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Joint user activity detection, channel estimation and

decoding for multi-user/multi-antenna OFDM

systems
Frederic Lehmann

Abstract—We propose a Bayesian framework for the prob-
lem of multi-user dectection in the context of an unknown
and time-varying number of active users. In this paper, we
combine orthogonal frequency-division multiplexing modulation
with multi-antenna reception to mitigate both the asynchronism
and frequency-selectivity of the wireless medium. We develop a
method for user identity and data detection with joint channel
parameter estimation, performed on a per-OFDM block basis
to account for a highly dynamic random-access channel. Based
on a factor graph approach, we derive an inference algorithm
based on message-passing resulting in an iterative code-aided
receiver. We show that a suitable Gaussian approximation leads
to a complexity that increases only linearly with the maximum
number of users.

Computer simulations show that the proposed iterative re-
ceiver has a low probability of erroneous activity detection, while
maintaining a high antenna diversity order for active users.

Index Terms—Multi-antenna OFDM, multi-user detection,
user activity detection, channel estimation, graphical models,
message-passing receiver.

I. INTRODUCTION

Future mobile and wireless communications networks will

require unprecedented levels of energy and spectrum effi-

ciency. Here, we list some of the key technologies able to

meet these challenging goals. First, traffic offloading using

unlicensed frequency bands [1] can opportunistically utilize

spectral holes, provided that the presence/absence of primary

users is correctly detected. Secondly, decode-and-forward re-

laying [2] extends the radio coverage by taking advantage

of cooperative diversity. However, since the destination ex-

periences error propagation if a decoding error at the relay

is not considered, the destination may need to detect which

codeword was properly decoded and reforwarded by which

relay. Thirdly, Internet-of-Things (IoT) applications with mas-

sive connectivity and low latency requirements need uplink

users to transmit their sporadic data to a base station (BS)

which has no prior knowledge of the active user set [18], in

order to avoid the large signaling overhead due to protocol-

based user identification. What these three techniques have in

common is that they need to perform user (or relay) activity
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detection along with data detection, which is the problem we

address in this paper.

We focus on the simultaneous transmission of an unknown

and time-varying number of single-antenna users employing

orthogonal frequency-division multiplexing (OFDM) whose

asynchronism is compensated by long-enough cyclic-prefixes

(CPs), combined with receiver diversity to combat multipath

fading over wireless channels.

Several user activity detection (UAD) and multi-user de-

tection (MUD) algorithms suitable for multi-antenna OFDM

systems have been investigated in the literature.

Standard approaches implement active user set detection

and MUD as separate modules. In the single-user case, energy

detection [3], which is often the preferred user activity dectec-

tion method due to its simplicity, has been extended to multi-

antenna OFDM in [4]. The obvious drawback of constant false

alarm rate (CFAR) energy thresholding is its inability to de-

liver reliability information about user detection for the current

OFDM block. Once the single user is detected, joint channel

estimation, symbol detection and decoding methods, such

as [5]-[6], can be applied. In the multi-user case, user-specific

signatures are first sent on the multiple-access channel for

the sake of user identification using CFAR techniques [7]-[8].

Then for subsequent user data, known-channel joint MUD and

decoding [9] can be performed based on the channel estimates

obtained during the user identification phase if the channels are

quasi-static. Otherwise, either blind channel estimation [10]

or joint channel estimation, MUD and decoding (CEMUDD)

methods will be needed over time-varying channels [11]-

[12]. Alternatively, in the context of multicarrier code-division

multiple-access (MC-CDMA), a subspace method was intro-

duced in [16] to estimate the set of active users along with

the multiple-antenna channel at the receiver side. Minimum

mean square error (MMSE) MUD is then applied to recover

the symbols sent by the detected users.

Against this background, joint user activity and data detec-

tion, using compressive sensing [17]-[19] or serial interference

cancellation (SIC) [20], appeared recently. However, these

methods consider perfect channel knowledge even for inactive

users, which implicitly assumes quasi-static channels that are

periodically re-estimated by the transmission of beacons [20].

In this work, we propose an OFDM-based superposition

modulation allowing multiple users to share the same time

and frequency resources. User separation is achieved with the

help of user-specific interleavers at the transmitter side [9]. We

consider the challenging scenario, where the set of active users
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and the propagation parameters can vary on a per-OFDM block

basis. Since users join and leave the network without prior

knowledge on arrival/disappearance times, we model the per-

user activity as a binary random variable. We also introduce

a Gauss-Markov state-space model for the per-user multi-

antenna channel frequency response (CFR) and an observation

model for the received baseband signal. Bayesian inference

for the resulting mixed discrete-continuous problem is then

reformulated using a graphical model approach [21]-[22]. We

discuss how belief propagation naturally results in an iterative

joint UAD-CEMUDD scheme. However, standard message-

passing involves a Gaussian mixture representation, whose

number of mixands grows as a function of the subcarrier

and iteration indices. As a remedy, we introduce suitable

approximations to obtain a Gaussian belief propagation [23]-

[24] implementation for specific parts of the receiver, leading

to a tractable complexity, while preserving near-optimal per-

formances.

The main technical contributions of this work are

• A beaconless user identification and channel acquisition

protocol, suitable for delay-sensitive applications where

transmissions may occur or cease at any OFDM block

• An iterative message-passing receiver performing joint

UAD-CEMUDD, with a complexity that increases only

linearly with the maximum number of users in the net-

work

• A receiver that exchanges soft information not only about

the transmitted data as usual, but also about the activity

of each user, hence limiting the risk of error propagation

during subsequent iterations.

Therefore, unlike existing OFDM-based CEMUDD [11]-[14],

the present work focuses on the automatic user activity track-

ing and situations where the quasi-static channel assumption

does not hold. Another distinctive feature of the proposed

method is its ability to explicitly exploit the residual channel,

symbol and user activity uncertainties in the iterative process,

while existing OFDM-based CEMUDD ignore all or part of

that information [11]-[15].

