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Blind Estimation and Detection of Space-Time Trellis Coded
Transmissions over the Rayleigh Fading MIMO Channel

Frederic Lehmann

Abstract—We present a joint channel estimation and detection
method of space-time trellis codes (STTC) in the context of
an unknown flat fading multiple-input multiple-output (MIMO)
channel. A combined state-space model for the space-time code
and the Rayleigh fading MIMO channel is introduced, in order
to use deterministic particle filtering at the receiver side. An
important feature of the proposed method is that the fading
rate need not be known to the receiver. Monte-carlo simulations
show that the performances of the proposed scheme are close to
decoding with perfect channel state information (CSI) using the
Viterbi algorithm (VA).

Index Terms—MIMO channel, space-time coding, joint chan-
nel estimation and decoding, particle filtering.

I. INTRODUCTION

USING information theory, it has been shown that the
capacity gains of MIMO channels can substantially

improve the traffic of wireless communications [1]. Based on
this result, space-time trellis codes were introduced in [2]
as a technique which exploits both spatial and temporal
diversity in order to combat fading channels efficiently. Later,
algebraic STTC were designed to yield full diversity for binary
phase shift keying (BPSK) and quadrature phase shift keying
(QPSK) modulation [3].

The problem of blind detection of trellis coded MIMO
systems has been addressed in [4], [5]. In [4], particle fil-
tering [6] is applied to the problem of soft-input soft-output
(SISO) symbol detection with an unknown MIMO channel.
The trellis code is handled using an iterative (turbo) structure
alternating between SISO symbol detection and SISO trellis
decoding. Differential encoding/decoding is needed to remove
phase ambiguities. In [5], particle filtering is used for joint
symbol detection and trellis decoding with an unknown MIMO
channel. Provided that a valid codeword can never be a
phase shifted version of another valid codeword, no phase
ambiguities exist. Removal of phase ambiguities in particle
based MIMO receivers using pilot symbols has also been
proposed in [7]. Note that in the aforementioned papers, the
MIMO channel is modeled either as a block fading, as an
autoregressive moving average (ARMA), or as an autoregres-
sive (AR) process. Moreover, a stochastic form of particle
filtering [8] (i.e. based on random draws) is used.
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Recently, it has been recognized that drawing randomly the
data symbols from a discrete distribution during the prediction
stage of particle filtering is inefficient since it introduces an
unwanted approximation error [9]-[11]. Instead, a determinis-
tic form of particle filtering performing recursively exploration
for all data symbol hypotheses followed by a selection step,
achieves better performances with a low number of particles.

In this letter, we consider an algebraic STTC with BPSK
modulation, sent over a flat time-varying Rayleigh fading
MIMO channel. We introduce a combined state-space model
for the code and the time-varying channel, which is indepen-
dent from the fading rate. This feature is useful since the
velocity of the receiver is usually unknown. For instance,
the ARMA channel model proposed in [5] needs perfect
knowledge of the user velocity. A receiver structure based on
deterministic particle filtering performs joint channel estima-
tion and decoding.

Throughout the letter, bold letters indicate vectors and
matrices, while the superscripts T and H denote the transpose
and transpose conjugate operators, respectively. A complex
Gaussian distribution is represented by NC(.).

This letter is organized as follows. In Sec. II, we recall
the basic principles of deterministic particle filtering. Sec. III
presents the communication model along with the channel
model. Finally, Sec. IV presents the frame error rate (FER)
performances of the proposed schemes, obtained by Monte
Carlo simulations.

II. SEQUENCE ESTIMATION USING DETERMINISTIC

PARTICLE FILTERING

We consider a discrete-time dynamical system of the form
⎧⎪⎨
⎪⎩

ζk = fk

(
ζk−1,uk

)
xk = Fk(ζk)xk−1 + πk

yk = Hk(ζk)xk + nk.

