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Abstract

The mitigation of two-dimensional intersymbol interfecenhas emerged recently as an important problem in
the field of storage technology and wireless communicati@everal solutions based on message passing have
been proposed to perform equalization on two-dimensiohahoels with intersymbol interference. We present an
algorithm based on Gaussian belief propagation. We showvtkiea proposed algorithm has interesting features
compared to the corresponding message passing solutiailatde in the literature. Firstly, the complexity of the
proposed equalizer is independent of the size of the cdattel used for modulation. Secondly, since the complexity
is not exponential in the size of the state-space, the caatipagl burden is reduced for channels with long memory.
As an application, we consider decentralized intercedlriigrence mitigation in uplink cellular networks, wheresbéa
stations communicate with their neighbors to recover tbein users’ signals.

Index Terms

Gaussian belief propagation, two-dimensional channeldti+access interference, iterative processing.

. INTRODUCTION

Coding and equalization for two-dimensional intersymitéiference (2D ISI) channels has attracted considerable
interest during the last decade, due to recent developriretiits area of optical and magnetic storage systems. Since
the materials used in today’s recording technology are @rpeto reach their physical limits in the near future,
new systems using multi-track optical storage [1] and h@pbic storage [2] have been proposed. Multiple-input
multiple-output (MIMO) communication systems over fregag selective fading channels can also be viewed as
an instance of 2D ISI [3]. In this paper, we will consider thaink of a cellular network, where 2D ISI occurs
as a result of intercell interference. This problem was firsated in [4], where the presence of adjacent cells is
modeled as a multiple-access interference term and Shahgoretic limits are obtained.

Maximume-likelihood detection is generally unfeasible dd BSI channels, because this would require to use a
Viterbi algorithm [5] where each row of data is treated as mgwut symbol, leading to a huge input alphabet [6].
Therefore several suboptimal detection approaches hame fp@posed in the literature.

A first family of detection algorithms uses 2D filtering teddures to equalize the 2D ISI channel. The minimum
mean-square error (MMSE) equalizer and the decision feddbgualizer (DFE), which are well-known techniques
used to equalize 1D channels with memory, have been adapteZDf ISI channels in [7] and [8], respectively.
The obtained results are satisfactory as long as the ISltisooosevere.

A second family of 2D equalizers process independently eawlof received observations by taking into account
symbols estimated in neighboring rows. The decision feekid&erbi algorithm (DF-VA) runs a Viterbi algorithm
for each row using hard decision feedback from previous r@}sThe iterative multistrip (IMS) algorithm uses
the same idea, but in a more elaborate manner in order tova&cheadter performances [10]-[11]. The current row
of observations is associated with a finite number of previmws to form a strip. Each row of observations is
then processed independently with a soft-input soft-au(BlSO) BCJIR equalizer [12], generating soft decisions
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for all the rows of symbols in the corresponding strip at aetirBince the strips corresponding to neighboring
rows overlap, multiple soft decisions are generated fohesgtnbol. A factor graph representation of the equality
constraints between the symbols in overlapping rows canobstaicted and used to derive an iterative message
passing algorithm. Thus each iteration runs the BCJR expradicross the strips with soft decision feedback from
the previous iteration. A similar iterative equalizer hésbaappeared in [6], where the factor graph approach based
on equality constraints between strips is replaced by &stnapresentation of vector symbols along the columns.
The stand-alone performances of the IMS equalizer is géyevithin 2 dB of the optimal performances. Even
better results were obtained in [13] by alternating row aalliimn equalization and by processing more than one
row (or column) of observations per strip. However, the geniance improvements came at the price of a higher
computational complexity per symbol.

Recently, a third class of algorithms relying on belief mggtion (BP) have appeared in the literature. We assume
that the reader is familiar with the factor graph framewatK][. In [15]-[17], thea posteriori probability mass
function (pmf) of the information symbols is factorized irsmaighforward manner, assuming that the ambient noise
is white and the symbols are independent. The resultingfitipdactor graph relates variable nodes corresponding
to the symbols with function nodes corresponding to the gojs relating the noisy observations to the symbols.
Standard belief propagation is then applied to infer thebseoved symbols [18]. However, since such a factor
graph typically contains many short cycles, belief propagamay fail to converge. To circumvent this problem,

a different factorization of thex posteriori pmf of the information symbols, combined with generalizeslidf
propagation (GBP) [19] was proposed in [20].

In this paper, we consider the application of Gaussian bpti@pagation (GaBP) [21]-[26] to the second family
of 2D equalizers. For the sake of simplicity, we will restrimurselves to processing the rows of observations
independently, as in the IMS equalizer [10]. A straightfard/generalization would allow the processing of multiple
rows of observations per strip as in [13]. In order to applBBame must assume that all the messages exchanged
on the factor graph representation of the 2D equalizatimblpm are Gaussian distributions. This is obviously
an approximation since this corresponds to replacing theraladiscrete state-space of unobserved information
symbols by a continuous state-space. However, the perfarenlass of iterative equalization using the GaBP-based
equalizer instead of the IMS equalizer is small. The prog@ggroach has a number of advantages. The complexity
of the GaBP-based equalizer does not depend on the size abtistellation used for modulation. Moreover, as
we shall see, the complexity of the GaBP-based equalizeoti®xponential in the size of the state-space as for
the IMS equalizer. Therefore, when the spatial interfegeiscnot restricted to the immediately adjacent cells, a
substantial reduction in computational complexity is aied.

The main technical contributions of this work are

« A state-space model suitable for the uplink of hexagonduleel networks with full frequency reuse, where
intercell interference is regarded as causal 2D |ISI| afigcgach base station.

« A 2D interference cancellation method based on a Gaussiam:@mation of all the messages used in belief
propagation on a factor graph representation of the prapstse-space model.