Throughout the paper, bold letters indicate vectors and

matrices while 0m×n (resp. Im) is the m × n all-zero (resp.

the m × m identity) matrix and diag{a} is the diagonal

matrix, whose diagonal entries are stored in vector a and

whose off-diagonal entries are zero. NC(x : m,P) denotes

a complex Gaussian distribution of the variable x, with mean

m and covariance matrix P. Let yn be the n-th observation,

n = 1, . . . , N , a set of observations from time i up to time t is

denoted by yi:t. The conditional expectation or covariance of

a variable at time n given y1:n−1, (resp. yn+1:N ) is denoted

using the subscript n|n − 1 (resp. n|n + 1 : N ). Similarly,

the conditional expectation or covariance of a variable at time

n given {y1, . . . ,yn−1,yn+1, . . . ,yN} is denoted using the

subscript n \ n.

This paper is organized as follows. First, Sec. II describes

the system model adopted for the time-varying multiple-

access problem, along with the corresponding factor graph

representation. In Sec. III we develop our joint user activity

detection, channel estimation, MUD and decoding algorithm

(joint UAD-CEMUDD) based on belief propagation over the
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Fig. 1. a) Single-antenna OFDM transmitter for each user - b) Multi-
user/multi-antenna OFDM receiver at the destination node.
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Fig. 2. Subcarrier arrangement for all users: pilot block (shaded) and data
block (unshaded). In a pilot block, a 0 denotes an always silent subcarrier,
while x is a pilot (resp. a silent) subcarrier for an active (resp. inactive) user.

factor graph. In Sec. IV, a low-complexity receiver based

on approximate Gaussian message-passing is derived. Finally,

in Sec. V, the performances of the proposed algorithm are

assessed through numerical simulations and compared with

existing methods.

II. SYSTEM MODEL

A. Multiple-access system

We consider the problem illustrated in Fig. 1, consisting

of U single-antenna user nodes and one destination node

equipped with NR receive antennas. User u generates a se-

quence of uniformly, identically and independently distributed

(i.i.d.) information bits, bu, that is encoded by the convo-

lutional code CCu, passed through a user-specific bit inter-

leaver πu and mapped into complex symbols using an M -ary

modulation scheme. As illustrated in Fig. 2, orthogonal pilot

sequences are inserted with repetition period P for the purpose

of channel estimation. The resulting length-N modulated

vector for user u is denoted by du = [du0 , d
u
1 , . . . , d

u
N−1]

T ,

with the normalization E[|dun|
2] = 1 ∀n. We use the notation

du = Cu(bu), where Cu denotes the deterministic trans-

formation corresponding to the combined effect of channel
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coding, bit interleaving, mapping and pilot insertion for user

u. The u-th user activity is modeled by multiplying the current

modulated vector with
√

Eu
s θ

u, where Eu
s is the energy per

symbol of user u and θu a binary existence variable, that

equals 1 (resp. 0) if user u is active (resp. inactive). Active

users form a subset, whose size is assumed lower or equal

to NR, thus rendering the degree of freedom of the receiver

sufficient. Each user implements OFDM transmission using an

N -point inverse discrete Fourier transform (IDFT), in order to

enable simple and effective mitigation of multipath fading at

the receiver side. For convenience, the OFDM block index is

dropped since we assume user appearance/disappearance as

well as channel time variation on a per-OFDM block basis.

We further assume that the channel length augmented by

the users’ maximum timing misalignment remains within the

cyclic prefix (CP), so that the effect of user asynchronism at

the destination is suppressed [25].

B. Channel model

Assuming a block fading channel, the discrete-time chan-

nel impulse response (CIR) between user u and the m-

th receive antenna is a length-L complex vector, cu,m =
[cu,m(0), . . . , cu,m(L− 1)]T , constant over one OFDM block.

Under the wide-sense stationary uncorrelated scattering (WS-

SUS) model [26], the coefficients cu,m(l) are independently

drawn from NC(c
u,m(l) : 0, E

[

|cu,m(l)|2
]

), where the nor-

malization
∑L−1

l=0
E
[

|cu,m(l)|2
]

= 1 applies. It follows that

the channel frequency response (CFR) between user u and

the m-th receive antenna, {Cu,m
n }N−1

n=0 , is the N -point discrete

Fourier transform (DFT) of the zero-padded CIR cu,m. Now,

let us define the CFR state between user u and the destination

over subcarrier n as

xu
n =

[

Cu,1
n , Cu,2

n . . . , Cu,NR

n

]T
, (1)

whose prior distribution is

p(xu
n) = NC(x

u
n : 0NR×1, INR

). (2)

In order to get a simple factor graph representation, we model

the channel frequency correlation as in [6], with a Gauss-

Markov process of the form

xu
n = xu

n−1 +∆u
n (3)

whose i.i.d. Gaussian driving noise ∆u
n ∼ NC(∆

u
n :

0NR×1,Q
u) has covariance

Qu = ζ×

diag
{[

E[|Cu,1
n − Cu,1

n−1|
2], . . . , E[|Cu,NR

n − Cu,NR

n−1 |2]
]}

,

where ζ is a real positive parameter to be optimized to account

for the model inaccuracy.

C. Observation model

In the following, using the fact that subcarrier orthogonality

is preserved (see Sec. II-A-II-B), we obtain the baseband
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Fig. 3. Portion of the factor graph corresponding to receiver processing at
the destination node for the u-th user.

signal at the m-th receive antenna on the n-th subcarrier

as [10]-[12]

ymn =

U
∑

u=1

θu
√

Eu
s d

u
nC

u,m
n + wm

n , (4)

where wm
n ∼ NC(w

m
n : 0, N0) denotes the zero-mean i.i.d.

additive white Gaussian noise (AWGN) term. Let us define

the received observation vector for all receive antennas on the

n-th subcarrier as yn = [y1n, . . . , y
NR

n ]T , (4) leads to

yn =

U
∑

u=1

θuHu
n(d

u
n)x

u
n +wn, (5)

where Hu
n(d

u
n) = diag

{[√

Eu
s d

u
n, . . . ,

√

Eu
s d

u
n

]}

is the u-th

user NR×NR observation matrix and wn = [w1
n, . . . , w

NR

n ]T

is a zero-mean Gaussian noise vector with covariance matrix

R = N0INR
.