(1)

The first equation is the process equation, where the system
state ζk at instant k takes discrete values and the process noise
uk takes values in a finite alphabet A = (a1, . . . ,aQ). The
second equation describes the evolution of the continuous part
of the state, denoted by xk . The associated white Gaussian
process noise πk has a covariance matrix denoted by Qk.
The third equation is the measurement equation, where the
state dependent complex observations yk are corrupted by
white Gaussian measurement noise nk, with covariance matrix
Rk. Fk and Hk are matrices, in general nonlinearly depend
on ζk. Additionally, it is assumed that uk, πk and nk are
uncorrelated.
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We seek the optimal maximum-likelihood (ML) sequence
of discrete states ζ1:k, given the sequence of noisy observa-
tions y1:k. Particle filtering approximates the posterior density
p(ζ1:k|y1:k) by a set of M weighted Dirac functions

p̂(ζ1:k|y1:k) =
M∑
i=1

w
(i)
k δ

(
ζ1:k − ζ

(i)
1:k

)
, (2)

where ζ
(i)
1:k is the i-th discrete particle and w

(i)
k the corre-

sponding weight at instant k.
Assuming that the particle support {ζ(i)

1:k−1, w
(i)
k−1}i=1,...,M

is available, the deterministic particle filtering recursion at
instant k is given by [9]-[11]:

1) Prediction: For each particle ζ
(i)
1:k−1 form the

Q extensions {ζ(i)
1:k−1, fk(ζ(i)

k−1,aj)}, for j =
1, . . . , Q

2) Correction: Compute the weight of each extension
as
w

(i,j)
k ∝ w

(i)
k−1p (uk = aj)×

p
(
yk|ζ(i)

1:k−1,uk = aj ,y1:k−1

)
3) Resampling: Among the QM available extensions,

the M most likely are retained to form the updated
particle support {ζ(i)

1:k, w
(i)
k }i=1,...,M and the oth-

ers are discarded.

At the final instant k = N , the ML estimate ζ̂1:N is the
particle with maximum weight.

Note that the two last equations in (1) form a linear
Gaussian dynamical system conditioned on ζk. Therefore
using standard Kalman filtering techniques [12], we obtain

p
(
yk|ζ(i)

1:k−1,uk = aj ,y1:k−1

)

= NC

(
Hk(ζ(i)

k )x̂(i)
k|k−1,Hk(ζ(i)

k )P(i)
k|k−1Hk(ζ(i)

k )
H

+ Rk

)

where x̂(i)
k|k−1 and P(i)

k|k−1 are the predicted estimate and
error covariance matrix of xk conditioned on the sequence
of discrete states ζ

(i)
1:k. Consequently, these quantities are

obtained from the following recursions [12]
⎧⎨
⎩

x̂(i)
k|k−1 = Fk(ζ(i)

k )x̂(i)
k−1|k−1

P(i)
k|k−1 = Fk(ζ(i)

k )P(i)
k−1|k−1Fk(ζ(i)

k )H + Qk

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K
(i)
k = P

(i)

k|k−1
Hk(ζ

(i)
k )H

(
Hk(ζ

(i)
k )P

(i)

k|k−1
Hk(ζ

(i)
k )H + Rk

)−1

x̂
(i)
k|k = x̂

(i)
k|k−1 + K

(i)
k

(
yk − Hk(ζ

(i)
k )x̂

(i)
k|k−1

)

P
(i)
k|k = P

(i)
k|k−1 − K

(i)
k Hk(ζ

(i)
k )P

(i)
k|k−1.

Let d denote the dimension of the continuous part of the
state xk, it is well known that the complexity of one recursion
of the Kalman filter is O(d3) [13]. Therefore, the complexity
of one recursion of the particle filter is O(QMd3).

Fig. 1. Block diagram of the STTC system.

III. SYSTEM MODEL

A. Communication system

We consider the communication system with n transmit and
m receive antennas depicted in Fig. 1. The binary message
{bk} is encoded with a memory-ν STTC. At time instant
k, a STTC creates a vector of encoded bits mapped into
BPSK symbols, denoted by sk =

[
s1

k, s2
k, . . . , sn

k

]T
, with

si
k ∈ {−1, +1}, for i = 1, . . . , n. The received noisy

observation at antenna j is given by

yj
k =

n∑
i=1

c
(ij)
k si

k + nj
k, (3)

where c
(ij)
k is the time-varying complex path gain from trans-

mit antenna i to receive antenna j and nj
k is a white Gaussian

noise sample with single-sided power spectral density N0.
In vector notation, we have yk = [y1

k, y2
k, . . . , ym

k ]T and
nk = [n1

k, n2
k, . . . , nm

k ]T . The path gains are assumed to
be independent flat Rayleigh fading coefficients. The noise
samples on the receive antennas are also independent. At the
receiver side, deterministic particle filtering is used to perform
joint channel estimation and decoding.