« The use of higher order modulations and the cancellationtefference, not limited to the nearest neighboring
cells, becomes feasible with an acceptable loss of poweieftly, thanks to a lower computational complexity
of the proposed scheme relatively to regular BP and BCJRdigorithms.

We have presented a preliminary version of the GaBP-basedliger, suitable for binary phase shift keying
(BPSK), in the conference paper [27]. In this paper, we mhexd unified presentation of the proposed equalization
technigue along with a generalization to higher order maiituhs. We also mention that the resulting 2D equalizer
bears some resemblance to the algorithm by Guo and Pingp&uibnly for 1D ISI channels [28].

Throughout the paper, bold letters indicate vectors andiceat whilel,,, andO0,,,, denote then x m identity
matrix and them x n all-zero matrix, respectivelyV (x : m, P) denotes a complex Gaussian distribution of the
variablex, with meanm and covariance matri¥.

This paper is organized as follows. First, Sec. || modeleri@ll interference as a 2D ISI problem, which is in
turn cast in a state-space form. In Sec. Ill, we introduce@aBP-based SISO equalizer processing a single row of
observations. Sec. IV is devoted to iterative equalizatior2D ISI channels. Finally, in Sec. V, the performances
of the proposed algorithm are assessed through numenmalaions and compared with existing message passing
methods.



II. SYSTEM MODEL
A. Network Model

We consider a cellular network dfx J cells. Within each cell, the users are assumed orthogoithéfen time,
frequency or code). Therefore, without loss of generality,can consider a single user per cell. In the cell indexed
by (i,7),0<i<I-1,0<j<J-1, the user transmits an i.i.d. (independently and ider¥iadiktributed) data
symbol b; j, drawn from the discrete alphabet (constellatioh)= {ao,...,a4-1}, to the intended base station
(BS). With the standard assumption that the multi-accetsfarence is confined to adjacent cells, the received
observation for celli, j) can be written as

M—-1N-1
Yii =Y > b biemgen iy 1)

m=0 n=0
where{h;”j’", 0<m<M-1,0<n < N-1} are the coefficients of the 2D multi-access interferencecbband

n;; is a complex additive white Gaussian noise (AWGN) term wighozmean and varianc€®. In Appendix A,
we show how the 2D channel, which is a priori non-causal, @aednverted to the causal model adopted in (1).

We adapt the network model proposed by Aktas et al. [16], wiscable to take into account the effect of path
loss and fading, to the standard hexagonal network streictepicted in Fig. 1. The 2D channel coeﬁicieﬁh%’”}
are independently distributed according to a zero-mearptmaGaussian distribution.

The first channel model, denoted by channel A, is represeataf an hexagonal network with interference
truncated to thé& nearest neighboring cells. Therefore, the matrix of 2D adehwgoefficients for celli, j) is such
that M = 3, N = 3, and has the form

Channel A:[h;}"] = h8’j Zéjl 222]2
2,7 2,J
Moreover, as per the model by Aktas et al., the variances @f2tb channel coefficients are independent of the
cell index (i, j), and are given in matrix form by

Channel A: [E (\h;fj’"ﬂ)} = (i, 7)
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wherea is parameter of choice.

The second channel model, denoted by channel B, is repagsensdf an hexagonal network with interference
truncated to thd8 nearest neighboring cells. Therefore, the matrix of 2D cledooefficients for cells, j) is such
that M =5, N = 5, and has the form
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Again, as per the model by Aktas et al., the variances of thecR&nhnel coefficients are independent of the cell
index (7, j), and are given in matrix form by
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wherea andb are parameters of choice.
More general channels with longer memory are easily obthinetaking into account interference from neigh-
boring cells even further away from each BS.



B. State-space Model
For thei-th line of observationgy; ,,0 < k < J — 1}, we define the statg;, of size M N x 1

(05— (M—1) - (N—1)

bik—(N-1)
X = 5 (2)
bi—(m—1).k

bi
which consists in raster scanning columnwise the data signlhgstrated in Fig. 2. Let us define the vector of 2D
ISI coefficients of sizeV N x 1 for cell (i, 5)
rp M—1,N—17
0.
0,N—1
0.
h; ;= : ; 3)

M-1,0
7.7

0,0
h;

L ) -

then we obtain the following state-space representatiothi@i-th line of observations

xr = Fxi_1 + Gi,
Yie =h xp +nip, 0<k<J-—1,

(4)

where the new input vector at instahtis defined as

bi—(m—1).k

The state transition matrices are given by

0 O1xn—1
and

where the symbok denotes the Kronecker product.
The a posterioripmf of the input vectors and the 2D ISI states correspondiidpé¢ i-th line can be factorized
as follows (see Appendix B)

J
p(it.g, X1.01¥i,1:0) o p(Xo H (% [k, Xk—1)P (i k%K) ®)

The corresponding factor graph is depicted in Fig. 3 [14]emhthe function nodef, represents the factor
p(xx|ix, xx—1) and the function node;, represents the factqr(y; ,|x;). From (4) we have

fr = p(Xplig, xp—1) = 6 (x — (Fxp_1 + Giy))
9k = p(Yiwlxk) = N (yix - hlyxp, 0?).



[Il. GABP-BASED EQUALIZATION
In this section, we derive a low-complexity 2D equalizer dth®n GaBP [21]-[26] by approximating all the

messages, exchanged by the sum-product algorithm [14] erfattor graph depicted in Fig. 3, as Gaussian
distributions.

A. Prior distributions

First, we seek a Gaussian approximation of the prior distidns p(xo) andp(ix), £ = 1,...,J appearing in
the factor graph.

We assume that(xg) is known and can be approximated as the Gaussian distnibifiot, : %o, Pg), whose
parameters are chosen@s= E[xo] andPy = E[(xq — %o)(x0 — %0)"].

Assuming that symbol-wisa priori log-likelihood ratios (LLRs) are available for the compatgeofiy, i.e.