D. Factor-graph framework

A factor-graph is a graphical representation of the factor-

ization of a global function into a product of local functions

depending on a subset of the variables [21]-[22]. Here, since

Bayesian inference is of interest, the global function is the a

posteriori probability density function (p.d.f.) of the problem

at hand, whose unobserved variables correspond to all users’

data or CFR variables introduced in Sec. II-A-II-B) and whose

observed variables are defined in Sec. II-C. Exploiting all con-

ditional independencies encoded by the factor-graph, Bayesian

inference can then be performed in a computationally efficient

manner by applying the sum-product algorithm (SPA) [21]-

[22]. Let us define the u-th user CFR state variables for all

subcarriers in Sec. II-B as Xu = {xu
n}

N−1

n=0 . Similarly, we

collect the observations for all subcarriers in Sec. II-C into

Y = {yn}
N−1
n=0 . Then, the a posteriori p.d.f. of interest can
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be factorized using Bayes rule as

p(θ1, . . . , θU ,X1, . . . ,XU ,d1, . . . ,dU ,b1, . . . ,bU |Y)

∝p(Y|θ1, . . . , θU ,X1, . . . ,XU ,d1, . . . ,dU )

×
U
∏

u=1

{P (θu)p(Xu)P (du|bu)P (bu)} ,

(6)

where we have introduced the reasonable assumption that user

existence variables are independent of the data and CFR states.

Now, using the fact that the noise vectors in (5) are i.i.d., the

second line in (6) can be further factorized as

p(Y|θ1, . . . , θU ,X1, . . . ,XU ,d1, . . . ,dU )

=

N−1
∏

n=0

p(yn|θ
1, . . . , θU ,x1

n, . . . ,x
U
n , d

1
n, . . . , d

U
n ).

Moreover ∀u, using the deterministic relationship between du

and bu from Sec. II-A and the first-order Gauss-Markov model

for Xu from Sec. II-B, the third line in (6) is proportional to

U
∏

u=1

{

P (θu)I(du = Cu(bu))p(xu
0 )

N−1
∏

n=1

p(xu
n|x

u
n−1)

}

,

where we have used the fact that ∀u, P (bu) is an irrelevant

constant and I(.) denotes the indicator function. The factor-

graph corresponding to the above factorization is depicted

in Fig. 3. Variable nodes are represented as circles and the

local functions corresponding to the n-th subcarrier in the

factorization, denoted by

fu
n = p(xu

n|x
u
n−1)

gn = p(yn|θ
1, . . . , θU ,x1

n, . . . ,x
U
n , d

1
n, . . . , d

U
n )

are represented as squares. For the sake of readability, we have

only depicted the dependencies of gn on the user activity, data

and CFR states of the u-th user. Therefore it is understood

that the dependencies of gn on the user activity, data and CFR

states of all other users have exactly the same structure and

should be stacked on top of each other in parallel planes in

the factor graph. Note that the overall factor graph can be

decomposed into a number of subgraphs, that correspond to

multi-user detection tasks (such as per-user CFR estimation,

soft demodulation and soft decoding), augmented by an addi-

tional UAD subgraph.

III. BELIEF PROPAGATION RECEIVER

In this section we introduce a receiver, which attempts

joint UAD-CEMUDD for all users. We seek a probabilistic

approach computing marginals for all users’ existence, data

and CFR states. An efficient algorithm for computing these

marginals is by iteratively passing messages among neigh-

boring nodes on the graph in Fig. 3 via the sum-product

algorithm [21]-[22]. In this section, we present the exact

form of the messages exchanged over each subgraph. We let

µu→v(.) denote the message sent by node u to node v in the

factor graph.

A. u-th user CFR estimation subgraph

The incoming message on the u-th user CFR estimation

subgraph on to xu
n is computed from the sum-product rule

applied at the factor node gn

µgn→x
u
n
(xu

n) ∝

∑

{θu}U

u=1

∑

{du
n
}U

u=1

U
∏

u=1

µθu→gn(θ
u)

U
∏

u=1

µdu
n
→gn(d

u
n)

×

∫

CU−1

p(yn|θ
1, . . . , θU ,x1

n, . . . ,x
U
n , d

1
n, . . . , d

U
n )

×
∏

u′ 6=u

µ
x
u′
n

→gn
(xu′

n )
∏

u′ 6=u

dxu′

n ,

(7)

which can be viewed as the likelihood function of xu
n for fixed

yn. Messages for the u-th user CFR states in the forward and

backward direction are computed recursively using (7)

µfu

n+1
→x

u

n+1
(xu

n+1) ∝

∫

p(xu
n+1|x

u
n)µgn→x

u
n
(xu

n)µfu
n
→x

u
n
(xu

n)dx
u
n

µfu
n
→x

u

n−1
(xu

n−1) ∝

∫

p(xu
n|x

u
n−1)µgn→x

u
n
(xu

n)µfu

n+1
→x

u
n
(xu

n)dx
u
n.

(8)

Finally, applying the sum-product rule at the variable node

xu
n, the outcoming messages on the u-th user CFR estimation

subgraph are obtained as the product of forward and backward

messages in (8)

µx
u
n
→gn(x

u
n) ∝ µfu

n
→x

u
n
(xu

n)µfu

n+1
→x

u
n
(xu

n). (9)

B. u-th user demodulation and decoding subgraph

The incoming message on the u-th user demodulation

subgraph on to dun is computed from the sum-product rule

applied at the factor node gn as

µgn→du
n
(dun) ∝

∑

{θu}U

u=1

∑

{du′
n

}
u′ 6=u

U
∏

u=1

µθu→gn(θ
u)
∏

u′ 6=u

µdu′
n

→gn
(du

′

n )

×

∫

CU

p(yn|θ
1, . . . , θU ,x1

n, . . . ,x
U
n , d

1
n, . . . , d

U
n )

×
U
∏

u=1

µx
u
n
→gn(x

u
n)

U
∏

u=1

dxu
n

(10)

which can be viewed as the likelihood function of dun for fixed

yn. Finally, regarding the u-th user decoding subgraph, the

messages from dun to the bit interleaver πu and from the bit

interleaver πu to dun, correspond to the bit-level probabilities

computed by the standard turbo-demodulation algorithm in-

troduced in [27].

