computational complexity of the
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proposed GaBP-based equalization is much lower than its BCJR or BP-based counterparts for 2D channels with
long memory.

Future work will consider GaBP-based equalization performed jointly with channel decoding and channel esti-
mation.
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APPENDIX A
NON-CAUSAL CHANNEL MODELS

Assume a rectangularI × J network of BSs. With the standard assumption that the multi-access interference is
confined to adjacent cells, the received observation at the BS of cell (i, j) has the form

ri,j =

M0
∑

k=−M0

N0
∑

l=−N0

fk+M0,l+N0

i,j bi−k,j−l + wi,j.

where{f i,j
m,n} are the coefficients of the 2D multi-access interference channel andwi,j is an additive white Gaussian

noise (AWGN) term. As suggested in [11], by introducing the delay (M0, N0), we obtain

ri−M0,j−N0
=

M0
∑

k=−M0

N0
∑

l=−N0

fk+M0,l+N0

i−M0,j−N0
bi−k−M0,j−l−N0

+ wi−M0,j−N0
.

Using the change of variablesm = k + M0, n = l + N0

ri−M0,j−N0
=

2M0
∑

m=0

2N0
∑

n=0

fm,n
i−M0,j−N0

bi−m,j−n + wi−M0,j−N0
.

Now let M = 2M0 + 1, N = 2N0 + 1, yi,j = ri−M0,j−N0
, hm,n

i,j = fm,n
i−M0,j−N0

andni,j = wi−M0,j−N0
, the causal

model in (1) is obtained.
This reasoning can easily be extended to a cellular network with hexagonal 2D cellular structure.

APPENDIX B
PROOF OF THE FACTORIZATION INEQUATION (5)

The a posterioripmf of the input vectors and the 2D ISI states corresponding to the i-th line can be written as

p(i1:J ,x1:J |yi,1:J) ∝ p(i1:J ,x1:J )p(yi,1:J |i1:J ,x1:J )

∝ p(i1:J ,x1:J )

J
∏

k=1

p(yi,k|xk).
(24)

where the second equation follows from the fact that the observation noise term in (4),ni,k, is white. According
to Bayes rule, we also have

p(i1:J ,x1:J ) = p(i1:J ,x1:J−1)p(xJ |i1:J ,x1:J−1)

= p(i1:J ,x1:J−1)p(xJ |iJ ,xJ−1).

where the second equality follows from the first-order Markov assumption for the 2D ISI states in (4). Now, the
reasoning applied at time instantk = J can be applied recursively for all time instantsk = J − 1, . . . , 1, which
leads to

p(i1:J ,x1:J) = p(i1:J ,x0)

J
∏

k=1

p(xk|ik,xk−1).

Now, assuming that the initial 2D ISI statex0 is independent from the sequence of input vectorsi1:J , we have

p(i1:J ,x1:J ) = p(x0)

J
∏

k=1

p(ik)p(xk|ik,xk−1), (25)

where we have used the fact that the data symbols are i.i.d., thus the input vectors are also independent. Combining
(24) and (25) yields the desired result.
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APPENDIX C
PROOF OFEQUATION (10)

Sinceµ
xk−1→fk

(xk−1) does not depend onik, Eq. (9) can be rewritten as

µfk→xk
(xk) =

∫
(

∫

p(xk|ik,xk−1)p(ik)dik

)

µ
xk−1→fk

(xk−1)dxk−1

=

∫

p(xk|xk−1)µxk−1→fk
(xk−1)dxk−1.

(26)

From Sec. III-A, we haveik ∼ N (ik : ı̂k,Qk). Moreover, in Sec. II, we assumed that the symbols are independent,
thereforeik andxk−1 are independent. Then it follows from (4) thatp(xk|xk−1) is a Gaussian distribution whose
mean is calculated as

E[xk|xk−1] = Fxk−1 + Gı̂k

and whose covariance is calculated as

E[(xk − Fxk−1 −Gı̂k)(xk − Fxk−1 − Gı̂k)
H |xk−1]

= E[(xk − Fxk−1 − Gik + G(ik − ı̂k))(xk − Fxk−1 − Gik + G(ik − ı̂k))
H |xk−1]

= E[(G(ik − ı̂k))(G(ik − ı̂k))
H |xk−1]

= GQkG
H .