P(bi—(m—1),k = aq)
p(bz’—(M—l),k = ao)’

Lg* (bi—(ar—1),1) = In q=0,...,]A[ -1

(6)

p(bik:aq)
Lyt (big) = In ——<, =0,...,|A4| -1
k (i) = BRI g0

a Gaussian approximation ofi;) of the form N (i;, : i, Q) is sought. Again, the standard solution consists in
matching the parameteis and Q to the mean and the covariance matrix of the discrete-valyaat vectoriy,
respectively. Using the fact that the data symbols are asduntdependent yields [29]

ma(bi—(r—1),k)

i, = Elix] = :
ma(bi,k)
where
ma(bi—m,k) =k [bi—m,k] , M= 07 7M - 17
and
Q. = B[(ix — i) (ir — 1) @
= diag (0a(bi—(vr—1)6)°, - - -+ Talbi)?) »
where
0a(bicmp)? = E [|bicmil?] = [ma(bi—mp)>s m=0,...,M —1.
Using (6), we can easily show that fet =0,..., M — 1
|Al-1 L2 (bie i)
ee 1—m,
B lbi-m] = Z G JA—1 g
q=0 ZL:IO ek’ (bimm.i)
‘.A‘—l Laq(b-, k)
e-e i—m,
E [|bi—m,k|2] = Z |aq|2 A—1 7ap :
= T
Remark 3.1:For BPSK modulation, lety = +1 anda; = —1, we obtain the simplified expressions in [27]

L (b;_,
ma(bi—m,k) = —tanh <M) )

Oabimmp)? =1 —ma(bi_mp)?, m=0,...,M—1

Remark 3.2:In (7), the diagonal elements @}, tend to0 when thea priori knowledge about the data symbols
becomes very reliable. In order to ensure numerical stalifi GaBP, the diagonal elements @f;, are constraint
to be greater than a threshold, sayl0—3.



B. Forward pass
Let uy—o(.) be the message sent by nodeo nodew in the factor graph. Fig. 4 illustrates the notation on a
portion of the factor graph around the 2D ISI state variable
Assuming thauy, . (xx—1) is parameterized by a Gaussian distribution such that
My — £ (k1) = N (Xp—1 : K 1jp—15 Pr—1jp—1); (8)

the forward pass consists in computing a recursive exgmeser jix, .y, ,, (Xk)-
Let us first apply the sum-product rule at the function nggewe obtain

gy (X1) = / / p(scu i K1) (i) e o (51 )i ©)

We show in Appendix C that s, ., (x;;) admits the following closed form expression
[, (X1) O N (X 2 Rpgj—15 Proji—1), (10)

where
{ Rijk—1 = FXp_qp—1 + Gig

Pyt =FP;_i; 1 F7 + GQ,G".
Now, applying the sum-product rule to the variable negeyields
My — fria (Xk) = K fr—xy (Xk)lugk—ﬁ(k (Xk)
o< N(xp : K1, PN (yi ke = B pxp, 07).

We recognize the correction step of the well-known KalmaefiJ30], therefore

[xy— fr (Xk) X N (Xpe = Rpejies Pejie) (11)
where
Kj = Pyp_1h},(h] Py hiy +0%) 7!
Kk = Kip—1 + Ki(Wir — hlpRep-1)
Py = Pyt — Kph]  Prr.

C. Backward pass

We are now looking for recursions analog to those found in. 8&® for the messages in the factor graph
propagated in the backward direction. Let us apply the suwdyxt rule to the function nodg 1,

= / </p(xk+1lik+1,Xk)p(ik+1)dik+1> ocyosr— furs (K1) dXpq 1 (12)

= /p(xk+1|xk)ﬂxk+1—>fk+1(Xk+1)dxk+l-

We easily recognize that (12) corresponds to the backwanetiqtion step in a two-filter Kalman smoother [31],
therefore s, ., — . (Xk41) X P(Yi kt1:7/Xk41). It follows thatyiy, ., ., (xx+1) is a likelihood, which in general
cannot be assimilated to a Gaussian probability density,Qfi, as required for GaBP. However, from Bayes rule

we havep(xp41|¥ik+1:0) X P(Xkt1)P(Yi kt1:7|Xk41). TAUSP(Xpet1)tix, o1 — forn (Xk41) CAN be parameterized by a
Gaussian density af;; such that

POkt 1) ey — fropr (Khet1) = N (Kt 1 : Ko1)ot 105 Prog1o41:)- (13)

We must rearrange (12) so that (13) appears explicitly inréoarsion.
First, we express the forward dynamiesx;.1|xx) as a function of the backward dynamigsxy|xx+1) using
Bayes rule
P(Xk|Xp+1)P(X+1) (14)
p(xk) '

P(Xpt1|xk) =



We can show that the prior distribution of the 2D IS| stated @re corresponding backward dynamics are Gaussian

of the form
p(xk) = N(xx @ %, IIy) (15)
p(XklxXp11) = N (Xk : Frgp1Xpq1 + Chp1, Q)
(see Appendix D for the demonstration and the expressioheparameterg;, Hk,]?kﬂ, Chk+1, Qkﬂ).
Then, injecting (14) into (12) leads to
p(xk)ﬂfk+1—>xk(xk) = /p(xk|Xk+1)p(xk+1)#xk+1—>fk+1(Xk‘-i-l)dxk‘-i-l
(16)

= /N(Xk P FpXe1 + k1 Qe )N Xkttt Rep1jhr1:0 Prga o 1:0) dXpep 1.

Noting the the last equality in (16) is the integral appegiimthe (backward) prediction step of Kalman filtering [30],
we readily have

p(xk)ﬂfk+1—>xk (Xk) = N(Xk : ik|k+1:J7Pk\k+1:J)> (17)

where B
{ Xk+1:0 = Frr1Xpq1k+1:0 + Cht1

Prry1g = Fk+1Pk+1\k+1:JFkH+1 + Qps1.
To complete the backward pass, we apply the sum-productauliee variable node;
p(xk)lu’xk_)fk (Xk) = p(xk?)lu’fk+l_’xk (Xk?)lu’gk_’xk (Xk)
o< N (% 1 Ryt 1075 Prjor 120N ik = by pxp, 02).