C. u-th user activity detection subgraph

From the sum-product rule, the incoming message from

the observation factor node gn on to the u-th user existence
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variable θu has the form

µgn→θu(θu) ∝

∑

{θu′}
u′ 6=u

∑

{du
n
}U

u=1

∏

u′ 6=u

µθu′→gn
(θu

′

)

U
∏

u=1

µdu
n
→gn(d

u
n)

×

∫

CU

p(yn|θ
1, . . . , θU ,x1

n, . . . ,x
U
n , d

1
n, . . . , d

U
n )

×
U
∏

u=1

µx
u
n
→gn(x

u
n)

U
∏

u=1

dxu
n

(11)

and can be viewed as the likelihood function of θu for

fixed yn. In turn, the outcoming message from the u-th user

existence variable θu on to the observation factor node gn can

be written as

µθu→gn(θ
u) ∝

∏

m 6=n

µgm→θu(θu). (12)

Also, the marginal probability mass function (p.m.f) of θu

P (θu|y1:N ) ∝
N−1
∏

n=0

µgn→θu(θu) (13)

can be used to perform u-th user maximum a posteriori

activity detection as

θ̂u =

{

1 if P (θu = 1|y1:N) > P (θu = 0|y1:N )

0 otherwise.
(14)

D. Message-passing schedule

In our factor graph with cycles, message-passing naturally

leads to an iterative algorithm [21]. There is considerable

freedom in the selection of the message-passing schedule.

Here, we propose a serial schedule, that updates the messages

on the subgraphs corresponding to each user in turn instead

of simultaneously.

The overall iterative algorithm proceeds as follows. For

each iteration, the following steps are executed on each user’s

subgraph by order of descending transmitted energy. On the

u-th user subgraph, depicted in Fig. 3:

1) perform forward-backward CFR estimation for the cur-

rent user (see Sec. III-A)

2) perform one soft demodulation and soft decoding pass

for the current user (see Sec. III-B)

3) update the existence variable probabilities, based on

updated CFR marginals and post-decoding symbol-level

probabilities for the current user (see Sec. III-C).

E. Message-passing initialization

Initialization is needed at the first iteration to compute (7),

(10) and (11). In the absence of CFR estimation at the starting

point, messages from CFR states to observation factor nodes

µx
u
n
→gn(x

u
n), are initialized to the CFR Gaussian priors (2),

∀(u, n). Symbol-level probabilities µdu
n
→gn(d

u
n) are initialized

to a Kronecker delta function if n corresponds to a u-th

user pilot subcarrier (since dun is perfectly known) and to the

uniform p.m.f if n corresponds to a u-th user data subcarrier

(since no prior knowledge on dun is available). For some

specific applications, the prior user activity probability can be

obtained from traffic models [28]. However, since such prior

information is generally unavailable, we assume a worst case

scenario where all users are present, that is µθu→gn(1) = 1
and µθu→gn(0) = 0, ∀(u, n) during the first iteration.

Also, for all iterations, the forward CFR estimation recur-

sion at n = 0 (resp. the backward CFR estimation recursion at

n = N − 1) in (8) is initialized with the CFR Gaussian prior

of each user (2).

F. Complexity issues

Let us consider the u-th user CFR estimation in Sec. III-A.

The summation in (7) involves MU(M + 1)U−1 different

integrals for all valid combinations of existing users and

their corresponding transmitted symbols. From Sec. III-E,

the CFR estimation message computed in the forward (resp.

backward) direction in (8) is Gaussian only at the n = 0 (resp.

n = N − 1), and becomes a Gaussian mixture whose number

of mixands grows as the subcarrier index increases (resp.

decreases). It follows that each integral in the summation (7) is

also a Gaussian mixture whose number of mixands grows with

N . Clearly, a similar combinatorial explosion effect occurs

for the u-th user demodulation in (10) and the u-th UAD in

(11). It follows that, even for moderate values of M , U and

N , the complexity of the belief propagation receiver becomes

intractable.

IV. LOW-COMPLEXITY MESSAGE-PASSING RECEIVER

We seek an alternative to the exact implementation of

belief propagation, able to solve the complexity issue raised

in Sec. III-F and yet retaining near-optimal performance. To

this end, we propose to approximate all continuous-valued

messages in Sec. III by Gaussian messages, while preserving

the same message-passing schedule and initialization. In this

section, we rederive the corresponding messages for per-user

CFR estimation in Sec. IV-B, for demodulation and decoding

in Sec. IV-C and for UAD in Sec. IV-D, after introducing

useful notations in Sec IV-A.

A. Multi-User Interference (MUI) notations

Let us consider the contribution of the u′-th user on the

MUI vector affecting all other users on the n-th subcarrier. Its

expectation is given by Ĥu′

n x̂u′

n\n, where

Ĥu
n =

∑

θu

∑

du
n

µθu→gn(θ
u)µdu

n
→gn(d

u
n)θ

uHu
n(d

u
n), ∀u (15)

and its covariance

Iu
′

n =
∑

θu′

∑

du′
n

µθu′→gn
(θu

′

)µdu′
n

→gn
(du

′

n )×

{

θu
′

Hu′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H+

(θu
′

Hu′

n (du
′

n )− Ĥu′

n )x̂u′

n\nx̂
u′

n\n
H(θu

′

Hu′

n (du
′

n )− Ĥu′

n )H
}

,

(16)

accounts for both the residual CFR, data and existence uncer-

tainty on the u′-th user MUI contribution.
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B. u-th user CFR estimation subgraph

As per hypothesis, the message from the CFR state of user

u′ 6= u on to the factor node gn is approximated as the

Gaussian p.d.f.