B. Classical state-space representation

We first recall the state-space model introduced in [5].
Consider an approximate model for a mobile Rayleigh fad-
ing channel using an autoregressive model of order P
(AR(P )) [14]. The time-varying channel gain for transmit
antenna i and receive antenna j is written as

c
(ij)
k =

P∑
p=1

φpc
(ij)
k−p + π

(ij)
k , (4)

where φ1, . . . , φP are non-zeros constants depending on the
fading rate and the π

(ij)
k ∼ NC(0, q) are independent driving

noise terms.
We define the P -dimensional vector

x(ij)
k =

[
c
(ij)
k , c

(ij)
k−1, . . . , c

(ij)
k−P+1

]T

,

by (4) we have

x(ij)
k = Φx(ij)

k−1 + π
(ij)
k ,

where

Φ =

⎡
⎢⎢⎢⎢⎢⎣

φ1 φ2 . . . φP−1 φP

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

,
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and π
(ij)
k = [π(ij)

k , 0, . . . , 0]T . Consequently, for the Pnm-
dimensional stacked vector of channel gains

xk =
[
x(11)

k

T
, . . . ,x(n1)

k

T
, . . . ,x(1m)

k

T
, . . . ,x(nm)

k

T
]T

,

we have
xk = Fxk−1 + πk

where state transition matrix is given by

F =

⎡
⎢⎢⎢⎣
Φ 0 . . . 0
0 Φ . . . 0
...

...
. . .

...
0 0 . . . Φ

⎤
⎥⎥⎥⎦ ,

and the process noise vector is given by

πk =
[
π

(11)
k

T
, . . . , π

(n1)
k

T
, . . . , π

(1m)
k

T
, . . . , π

(nm)
k

T
]T

.

We also define the Pn-dimensional vector obtained by in-
serting P − 1 zeros between the elements of the vector of
transmitted symbols sk =

[
s1

k, s2
k, . . . , sn

k

]T

rk (sk) = [s1
k, 0, . . . , 0, s2

k, 0, . . . , 0, . . . , sn
k , 0, . . . , 0].

Then from (3), we have a state-space description of our
communication system as⎧⎪⎨

⎪⎩
ζk = fk

(
ζk−1, bk

)
xk = Fxk−1 + πk

yk = Hk(ζk)xk + nk,

where ζk is the STTC state at instant k, fk is the STTC state
transition function and Hk(ζk) is the m × Pnm observation
matrix given by

Hk(ζk) =

⎡
⎢⎢⎢⎣
rk (sk) 0 . . . 0

0 rk (sk) . . . 0
...

...
. . .

...
0 0 . . . rk (sk)

⎤
⎥⎥⎥⎦ ,

where sk is the modulated STTC output, given the current
STTC state ζk.

Therefore, the deterministic particle filtering technique de-
veloped in Sec. II is readily applicable.

C. Proposed state-space representation

An alternative model for mobile Rayleigh fading channels
uses an exponential basis expansion with L bases (EBE(L))
[15]. Let T be the symbol duration. The time-varying channel
gain for transmit antenna i and receive antenna j is modeled
as

c
(ij)
k =

L∑
l=1

α
(ij)
l ej2πFlkT , (5)

where the α
(ij)
l are unknown but constant coefficients to be

estimated. Obviously, the channel time variations are captured
by the time-dependent complex exponentials. The frequencies
Fl, l = 1, . . . , L are fixed parameters independent from the
fading rate.
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Viterbi − Perfect CSI
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Fig. 2. FER vs. Es/N0 for a MIMO channel with BdT = 10−4.

We define the Ln-dimensional vector of stacked channel
coefficients corresponding to receive antenna j, j = 1, . . . , m

αj =
[
α

(1j)
1 , . . . , α

(1j)
L , . . . , α

(nj)
1 , . . . , α

(nj)
L

]T

,

and the Ln-dimensional vector depending on the transmitted
symbols sk =

[
s1

k, s2
k, . . . , sn

k

]T

vk (sk) = [ej2πF1kT s1
k, . . . , ej2πFLkT s1

k, . . . ,

ej2πF1kT sn
k , . . . , ej2πFLkT sn

k ].