Again, we recognize the (backward) correction step of thé-kvewn Kalman filter [30], therefore

P(Xk) o — 1 (Xk) o< N (Xpe + Rigfes> Prjs ) (18)

where - T o1
* * —
Ky = Prpr1shg (b  Prgrrshy, +07)

A A ~ T ~
Kik:g = Rifig1:7 + Ki(Wik — 0y 1 Xpjet1.7)

= T
Prik:s = Prppg1.g — Kby Prjrg1..

D. Smoothing pass
The sum-product algorithm computes thgosteriorimarginal probability distribution of the 2D ISI statg as
the product of all incoming messages to variable nagén Fig. 4
e —x, (xx) x p(xk)/’[/fk+1_’xk (Xk)/ﬁgk—mk (xk)
p(xk)
which, according to (10), (18) and (15), can be rewritten as

P(Xk|Yi1.0) o<

N %k Zje—1, Prje—1)N (Xk @ Kijg:gs Prjres)
N (x : %y, I,
After straightforward algebraic manipulations, we obttdiae following simplification

P(Xk|Yi,1.7)

p(xk‘yi,lzJ) X N(xk : ik\l:]a Pk|1:J)7 (19)

where .

Py = [P‘l_ +P L T
| klk—1 K|k:J (20)

N -1 1 1 - —1aA

X0 = Py [Pk\k—lxklk—l + P Xl s — Xk] :



E. Computation of symbol-wise extrinsic log-likelihoodioa

From (2), theM last coordinates of;, correspond to the data vectr= [b;_(ar—1) k- - - ,bi,k]T. Therefore, the
a posterioriprobability distribution ofb;_,, , seen as a complex random variable, has the form

p(bi—m,k|yi,1:J) X N(bi—m,k : mp(bi—m,k)a Up(bi—m,k)2)a m = 07 s 7M - 17 (21)

where the meam,(b;—, ) and the variancep(bi_mvk)% m=20,...,M — 1 are easily extracted from (20) by
marginalization. Converting,_,, , back to a discrete random variable ) the expression of the symbol-wise
posteriorilog-likelihood ratio is obtained for =0,...,M — 1 anda, € A as [33]

P(bim,k = aglyi1:7)
Pbi—m ke = aolyii.7)

) _lag—mpG®i_pm p)I?
2

— e op(bi—m k)

_ 1n 7ro'p(b1177n,k)2

- _lag—mp (i )2

e op (i, k)2

Lyt (bi—mk|yi1:) = In

Wop(bifm,k)z

However, in message passing algorithms, the messageseoéshtare symbol-wisextrinsic log-likelihood ratios
obtained form =0,...,M — 1 andqa, € A as

_lag=mp®i_m)? _lag=ma(bi_m)?
ﬁe op(bi_m k)2 ﬁe oalb;_m, k)2
Aq (}. . — TOp\Oi—m,k N T0a(bi—m,k
Le (bl_m’k|yl’1:‘]) =w |In _ lag—mp(bi—m k)12 1 _lag—ma(bi_m k)2 ’ (22)
e op (i _m k)2 +€ oa(bi_m, k)2

7TC’p(bifm,k)z Woa(bifm,k)z

where the scaling factdr < w < 1. The reason for introducing the scaling factor is that stibmgm detectors tend

to overestimate the reliability of their soft-outputs, wiadversely affects the convergence of iterative methods
using such detectors as building blocks [34]-[35]. We applyell-known solution to this problem, which consists
in extrinsic information weighting [34]-[35].

Remark 3.3:For BPSK modulation, lety = +1 anda; = —1, we obtain the simplified expressions
4Re(my(bi—m.i))
L (bi—pmk|yin.g) = — P A =0,....,M—1
D ( 7k|y ,I.J) Up(bi—m,k)z m
and Re(my(bioma))  Re(ma(biom.c)
e(My(0;—m.k €(Ma\0i—m,k
LY (bi—pmlyin.g) = —4 P A ’ , =0,...,M—1.
e ( ,k’y ,1.J) w < Up(bi—m,k)2 Ua(bi—m,k)2 > m 0

V. GABP-BASED ITERATIVE EQUALIZATION
A. Proposed iterative method

The algorithm described in the previous section is suitahlg for processing one line of observations. Moreover,
it can be seen from (22) that the GaBP equalizer correspgndithei-th line of observations generates soft outputs
for the current line, but also for thi/ —1 previous lines of data symbols. Therefore, once all theslofeobservations
have been processedl] soft outputs are available for each data symbol.

In order to describe the equalization process in the comtexat 2D cellular network, we need to construct the
complete factor graph corresponding to all the lines of ola®ns. The complete factor graph is represented
in Fig. 5, for channel A (hencé/ = 3). The variable nodes corresponding to the data sympgls} and the
noisy observationsy; ;} of all cells have been linewise raster scanned. In Fig. 5wirecessing the-th line of
observations at any time instakht the corresponding input vector

bi—(M—1).k
i, =
bi .
receives inpu priori log-likelihood ratiosAg for b; s, Ay for b1, ..., Ap—1 for b_y—1yx, WhereA,, is a

shorthand notation for the quantitiés’ (b;_,,, ») defined in (6). Then, output posteriorilog-likelihood ratiosE,



1) Initialize the iteration indexi = 0
2) Initialize the messages sent by the GaBP equalizatiographs towards the data symbol
nodes:Ey(l) =0, E1(1) =0, ..., Epy—1(l) =0

3) fori=1:MN
o The messaged,(l), Ai(1), ..., Ap—1(1), sent by a data symbol node towards a GaBP
equalization subgraph are the sum of all incoming messagespt the message coming
from that GaBP equalization subgraph.
o The messages(l), E1(l), ..., Ex—1(1), sent by a GaBP equalization subgraph towards
a data symbol node, are given by (22).