µ
x
u′
n

→gn
(xu′

n ) ∝ NC(x
u′

n : x̂u′

n\n,P
u′

n\n), (17)

whose mean and covariance will be derived later in (23).

From (5), we get the likelihood of all unknowns for fixed

yn

p(yn|θ
1, . . . , θU ,x1

n, . . . ,x
U
n , d

1
n, . . . , d

U
n ) =

NC

(

yn :
U
∑

u=1

θuHu
n(d

u
n)x

u
n,R

)

.
(18)

Injecting (17) and (18) into (7), the likelihood function of xu
n

for fixed yn becomes (see [29, p. 40])

µgn→x
u
n
(xu

n) ∝

∑

{θu}U

u=1

∑

{du
n
}U

u=1

U
∏

u=1

µθu→gn(θ
u)

U
∏

u=1

µdu
n
→gn(d

u
n)

×NC

(

yn : θuHu
n(d

u
n)x

u
n +

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n,

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H +R
)

.

(19)

Now, collapsing (19) to a single Gaussian, we obtain

µgn→x
u
n
(xu

n) ∝

NC



yn : Ĥu
nx

u
n +

∑

u′ 6=u

Ĥu′

n x̂u′

n\n, D̂
u
n +

∑

u′ 6=u

Iu
′

n +R



 ,

(20)

where the u-th user’s desired signal contribution on the n-

th subcarrier for the sake of CFR estimation has expectation

Ĥu
nx

u
n and covariance

D̂u
n =

∑

θu

∑

du
n

µθu→gn(θ
u)µdu

n
→gn(d

u
n)

× (θuHu
n(d

u
n)− Ĥu

n)(θ
uHu

n(d
u
n)− Ĥu

n)
H .

(21)

The proof of (20) is postponed to Appendix A.

Injecting (20) into (8), forward-backward CFR estimation

messages have the form

µfu
n
→x

u
n
(xu

n) ∝ NC(x
u
n : x̂u

n|n−1,P
u
n|n−1)

µfu

n+1
→x

u
n
(xu

n) ∝ NC(x
u
n : x̂u

n|n+1:N−1,P
u
n|n+1:N−1),

(22)

whose mean and covariance are updated with the standard

Kalman filter [30]. Finally, injecting (22) into (9), the outcom-

ing message from the u-th CFR estimation subgraph, takes the

extrinsic two-filter Kalman smoother form [30]

µx
u
n
→gn(x

u
n) ∝ NC(x

u
n : x̂u

n\n,P
u
n\n), (23)

whose mean and covariance are computed as

{

P
u
n\n =P

u
n|n−1

[

P
u
n|n−1 +P

u
n|n+1:N−1

]−1
P

u
n|n+1:N−1

x̂
u
n\n =P

u
n\n

[

P
u
n|n−1

−1
x̂
u
n|n−1 +P

u
n|n+1:N−1

−1
x̂
u
n|n+1:N−1

]

.

C. u-th user demodulation and decoding subgraph

Using the same method as in Sec. IV-B, we now lower

the complexity of soft demodulation. Namely, we rewrite (10)

using (17) and (18) as (see [29, p. 40])

µgn→du
n
(dun) ∝

∑

{θu}U

u=1

∑

{du′
n

}
u′ 6=u

U
∏

u=1

µθu→gn(θ
u)
∏

u′ 6=u

µdu′
n

→gn
(du

′

n )

×NC

(

yn : θuHu
n(d

u
n)x̂

u
n\n +

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n,

θuHu
n(d

u
n)P

u
n\nH

u
n(d

u
n)

H+
∑

u′ 6=u

θu
′

Hu′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H +R
)

.

(24)

Collapsing (24) to a single Gaussian, the likelihood of dun for

fixed yn simplifies to

µgn→du
n
(dun) ∝

NC

(

yn : H̃u
nx̂

u
n\n +

∑

u′ 6=u

Ĥu′

n x̂u′

n\n, D̃
u
n +

∑

u′ 6=u

Iu
′

n +R
)

,

(25)

where the u-th user’s desired signal contribution on the n-

th subcarrier for the sake of demodulation has expectation

H̃u
nx̂

u
n\n, where

H̃u
n =

∑

θu

µθu→gn(θ
u)θuHu

n(d
u
n), (26)

and covariance

D̃u
n =

∑

θu

µθu→gn(θ
u)×

{

θuHu
n(d

u
n)P

u
n\nH

u
n(d

u
n)

H

+ (θuHu
n(d

u
n)− H̃u

n)x̂
u
n\nx̂

u
n\n

H(θuHu
n(d

u
n)− H̃u

n)
H
}

.

(27)

The proof of (25) is omitted since it is similar to Appendix A.

Note that message-passing on the decoding subgraph re-

mains unchanged from the description in Sec. III-B.

D. u-th user activity detection subgraph

Again, using the same method as in Sec. IV-B, we now

lower the complexity of u-th user soft activity detection.

Namely, we rewrite (11) using (17) and (18) as (see [29, p.

40])

µgn→θu(θu) ∝

∑

{θu′}
u′ 6=u

∑

{du
n
}U

u=1

∏

u′ 6=u

µθu′→gn
(θu

′

)

U
∏

u=1

µdu
n
→gn(d

u
n)

×NC

(

yn : θuHu
n(d

u
n)x̂

u
n\n +

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n,

θuHu
n(d

u
n)P

u
n\nH

u
n(d

u
n)

H+
∑

u′ 6=u

θu
′

Hu′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H +R
)

.