It follows from (5) that (3) can be rewritten as

yj
k = vk (sk) αj + nj

k.

Now define the Lnm-dimensional channel state as

xk =

⎡
⎢⎣

α1

...
αm

⎤
⎥⎦ .

Then we have a new state-space description of our communi-
cation system as ⎧⎪⎨

⎪⎩
ζk = fk

(
ζk−1, bk

)
xk = xk−1

yk = Hk(ζk)xk + nk,

where the m × Lnm observation matrix is given by

Hk(ζk) =

⎡
⎢⎢⎢⎣
vk (sk) 0 . . . 0

0 vk (sk) . . . 0
...

...
. . .

...
0 0 . . . vk (sk)

⎤
⎥⎥⎥⎦ ,

where sk is again the modulated STTC output, given the
current STTC state ζk.

IV. SIMULATION RESULTS

In all simulations, we employ a MIMO channel with
n = 2 transmit antennas and m = 2 receive antennas. We
consider block transmissions, where the binary message {bk}
is organized in length-N frames. In our simulations N = 100.
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Viterbi − Perfect CSI
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Fig. 3. FER vs. Es/N0 for a MIMO channel with BdT = 0.003.
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Fig. 4. FER vs. Es/N0 for a MIMO channel with BdT = 0.003: with
knowledge of the true fading rate (solid and dotted) and with fading rate
mismatch (dashed).

The encoder is the memory-2 algebraic STTC for BPSK
modulation with connection polynomials (5, 7) in octal [3].
The energy per transmitted BPSK symbol (or equivalently per
transmit antenna) is denoted by Es. The STTC state is reset
to zero at the end of each frame.

The time-varying Rayleigh fading MIMO channel is sim-
ulated with the method described in [17]. Let Bd denote the
maximum Doppler shift, then the channel autocorrelation for
i = 1, . . . , n and j = 1, . . . , m is given by

E
[
c
(ij)
k c

(ij)
k−n

∗]
= J0(2πnBdT ),

where J0 is the zero-order Bessel function of first kind. A
good approximation of the channel statistics is obtained with
the order P = 2 autoregressive model (AR(2)) of Sec. III-B
by letting

φ1 = 2r cos(ω), φ2 = −r2, (6)

where r = 0.8092πBdT and ω = 0.781× 2πBdT . In order to
normalize the channel gain variance to one, the variance of

the noise terms π
(ij)
k must be chosen as [16]

q =
1 + φ2

1 − φ2
[(1 − φ2)2 − φ2

1].

Regarding the receiver of Sec. III-C, we use an exponential
basis expansion of the channel gains proposed by the authors
in [11], with L = 3 frequencies (EBE(3))

F1 = − 1
sNT

, F2 = 0, F3 =
1

sNT
,

where s is an small integer and NT is the duration of the
frame. We found that setting s = 3, any correlated Rayleigh
fading process such that 0 < BdT � 1

sN is well approximated
by (5). In the simulations, we consider slow fading with
BdT = 10−4 and moderately fast fading with BdT = 0.003,
therefore the model given by (5) is valid, since N = 100.

Fig. 2 shows the FER performances of the considered
system for a fading rate of BdT = 10−4. We compare the
blind deterministic particle receiver for the EBE(3) and AR(2)
channel models with M = 4 particles. We observe that at high
Es/N0, the receiver with EBE(3) (resp. AR(2)) channel model
is approximately 1.5dB (resp. 4.5dB) less power efficient than
the VA with perfect CSI. Fig. 3 shows a similar behavior for
a fading rate of BdT = 0.003.

The dotted and the solid curve in Fig. 4 shows the influence
of the number of particles on the blind receiver with the AR(2)
channel model at BdT = 0.003. Comparing with Fig. 3, we
see that the receiver with AR(2) model and M = 8 reaches
the same FER as the receiver with EBE(3) model and M = 4
(for instance FER=10−3 at Es/N0 = 10dB for both receivers).
Our interpretation is that an AR model capturing the short
term variations of the channel as well as a simple EBE model
with only 3 bases, would in general require a large order P .
Consequently, the EBE(3) model is able to predict the channel
gains more accurately than its AR(2) counterpart, during the
prediction stage of particle filtering. This disadvantage of the
AR(2) based receiver can be compensated only by doubling
the number of particles, at the cost of increased complexity.