TABLE |
GABP-BASED ITERATIVE EQUALIZATION

for b; ., E1 for b1k, ..., En—1 for b;_ps—1  are produced, wher&), is a shorthand notation for the quantities
Le* (bi—m,k|yi:7) defined in (22).
The algorithm of Table | summarizes the proposed iteratikecgdure. Since the complete factor graph is

loopy, we performlV; iterations, where one iteration corresponds to one rourrdexfsage computation for all data
symbol nodes, followed by GaBP equalization applied to ladl lines of observations (see Sec. Ill). Hence the
name GaBP-based iterative equalization for the proposgatitim.

Since we chose to process one line of observations at a timereteiver will have the same structure as the
IMS decoder originally introduced in [10], except that th€BR equalizers are replaced with GaBP equalizers.
From a practical point of view, GaBP-based iterative eqadilbn is a form of distributed message passing between
the base stations. To be more specific, for each iterationngithe processing of one line of observations, each
base station performs local processing of the measuremamt the mobile device located in its cell. Each base
station then communicates soft information/tb — 1 neighboring base stations. From an implementation point of
view, high bandwidth connections, such fast fiber links, r@guired for sharing information between neighboring
base stations, as explained in [38].

B. Convergence analysis

We use extrinsic information transfer (EXIT) charts [36]aoalyze the convergence properties of the proposed
iterative equalizer. For ease of exposition, we will restaurselves to BPSK modulation. A generalization to higher
order modulations would be obtained by adapting the teclnjgroposed in [37].

Ignoring the presence of cycle in the graph, we can assumealihguantitiesA,, andE,,, 0 < m < M — 1, at
any time instant are i.i.d. (identically and idependentlﬁm’buted) Following [36], we assume that, is Gaussian
distributed with variance?, and mearv? /2, 0 < m < M — 1. Then, the input mutual information between
the a priori log-likelihood ratlosA and the corresponding binary data symbols,fox m < M — 1, has the
form [36]

IA(] == J(O‘AO)

IA, = J(04,)

IAM—l = J(O-AZ\/I—I)
where
oo o—(§ 0?/2)% /20
J(o)=1- / ————logy(1 + e‘5)d§.

PN 2no

For a fixed value of signal-to-noise ratio (SNR), we colldwt & posteriorilog-likelihood ratios after one round
of iterative GaBP equalization, obtained by performing Ke@arlo simulations on a cellular network with=
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J = 20, with random 2D channel coefficients drawn according to thanoel model in Sec. II-A. Moreoveg
priori log-likelihood ratios,A,,, are drawn from a real Gaussian distribution with meén /2 and variancer? |,
0 < m < M — 1. Using the histogram method proposed in [36], the outputuaduinformation between tha
posteriori log-likelihood ratios E,,, and the corresponding binary data symbols, oK m < M — 1, can be
computed. The results can be presented in the form of magpimgions7y(.), 71(.), ..., Ta—1(.) as follows

IEy = To(IAy, 1Ay, ..., IAy_1,SNR)
IEl = Tl([Al,IAQ, . ,IAM_l,SNR)

IEy_1 = Tay-1(IA1,IA,,... . IAy_1,SNR).

The evolution of the input/output mutual information and firedicted bit-error rate (BERJ, for the algorithm
of Table | is summarized in Table Il [36].

1) Initialize the iteration indexi = 0
2) IEy(1) =0, IE1(1) =0, ..., IEy_1(1) =0
3) fori=1:N;

TAo(l) = J ( > JIEm( - 1))2>

m#0

TA () =J ( > JHIER( - 1))2>

m#1

IAMl(l):J<\/ > Jl(IEm(l—l))2>

m#M—1
IEo(l) = To (IA1(1), I1A3(l), ..., IAp_1 (1), SNR)
IE () =Ty (IA1(1),1A5(l), ..., IAp_1(1), SNR)

IEN—1(1) =Tar—1 (TA1(1), TA2(1),..., TAp—1(1), SNR)

M-—1 7_ ’ 2
Py(l) = 0.5erfc (\/Zm—o I Em () )

22

TABLE I
EVOLUTION OF THE INPUT/OUTPUT MUTUAL INFORMATION AND THE PREDICTEDBER

C. Complexity comparison for the proposed and existing aukth

For one line of observations, the IMS receiver applies tha-puoduct algorithm on the factor graph depicted
in Fig. 3, assuming that the input vectdig } are discrete-valued. Thus exact Bayesian inference iseimghted,
because the factor graph has a tree structure [18]. Sincénphet vectors{i,} are discrete-valued, the hidden
states{x;,} are also discrete-valued and their dynamics can be repessby a trellis with| A|VM states [5]. The
sum-product algorithm then reduces to the Baum-Welch dhgor[39]. A slightly different state-space model for
2D ISl was introduced in [10], where the likelihood of the eb&tions depends on the state transitions instead of
the states as per our model. This enables to represent traamilys of the 2D ISI states with a trellis containing
only |A|(N=DM states. The sum-product algorithm then becomes equividetite BCJR algorithm [12]. Thus,
the computational complexity of the IMS receiver@|.A|VM) per data symbol and per iteration. Similarly, one
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can show that the complexity per data symbol and per itevatfothe BP method [15]-[17] is als®@(|.A|NM).
Therefore these 2D equalization procedures become ualtlacéven for moderate values df, N and|A| (say
for M, N > 3 and|A| > 2).