(28)
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Collapsing (28) to a single Gaussian, the likelihood of θu for

fixed yn simplifies to

µgn→θu(θu) ∝

NC

(

yn : H̄u
nx̂

u
n\n +

∑

u′ 6=u

Ĥu′

n x̂u′

n\n, D̄
u
n +

∑

u′ 6=u

Iu
′

n +R
)

,

(29)

where the u-th user’s desired signal contribution on the n-

th subcarrier for the sake of UAD has expectation H̄u
nx̂

u
n\n,

where

H̄u
n =

∑

du
n

µdu
n
→gn(d

u
n)θ

uHu
n(d

u
n), (30)

and covariance

D̄u
n =

∑

du
n

µdu
n
→gn(d

u
n)×

{

θuHu
n(d

u
n)P

u
n\nH

u
n(d

u
n)

H

+ (θuHu
n(d

u
n)− H̄u

n)x̂
u
n\nx̂

u
n\n

H(θuHu
n(d

u
n)− H̄u

n)
H
}

.

(31)

The proof of (29) is omitted since it is similar to Appendix A.

Note that the computation of (12)-(14) remains unchanged.

E. Complexity evaluation

Let Nit denote the number of message-passing iterations.

The computational compexity per-user and per-subcarrier of

• each MUI term’s expectation and covariance calculation

in Sec. IV-A is O(MNRNit) and O(MN2
RNit), respec-

tively

• CFR estimation in Sec. IV-B is O(N3
RNit), due to matrix

inversion in Kalman filtering

• soft demodulation in Sec. IV-C is O(MN3
RNit), due to

matrix inversion in (25) for each symbol in the M -ary

alphabet

• soft UAD in Sec. IV-D is O(2N3
RNit), due to matrix

inversion in (29) for each existence variable in {0, 1}.

Consequently, we obtain the desirable property that the com-

putational complexity of the low-complexity message-passing

receiver grows only linearly with U , the maximum number

of users, thus effectively solving the combinatorial explosion

issue related to the belief propagation receiver of Sec. III.

V. NUMERICAL RESULTS

In this section, we present numerical results that compare

several receivers:

• benchmark receivers with separate UAD and CEMUDD

• the joint UAD-CEMUDD receiver proposed in Sec. IV

• the proposed receiver in Sec. IV, based on perfect channel

state information (CSI)

• the proposed receiver in Sec. IV, based on perfect UAD.

The comparison is performed in terms of bit error rate (BER),

CFR mean square error (MSE), probability of false alarm

(Pfa) and probability of missed detection (Pmd) for each user.

Note that the computation of the BER and CFR MSE for the u-

th user takes into account only those OFDM blocks for which

user activity is detected (i.e. θ̂u = 1 in (14)).

A. Setup

We consider the uplink of a multi-user system with a

maximum of U equal-energy users equipped with one transmit

antenna. For each active user, the transmission is based on

a rate-1/2 recursive systematic convolutional encoder, with

generator polynomials (1, 5/7) in octal, followed by user-

specific random interleaving. For bit to symbol mapping,

quadrature phase shift keying (QPSK) or 8/16-ary quadra-

ture amplitude modulation (8/16-QAM) is used, followed by

OFDM modulation with N = 1024 subcarriers. All CIRs in

Sec. II-B are simulated independently for each OFDM block

according to a Rayleigh fading model with an exponentially

decreasing power delay profile that has a decay constant of

three taps. A CP of size N/8 = 128 samples is inserted, so that

asynchronous access with large timing misalignments between

users can be tolerated. At the destination node, the assumed

model for each user’s CFR is the Gauss-Markov model (3).

The driving noise parameter ζ, introduced to compensate for

the modeling mismatch, has been optimized via numerical

simulations to 10. Also, in order to avoid underdetermined

reception, we assume that the cardinality of the active user set

is less than or equal to the number of receive antennas, NR.

B. Cognitive radio scenario

We address the problem of dynamically leasing an under-

utilized frequency band to a secondary (unlicensed) user (SU)

without causing harmful interference to the primary (licensed)

user (PU) [1]. This scenario corresponds to U = 1, where

the single user (user 1) plays the role of the PU and the

destination plays the role of the SU. Since the transmission

of user 1 may occur or cease at any time, in the absence

of prior information we model the existence variable θ1 as

a binary random variable, that is independently distributed

for each OFDM block according to a Bernoulli distribution

with P (θ1 = 0) = P (θ1 = 1) = 0.5. Here, we use

QPSK modulation and NR = 1, which is sufficient to ensure

identifiability. Additionally, we chose a benchmark method

that applies the two following steps on each OFDM block:

• UAD: conventional CFAR energy detection [4], where

Pfa is fixed to 10−5

• CEMUDD: the proposed method in Sec. IV where θ1 is

fixed to the value returned by the energy detector.

1) Convergence analysis: A convenient semi-analytical tool

to assess the convergence properties of iterative receivers is

the EXIT chart [31]. In Sec. V-B2, we will show that the

proposed joint UAD-CEMUDD incurs no BER nor CFR MSE

performance loss wrt the perfect UAD case. Therefore, we

restrict our analysis to the proposed receiver under perfect

UAD. The behavior of an iterative receiver is predicted by

plotting the EXIT functions of its constituent components. Let

IdecA (resp. IdecE ) denote the mutual information (MI) between

the encoded bits and the a priori LLRs at the decoder input

(resp. the MI between the encoded bits and the extrinsic LLRs

at the decoder output), the decoder EXIT function has the form

IdecE = T dec(IdecA )
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Fig. 4. Proposed method with perfect UAD in the cognitive radio scenario
using QPSK with E1

s/N0 = 10 dB - a) and b): 3D-EXIT functions - c)
and d): Projected EXIT functions along with the simulated EXIT trajectory
(circles).

and is obtained via the standard Monte Carlo simulation

method decribed in [31]. Similarly, we let IdemA (resp. IdemE )

denote the MI between the encoded bits and the a priori

LLRs at the soft demodulator input (resp. the MI between the

encoded bits and the extrinsic LLRs at the soft demodulator

output). Additionally, we define IchA (resp. IchE ) as the MI

between the true and the estimated complex CFR coefficients

at the receive antennas before CFR re-estimation (resp. the MI

between the true and the estimated complex CFR coefficients

at the receive antennas after CFR re-estimation) [32]. The CFR

estimator and demodulator EXIT functions have the form

IchE = T ch(IchA , IdemA , E1
s/N0)

IdemE = T dem(IchA , IdemA , E1
s/N0),

(32)

where E1
s/N0 denotes the per-symbol signal-to-noise ratio

(SNR) measure. The EXIT functions in (32) are obtained via

the Monte Carlo simulation method decribed in [32]. Note

that these EXIT functions could easily be generalized for a

maximum number of users U > 1, but at the expense of

increased dimensionality.