Up to now, all simulations assumed that the coefficients of
the AR(2) based receivers given by Eq. (6), were generated
with the true value of the fading rate BdT . In order to
study the sensitivity of an AR(2) based receiver to a fading
rate mismatch, the dashed curve in Fig. 4 represents the
performances of a blind receiver with M = 8 particles at
true BdT = 0.003, but with coefficients in Eq. (6) generated
for BdT = 0.03. This corresponds to the situation where the
receiver grossly overestimates the unknown user’s velocity. It
appears that the fading rate mismatch induces a loss of 2dB
in terms of power efficiency. Clearly this drawback disappears
when the EBE model is used, since in this case the fading rate
need not be known to the receiver.

V. CONCLUSION

In this letter, we considered joint estimation and decoding
of space-time trellis codes with BPSK modulation on a un-
known flat Rayleigh fading MIMO channel. A conditionally
linear Gauss-Markov state-space model of the channel was
introduced, which is independent of the fading rate. A corre-
sponding receiver structure based on ML deterministic particle
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filtering was proposed. It was shown through simulations that,
even with a small number of particles, the performances of the
blind receiver can approach the perfect CSI case. The main
advantage of the proposed technique is its independence from
the unknown fading rate for quasi-static to moderately fast
fading MIMO channels.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311-335, Mar. 1998.

[2] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: performance criterion and code
construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744-765, Mar.
1998.

[3] H. El Gamal and A. R. Hammons, “On the design and performance
of algebraic space-time codes for BPSK and QPSK modulation,” IEEE
Trans. Commun., vol. 50, no. 6, pp. 907-913, June 2002.

[4] D. Guo and X. Wang, “Blind detection in MIMO systems via sequential
Monte Carlo,” IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 464-
473, Apr. 2003.

[5] J. Zhang and P. M. Djuric, “Joint estimation and decoding of space-time
trellis codes,” EURASIP J. Appl. Signal Processing, pp. 305-315, Mar.
2002.

[6] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Miguez, “Particle filtering: a review of the theory and
how it can be used for solving problems in wireless communications,”
IEEE Signal Processing Mag., vol. 20, no. 5, pp. 19-38, Sept. 2003.

[7] W. H. Chin, D. B. Ward, and A. G. Constantinides, “Semi-blind channel
tracking using auxiliary particle filtering,” in Proc. Globecom 2002, vol.
1, pp. 322-325, Nov. 2002.

[8] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 174-189, Feb. 2002.

[9] E. Punskaya, A. Doucet, and W. J. Fitzgerald, “Particle filtering for
joint symbol and code delay estimation in DS spread spectrum systems
in multipath environment,” EURASIP J. Appl. Signal Processing, no.
15, pp. 2306-2314, 2004.

[10] B. Dong, X. Wang, and A. Doucet, “A new class of soft MIMO
demodulation algorithms,” IEEE Trans. Signal Processing, vol. 51, no.
11, pp. 2752-2763, Nov. 2003.

[11] G. Salut and F. Ben Salem, “Deterministic particle receiver for multipath
fading channels in wireless communications, part I: FDMA (in French),”
Traitement du Signal, vol. 21, no. 4, pp. 347-358, 2004.

[12] A. Jazwinski, Stochastic Processes and Filtering Theory. Academic
Press, 1970.

[13] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE AES
Systems Mag., vol. 20, no. 8, pp. 57-69, Aug. 2005.

[14] L. Lindbom, “Simplified Kalman estimation of fading mobile radio
channels: high performance at LMS computational load,” in Proc. IEEE
ICASSP, pp. 352-355, Minneapolis, USA, April 1993.

[15] G. Giannakis and C. Tepedelenlioglu, “Basis expansion models and
diversity techniques for blind identification and equalization of time-
varying channels,” Proc. IEEE, vol. 86, no. 10, pp. 1969-1986, Oct.
1998.

[16] S. Haykin, Adaptive Filter Theory. Prentice Hall, New Jersey, 2002.
[17] Y. Li and X. Huang, “The simulation of independent Rayleigh faders,”

IEEE Trans. Commun., vol. 50, no. 9, pp. 1503-1514, Sept. 2002.