The proposed iterative method described in Sec. IV-A radiethe GaBP equalizer of Sec. lll, which is in essence
a Kalman smoother incorporating a priori information. Aalktd complexity analysis of the Kalman smoother is
provided in [40]. Namely, it is shown that the computatiocainplexity cost per recursion of the Kalman smoother
is O(p®), wherep denotes the size of the state vector. Note that this residshoespective of the actual content
of the state vector. Remarkably, this implies that the cexipl of the proposed method is independent of the size
of the constellation used for modulation. Since the sizehefdtate vector given by (2) &/ N, the computational
complexity of the proposed GaBP-based iterative equaizanethod isO((MN)?) per data symbol and per
iteration. Note that unlike the IMS or the BP method, the claxipy of the proposed algorithm has only a modest
cubically (instead of exponentially) increasing compigxds a function of the size of the state-space.

V. SIMULATION RESULTS

The performance of the proposed schemes is assessed byteorsipwlations in terms of bit-error rate (BER)
versus the normalized signal-to-noise ratio (SNR) defireed a

M-1 N-1 ,
S Y B I
o?logy | A| ’

which is independent of the cell ind€X, j), according to the network model introduced in Sec. II-A. ésd
otherwise stated, iterative equalization is simulatectf@nnel A, withM = N = 3, corresponding to an hexagonal
network with intercell interference limited to tlienearest neighboring cells. Also, we assume that the basensta
have perfect knowledge of their 2D channel parameters. Tiee &f the considered cellular network is set to
I = J = 20. Our experiments showed that the influence of the netwok sizthe bit error rate is not significant.
Guard bands, similar to those described in [41], are useditialize and terminate the equalizer processing each
row of observations in a known state. In particular for theBBaqualizer of Sec. Ill, the prior distribution of the
initial state, /' (x : %o, Pg), can be chosen such th&g is the known data vector contained in the guard band and
Py = 10~%I,n. The weight factor appearing in (22) was set empiricallyute= 0.7.

SNR =

A. Convergence analysis using EXIT functions

We study the convergence properties of the proposed GaB&dhliterative equalization technique by applying
the EXIT function methodology described in Sec. IV-B. Fanglicity, we restrict ourselves to BPSK modulation
and channel A (i.eM = 3). Fig. 6-7 (resp. Fig. 8) illustrate the evolution of the imfputput mutual information
(resp. the predicted BER) as a function of the iteration xpaéhena = 0.5 and SNR = 10 dB. We observe that
the proposed algorithm converges with\y = 5 iterations. Similar results were obtained for differentues ofa
and SNR.

The EXIT methodology assumes the independence of all thesages exchanged on the factor graph of Fig. 5,
by completely ignoring the presence of cycles. Fig. 9 compéne measured BER with the predicted BER obtained
with the EXIT methodologyp,. Since there is only a minor difference between the two @jrwee conclude that
the existence of cycles in the factor graph has only a smalhohon the performances of the proposed method.

B. Comparison with existing message passing methods

We first consider the performances of iterative equaliratay BPSK modulation.

Fig. 10 shows the bit error rate (BER) performances averagedall the cells in the network, corresponding to
channel A with parametetr = 0.5. N; = 5 rounds of iterative equalization are performed for the IMS]{[11],
BP [15]-[17] and GaBP equalization technique. Our expenitashowed that augmenting the number of iterations
did not improve the BER performances for any of the equatimamethod.
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In order to assess the gap between actual and optimal perfices, a single user lower bound on the BER is
also computed by considering that the total energy coleateBS (i, j) originates from the user in ceff, j). For
BPSK, the expression of this lower bound is given by

Pppsi(0) =E |Q \/ 2m=0 UZ_O i | :

where the expectation is over all channel realizations. B¢ ove that, at high SNR, IMS-based iterative equalization
is quasi-optimal, while BP-based and GaBP-based iteratipelization suffer from a 0.9 dB and 1.4 dB loss in
terms of power efficiency, respectively. Considering thaBB equalization, as opposed to IMS and BP equalization,
has a complexity which is not exponential in the size of tteesspace, we conclude that GaBP-based iterative
equalization trades a small loss in terms of power efficieagginst a lower implementation cost.

Fig. 11 shows the same results for channel A with parameter 0.75. At high SNR, both BP-based and
GaBP-based iterative equalization suffer from a 1.2 dB iogsrms of power efficiency, while IMS-based iterative
equalization is again quasi-optimal.

C. Influence of the channel parameters in the Aktas et al. mode

Fig. 12 illustrates the BER performance of the proposeditites GaBP equalizer with BPSK modulation on
channel A, for different values of the channel parameteWe observe that for a fixed SNR, the BER increases
with a, as a result of a higher spatial diversity advantage praviiecooperative base station processing. Also, the
performance loss with respect to the single user bound dsesewitha. The results for channel B, with different
values of the channel parametersindb, are shown in Fig 13.

Results for a more realistic cellular network model, inéhgdpath loss, shadowing and multipath fading models,
are provided in Sec. V-F.

D. Higher order modulations

We study the performances of GaBP-based iterative eqtializasing QPSK and 8-PSK with Gray labeling.
For QPSK and 8-PSK, the expression of the single user lowendds obtained as

I M—1<~N-1 ,
0 \/zmzo N nn 2

PQPSK(U) =F o2

Ps_psi(o0) =FE gQ 5

. M—1<—N—1|.m,
9 \/281n(ﬂ'/8)2zm:0 n=0 hﬁnfz

g

Fig. 14 and show the BER performances of GaBP-based iteratiwalization, on channel A with parameter
a = 0.5, for QPSK modulation. The suboptimality of GaBP-basedaiiee equalization vs. the single user lower
bound leads to a power efficiency loss of 3 dB for QPSK modutatafter N, = 6 iterations.

Fig. 15 shows the same results for 8-PSK modulation. The #ubality of GaBP-based iterative equalization
vs. the single user lower bound leads to a power efficiency td2.6 dB for 8-PSK modulation, afte¥; = 10
iterations.

No further improvements could be observed by augmentingitimeber of iterations. IMS and BP-based iterative
equalization have not been implemented, due to their pitblgbcomplexity when higher order modulations are
used.