Combining this result with (8), (26) becomes

µfk→xk
(xk) =

∫

N (xk : Fxk−1 + Gı̂k,GQkG
H)N (xk−1 : x̂k−1|k−1,Pk−1|k−1)dxk−1.

We recognize the prediction integral of the well-known Kalman filter [30], which yields the desired result.

APPENDIX D
PROOF OFEQUATION (15)

If the approximations
{

x0 ∼ N (x0 : x̂0,P0)

ik ∼ N (ik : ı̂k,Qk), k = 1, . . . , J

introduced in Sec. III-A hold, then it follows from (4) thatxk, k = 1, . . . , J is also Gaussian distributed. Letx̂k

andΠk denote thea priori mean and covariance ofxk, respectively. We have

x̂k = E[xk] = FE[xk−1] + GE[ik]

= Fx̂k−1 + Gı̂k

and

Πk = E[(xk − x̂k)(xk − x̂k)
H ]

= E{[F(xk−1 − x̂k−1) + G(ik − ı̂k)][F(xk−1 − x̂k−1) + G(ik − ı̂k)]
H}

= FΠk−1F
H + GQkG

H ,

where the last equality holds becauseik andxk−1 are independent (see Sec. II).
Then, a straightforward application of proposition 7 in [32] gives a closed form expression of the backward

dynamics of the 2D ISI states as

p(xk|xk+1) = N (xk : F̃k+1xk+1 + ck+1, Q̃k+1),

where










F̃k+1 = ΠkF
HΠ−1

k+1

ck+1 = x̂k − F̃k+1x̂k+1

Q̃k+1 = (IMN − F̃k+1F)Πk.
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Fig. 1. Hexagonal cellular network structure. The cell in black is depicted along with its 6 nearest neighboring cells (gray cells) and its 18
nearest neighboring cells (gray and white cells)
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Fig. 6. GaBP-based iterative equalization for channel A with a = 0.5 and BPSK: evolution of the input mutual information as a function
of the iteration indexl.



21

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

l

M
ut

ua
l i

nf
or

m
at

io
n 

at
 th

e 
eq

ua
liz

er
 o

ut
pu

t

 

 

IE
0
(l),IE

2
(l)

IE
1
(l)

Fig. 7. GaBP-based iterative equalization for channel A with a = 0.5 and BPSK: evolution of the output mutual information as a function
of the iteration indexl.
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Fig. 9. GaBP-based iterative equalization for channel A with a = 0.5 and BPSK: measured vs. predicted BER.
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Fig. 10. Iterative equalization for channel A witha = 0.5 and BPSK (Nt = 5 iterations).
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Fig. 11. Iterative equalization for channel A witha = 0.75 and BPSK (Nt = 5 iterations).
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Fig. 12. BER of iterative GaBP equalization (Nt = 5 iterations) for BPSK modulation on channel A, for differentvalues of parametera.
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Fig. 13. BER of iterative GaBP equalization (Nt = 5 iterations) for BPSK modulation on channel B, for differentvalues of parametersa
and b.
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Fig. 14. Iterative equalization for channel A witha = 0.5 and QPSK.
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Fig. 15. Iterative equalization for channel A witha = 0.5 and 8-PSK.
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Fig. 16. Comparison of iterative equalization for channel Bwith a = 0.5, b = 0.25 and BPSK (Nt = 5 iterations) using the proposed
GaBP method with full5 × 5 channel memory and the reduced-state IMS with truncated3 × 3 memory.
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Fig. 17. Comparison of iterative equalization for channel Bwith a = 1.0, b = 0.5 and BPSK (Nt = 5 iterations) using the proposed GaBP
method with full5 × 5 channel memory and the reduced-state IMS with truncated3 × 3 memory.
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Fig. 18. Iterative equalization for a realistic propagation model and BPSK (Nt = 5 iterations) using the proposed GaBP method with3×3

and5 × 5 channel memory.