Fig. 4 a) (resp. 4 b)) illustrates the decoder and demodu-

lator EXIT functions (resp. CFR estimator EXIT function) at

E1
s/N0 = 10 dB. We also plot simulated EXIT trajectories

in Fig. 4 c) and 4 d), obtained by collecting CFR estimates

and extrinsic LLRs at the demodulator/decoder output for

several iterations of the proposed receiver during 5000 consec-

utive codewords. For the sake of readability, simulated EXIT

trajectories are compared with EXIT functions projected on

2D planes [33]. As expected, EXIT trajectories obtained via

Monte Carlo simulations follow a zig-zag pattern delimited by

the EXIT functions. It can be seen that convergence is reached

after two iterations for this scenario.

2) BER and CFR MSE performance: Fig. 5 presents the

BER performances of the aforementioned receivers for QPSK

modulation. Convergence is reached within two iterations
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modulation, 2 iterations.
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Fig. 6. CFR MSE of iterative receivers for the cognitive radio scenario: QPSK
modulation, 2 iterations.

for all receivers. We observe that no BER performance loss

is incurred for the proposed joint UAD-CEMUDD wrt the

perfect UAD case. Also, the power efficiency loss wrt the

perfect CSI case is only 0.5 dB. It can be concluded that the

Gaussian approximation introduced for the sake of obtaining

fixed-complexity message update rules in the CFR estimation

and UAD stages has only a limited impact on the overall

performance.

Moreover, the benchmark method and the proposed joint

UAD-CEMUDD differ only in the way UAD is performed.

As a result, there is no noticeable difference in terms of

BER. Similar conclusions can be drawn for the CFR MSE

performances, shown in Fig. 6. Interestingly, the proposed low-

complexity receiver exhibits no performance loss compared to

the lower bound given by the genie-aided Kalman smoother

at high SNR.

3) False alarm and missed detection performance: Fig. 7

shows the false alarm and missed detection probabilities for all
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Fig. 7. Pfa and Pmd of iterative receivers for the cognitive radio scenario:
QPSK modulation, 2 iterations.

considered receivers. Note that in terms of Pmd (resp. Pfa),

the proposed joint UAD-CEMUDD is 5 dB (resp. 1 dB) away

from the perfect CSI case. This result can be interpreted as

follows: in the presence of user 1, poor SNRs yield unreliable

soft symbols and CFR estimates (see Fig. 5-6) and therefore

prevent the user activity probabilities (29) to discriminate the

useful signal from the background noise.

Now, comparing the proposed joint UAD-CEMUDD with

the benchmark energy detector, we obtain the intuitively

satisfying result that a higher Pfa yields a lower Pmd and

vice versa. The obvious advantage of joint UAD-CEMUDD

over the energy detector is that the Pfa need not be preset to a

target value, but adjusts itself optimally based on existing SNR

conditions. Furthermore, energy thresolding performs hard

UAD, while reliability information on the UAD is available

for joint UAD-CEMUDD, based on (13). Such information is

valuable to the destination, which can choose not to trigger

SU transmission in case of unreliable PU activity detection.

C. Maximum user activity scenario - QPSK modulation

We now focus on a test case where the sparse user activity

assumption in [17]-[18] is violated. We consider a dynamic

scenario, where the U users are either all active (fully-loaded

situation) or all inactive (idle spectrum situation enabling SU

transmission). Here, we choose QPSK modulation, U = 4 and

NR = 4, which is sufficient to ensure identifiability.

We choose as a benchmark method a modified version of

the proposed receiver with perfect UAD, where exact user

activity knowledge is replaced by the following hard UAD

estimate for each user. Borrowing the user validation statistic

from protocol-based methods [7]-[8], we define the correlation

with normalized power by correlating the frequency-domain

observations with the reconstructed u-th user’s signal at the

numerator

Ru =
|
∑N−1

n=0
(Hu

n(d̂
u
n)x̂

u
n\n)

Hyn|
√

∑N−1

n=0
yH
n yn

(33)
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where d̂un is the post-decoding u-th user detected symbol on

the n-th subcarrier. We seek an hypothesis test of the form

θ̂u =

{

1 if Ru > λt

0 otherwise
(34)

where λt is a pre-defined threshold such that Pfa . 10−5.

Since an analytical model for the decision statistic p.d.f. is

unavailable, histograms obtained via Monte Carlo simulations

were used to determine a value of λt suitable ∀(U,NR) as

13.0508 ∗ σu/2.0, where

σu =

√

∑N−1

n=0
trace (Pu

n\n)

N ×NR

(35)

denotes the u-th user’s standard deviation of the channel

estimation error per receive antenna.

Due to lack of space, upcoming numerical results are

presented only for the user with the worst BER, i.e. user 1.
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Although not shown, the performances for all other users are

only slightly better.

1) BER and CFR MSE performance: Fig. 8 depicts the

BER performances of the aforementioned receivers for QPSK

modulation. Convergence is reached within four iterations for

all receivers. In contrats to Fig. 5, we notice the higher slope

of the BER versus SNR curve, which shows the ability of

the proposed method to take advantage of receive antenna

diversity when NR > 1. As can be seen, no BER performance

loss is incurred for the proposed joint UAD-CEMUDD wrt

the perfect UAD case. Consequently, the proposed scheme

leads to near optimal UAD. Also, the BER of the proposed

scheme is only 1 dB away from the perfect CSI case at BER

of 2 × 10−5. Moreover, the BER of the benchmark method

is only slightly worse than its proposed joint UAD-CEMUDD

counterpart, since both methods differ only in the way UAD is

performed. This behavior is also confirmed by the CFR MSE

performances, shown in Fig. 9.