E. Long memory channel example

In order to further illustrate the complexity advantagela proposed algorithm over existing IMS and BP-based
iterative equalization, we now consider channel B with pstersae = 0.5 andb = 0.1, corresponding to an
hexagonal network with intercell interference limited ke 8 nearest neighboring cells. For this experiment, we
use again BPSK modulation for simplicity. In this case, IMfualization would be a formidable task, since each
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BCJR equalizer would have to work on a trellis witf states (i.e. more than one million possible discrete States
For similar reasons, BP equalization would also be inttdeta
We compare two tractable approaches with reasonable catgnal complexity

« the proposed GaBP-based iterative equalization with fDlichannel memory

« an IMS algorithm with an embedded reduced-state BCJR withctited 2D channel memory inspired by [42],
where at the current iteration, an estimate of the residDalSd and its variance are obtained by computing
soft-decisions based on the LLRs computed at the previeuation.

Fig. 16-17 show the BER performances aftér= 5 rounds of iterative equalization on channel B. The proposed
GaBP-based method with fullx 5 channel memory outperforms the reduced-state IMS withctited3 x 3 memory.

F. Realistic propagation modeling in a cellular network

In Sec. lI-A, channel A and channel B were introduced as smppbpagation models for the uplink of hexagonal
cellular networks. We now consider a realistic propagatimdel including the effect of path loss, shadowing and
multipath fading [43], [17]. Assuming full frequency reysmach BS receives the desired signal from the user in its
cell and intercell interference from the users in all othellsc The channel coefficient from the user in dglly)
to the BS in cell(k, ) can be modeled as

hi =) = A/ Pli )= (o) Qi) — (k1) » (23)

whereP; jy_. k1) (respag ;)—(x,)) denotes the power (resp. the multipath fading coefficiehthe signal received
at the BS in cell(k, /) from the user in cells, j). Assuming flat Rayleigh fading, the coefficients ;... are
drawn independently from a complex circular Gaussianidigiion with zero mean and unit variance [43]. In order
to model the propagation path loss and shadowing due to Zbgtacles [43], we let
(i.7) (i) —(k,L
Plij—tkr) = K #10 S
(i,3)— (k1)

whereK is a constantP}Z)’g) is the transmit power of the user in céll j), d; j)— @, is the distance between the
user in cell(i, j) and the BS in cellk,l) and~ is the path loss exponent. The shadowing expon@nts,_,
are drawn independently from a real Gaussian distributidh »sero mean and standard deviatiog dB [43]. In
our simulations, the distance between base stations is 1ykms,3.5 and oy = 4 dB. Assuming perfect power
control of the user in each cell with its intended BS, we abthe constraints
Plij—aq =T, Y(0,J),
whereT is a constant, so that the SNR of a user with the intended BSd€. These constraints are sufficient to
specify entirely the value of all channel coefficients in)(23

Fig. 18 shows the BER performances affér= 5 rounds of the proposed iterative GaBP equalizer with BPSK
modulation obtained via Monte Carlo simulations, whereheager location is drawn uniformly at random in the
hexagonal cell it belongs to. For a 2D channel memory trietttd(M = 3, N = 3), very poor results are obtained.
For a 2D channel memory truncated (tb/ = 5, N = 5), at low and medium SNR values the BER approches the
single user bound, while at high SNR where the truncatedfarence plays a dominant role, an error floor occurs.

VI. CONCLUSION

In this paper, we introduced a soft-output 2D equalizaticethad, which is suitable for iterative equalization
on 2D ISl channels. The proposed method processes eachflmigservations using Gaussian belief propagation
(GaBP) on a suitable factor graph representation. Sincadhml state-space is discrete, parameterizing the messag
exchanged on the factor graph as Gaussian distributions deude approximation. Nevertheless, satisfactory
performances were obtained for intercell interferencecebation for the uplink of wireless cellular networks
with distributed BS processing.

The benefit of the proposed algorithm is twofold. Firstlye tlsaBP equalizer has a complexity which is
independent of the size of the constellation used for mdidwmaSecondly, the computational complexity of the
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proposed GaBP-based equalization is much lower than itRB&JBP-based counterparts for 2D channels with
long memory.

Future work will consider GaBP-based equalization peridrjointly with channel decoding and channel esti-
mation.
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APPENDIX A
NON-CAUSAL CHANNEL MODELS

Assume a rectanguldrx J network of BSs. With the standard assumption that the nagltiess interference is
confined to adjacent cells, the received observation at efBcell (i, j) has the form

U
k- Mo, L+ N,
Tij = Z Z Fig 7T bk 1+ wi

— My l=—N,

where{ fﬁ,;fn} are the coefficients of the 2D multi-access interferencasbbandw; ; is an additive white Gaussian
noise (AWGN) term. As suggested in [11], by introducing thedagt (1, Ny), we obtain

My

Ti—Mo,j—No = Z Z k+]\]4\/£0]7l+]]\[\i)0b2 k—Mo,j—l—No T Wi—M,,j—No-
— Moy I=—N,
Using the change of variables = k + My, n =1+ Ny
2M, 2N,
Ti—Mo,j—No = Z Zfz Mo j—No Dimm.j—n + Wi My,j—No-
m=0n=0

Now let M = 2Mo + 1, N = 2No + 1, Yij = "i-My,j—No» hi g = Fihg, j—n, @NAN45 = wi—nr, j-n,, the causal
model in (1) is obtained.
This reasoning can easily be extended to a cellular netwaditk lmexagonal 2D cellular structure.

APPENDIXB
PROOF OF THE FACTORIZATION INEQUATION (5)

The a posterioripmf of the input vectors and the 2D ISI states correspondinié i-th line can be written as

(i, X1:7|Yi1:0) < p(i1.7, X1:.0)Pp(Yi 1.0 |10, X1:.7)
J
o plir.s, x1:0) [ [ piklxe).
k=1
where the second equation follows from the fact that the mbsien noise term in (4)y; ;, is white. According
to Bayes rule, we also have

(24)

p(i1:J> Xl:J) = p(iI:J> Xl:J—l)p(XJ|i1;J, X1:J_1)
= p(ir.s, X1.7-1)p(Xs]is, X7-1)-

where the second equality follows from the first-order Marlkegsumption for the 2D ISI states in (4). Now, the

reasoning applied at time instaht= J can be applied recursively for all time instarkts= J — 1,...,1, which
leads to
J
p(ir.g, x1.5) = p(i1.s, Xo H (ki Xpp—1)-

Now, assuming that the initial 2D ISI statg is mdependent from the sequence of input vecigrs we have

J
p(ir.g, x1:7) = p(x0) [ | p(ix)p(xklix, xi-1), (25)
k=1

where we have used the fact that the data symbols are itiuk the input vectors are also independent. Combining
(24) and (25) yields the desired result.
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APPENDIX C
PROOF OFEQUATION (10)

Sinceyiy, 5. (xx—1) does not depend oix, Eq. (9) can be rewritten as

gy () = / </p(xk|ik,xk_1)p(ik)dik> Fixci—y — fi (X —1)dXp 1 (26)

= /p(Xk|Xk—1)#xk1—>fk(Xk—1)ka—1-
From Sec. IllI-A, we havé;, ~ N (i, : 1z, Qx). Moreover, in Sec. I, we assumed that the symbols are indips,
thereforei, andx;_; are independent. Then it follows from (4) thatx,|x;_1) is @ Gaussian distribution whose
mean is calculated as
Elxp|xk-1] = Fxj_1 + Giy

and whose covariance is calculated as

E(x), — Fxj_1 — Gig)(xx — Fxp_1 — Gij,) " [x4-1]

= E[(xx — Fxp_1 — Gig + G(i — 1)) (% — Fxp_1 — Gig + G (i, — %)) [xp—1]

= E[(G(ix — 1)) (G (i, — %)) [xp—1]

= GQ,G".
Combining this result with (8), (26) becomes

Hf—x; (Xk) = /N(Xk : ka—l + Gik, GQkGH)N(Xk_l : )A(k_1|k_1,Pk_1‘k_1)ka_1.

We recognize the prediction integral of the well-known Kahrfilter [30], which yields the desired result.

APPENDIXD
PROOF OFEQUATION (15)

If the approximations

ikNN(ikikka)v k=1,...,J
introduced in Sec. llI-A hold, then it follows from (4) that,, ¥k = 1,...,J is also Gaussian distributed. L&},
andII, denote thea priori mean and covariance of;, respectively. We have
Ry = Elxp] = FE[x;-1] + GEliy]
= F)A(k_l + Gik

{XO NN(XQ . )A(O,PO)

and
I}, = E[(x; — %) (x5 — %¢)"']
= B{[F (x¢—1 — Rr—1) + G(ix — W)][F (Xp-1 — %p—1) + G (i, — )"}
= FIL, . F7 + GQ; G,
where the last equality holds becaudgeandx;_; are independent (see Sec. ).

Then, a straightforward application of proposition 7 inJ[3ves a closed form expression of the backward
dynamics of the 2D ISI states as

p(xp|Xpi1) = N(%k : Fro1Xpg1 + Chit, Qrat),

where - [
Fji = P
Crt1 =X — Fr1Xp 1

Qi1 = (Tyn — Fr F)II,.
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Fig. 1. Hexagonal cellular network structure. The cell iadi is depicted along with its 6 nearest neighboring cellay(gells) and its 18
nearest neighboring cells (gray and white cells)
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Fig. 2. State space representation corresponding te-théine of observations (herd/ =3, N = 3).
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Fig. 3. Factor graph corresponding to thth line of observations. Variable nodes are representetirbles and function nodes by squares.
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Fig. 4. Messages exchanged on a portion of the factor grapksponding to the-th line of observations.
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Fig. 5. Complete factor graph for channel A (i&l = 3). Data symbols and noisy observations are linewise rasteired.A,, (resp.
E.), 0 <m < M — 1, are thea priori (resp.extrinsig values sent by a data symbol node (GaBP equalization Spitgta a GaBP
equalization subgraph (resp. data symbol node).)
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Fig. 6. GaBP-based iterative equalization for channel Awit= 0.5 and BPSK: evolution of the input mutual information as a timt
of the iteration index.
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Fig. 7. GaBP-based iterative equalization for channel Awit= 0.5 and BPSK: evolution of the output mutual information as acfiom
of the iteration index.
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Fig. 8. GaBP-based iterative equalization for channel Awit= 0.5 and BPSK: evolution of the predicted BER,, as a function of the
iteration indexl.
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Fig. 9. GaBP-based iterative equalization for channel Awit= 0.5 and BPSK: measured vs. predicted BER.
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Fig. 12. BER of iterative GaBP equalizatioiV{ = 5 iterations) for BPSK modulation on channel A, for differaralues of parametes.
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Fig. 13. BER of iterative GaBP equalizatioW{ = 5 iterations) for BPSK modulation on channel B, for differaaiues of parameters
andb.
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Fig. 14. Iterative equalization for channel A with= 0.5 and QPSK.
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Fig. 15. Iterative equalization for channel A with= 0.5 and 8-PSK.
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Fig. 16. Comparison of iterative equalization for channelvBh ¢ = 0.5, b = 0.25 and BPSK (V; = 5 iterations) using the proposed
GaBP method with fulb x 5 channel memory and the reduced-state IMS with truncated3 memory.



Fig. 17. Comparison of iterative equalization for channelith « = 1.0, b = 0.5 and BPSK (V; = 5 iterations) using the proposed GaBP
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Fig. 18. Iterative equalization for a realistic propagatinodel and BPSK;

and5 x 5 channel memory.
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= 5 iterations) using the proposed GaBP method ith3