2) False alarm and missed detection performance: The

measured false alarm probability is below 10−4 for all re-

ceivers over the entire SNR range under consideration. Fig. 10

compares the missed detection probability of the proposed

joint UAD-CEMUDD and the benchmark method. When

convergence is reached, that is at iteration 4, a 6 dB SNR

increase is needed by the benchmark to reach the same Pmd as

the proposed algorithm. Remarkably, the proposed algorithm

has outstanding UAD performances even at negative SNRs.

D. Maximum user activity scenario - higher order modulation

We now consider exactly the same setting as in Sec. V-C,

but replacing QPSK by a higher order modulation, that is

8/16-QAM. In particular, the same benchmark as in Sec. V-C

is considered. Again, only the worst-user performance is

shown and convergence is reached within five iterations for

all receivers.

1) BER and CFR MSE performance: Fig. 11 (resp. Fig. 14)

presents the BER performances for 8-QAM (resp. 16-QAM)
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Fig. 11. BER of iterative receivers for the maximum user activity scenario:
8-QAM modulation, 5 iterations, user 1.
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Fig. 12. CFR MSE of iterative receivers for the maximum user activity
scenario: 8-QAM modulation, 5 iterations, user 1.

modulation. Again, no BER performance loss is incurred for

the proposed joint UAD-CEMUDD wrt the perfect UAD case,

which confirms the quasi-optimality of the proposed scheme

in terms of UAD. Also, the proposed method has only a 3 dB

(resp. 5 dB) SNR loss over the perfect CSI case at a BER

level of 10−5. However, this time the BER of the benchmark

method is much worse than its proposed joint UAD-CEMUDD

counterpart. Indeed, the BER of the benchmark converges to

an error floor, which can be attributed to erroneous UAD. CFR

MSE results presented in Fig. 12 (resp. Fig. 15) confirm this

explanation, as the proposed receiver is far superior to the

benchmark scheme for 8-QAM (resp. 16-QAM) modulation.

2) False alarm and missed detection performance: The

measured false alarm probability is below 10−4 for all re-

ceivers over the entire SNR range under consideration. Fig. 13

(resp. Fig. 16) compares the missed detection probability of the

proposed joint UAD-CEMUDD and the benchmark method

for 8-QAM (resp. 16-QAM) modulation. It is seen that the
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Fig. 14. BER of iterative receivers for the maximum user activity scenario:
16-QAM modulation, 5 iterations, user 1.

benchmark has a high Pmd wrt the proposed algorithm at

medium to high SNR. Comparing with the benchmark method,

one may conclude that the proposed algorithm is a much better

alternative in terms of UAD for 8/16-QAM.

VI. CONCLUSION

In this paper, a generalization of multi-user detection to the

case of an unknown and highly dynamic number of users was

introduced in the context of multi-antenna OFDM receivers.

The proposed method performs joint user activity detection,

channel estimation, symbol detection and decoding based on a

graphical model approach. A distinctive feature of the resulting

message-passing receiver is its linear complexity increase

with the maximum number of users. This result is achieved

by introducing a suitable Gaussian approximation, allowing

successive detection and estimation for all users. Numerical

results confirmed the ability of the proposed method to provide

robust active user set recovery compared to conventional

−5 0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

E
s
1 / N

0
 (dB)

C
F

R
 M

S
E

 o
f u

se
r 

1

 

 
Benchmark − it. #1

Benchmark − it. #5

Proposed − it. #1

Proposed − it. #5

Proposed w. Perfect UAD − it. #1

Proposed w. Perfect UAD − it. #5

Known−data Kalman smoother

Fig. 15. CFR MSE of iterative receivers for the maximum user activity
scenario: 16-QAM modulation, 5 iterations, user 1.
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Fig. 16. Pmd of iterative receivers for the maximum user activity scenario:
16-QAM modulation, 5 iterations, user 1.

schemes, while maintaining a high antenna diversity order

in dynamic channels. Due to the flexibility of the proposed

BICM-based scheme, the present work is easily adaptable to

higher order modulations and state-of-the art codes such as

LDPC, turbo or polar codes.

Future extensions of this work will consider the design of

similar systems with more elaborate non-orthogonal multi-

ple access (NOMA) waveforms [18], [34], as well as users

equipped with more than one antenna at the transmitter side.

In addition, the potential of performance optimization based

on non-uniform transmit energy allocation [34] will also be

investigated.
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APPENDIX A

We assume proper normalization of user activity and symbol

p.m.f.s, ∀(u, n)
∑

θu

µθu→gn(θ
u) = 1

∑

du
n

µdu
n
→gn(d

u
n) = 1.

(36)

We wish to collapse the Gaussian mixture (19) to a single

Gaussian of the form NC(yn : mn(x
u
n),Sn(x

u
n)). Applying

moment-matching, we obtain the expectation of (19) as [29,

p. 106]

mn(x
u
n)

=
∑

{θu}U

u=1

∑

{du
n
}U

u=1

U
∏

u=1

µθu→gn(θ
u)

U
∏

u=1

µdu
n
→gn(d

u
n)

×



θuHu
n(d

u
n)x

u
n +

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n



 .

Using the distributivity of multiplication over addition

mn(x
u
n) =





∑

θu

∑

du
n

µθu→gn(θ
u)µdu

n
→gn(d

u
n)θ

uHu
n(d

u
n)x

u
n





×





∑

{θu′}
u′ 6=u

∑

{du′
n

}
u′ 6=u

∏

u′ 6=u

µθu′→gn
(θu

′

)
∏

u′ 6=u

µdu′
n

→gn
(du

′

n )





+

(

∑

{θu′}
u′ 6=u

∑

{du′
n

}
u′ 6=u

∏

u′ 6=u

µθu′→gn
(θu

′

)
∏

u′ 6=u

µdu′
n

→gn
(du

′

n )

×
∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n

)

×





∑

θu

∑

du
n

µθu→gn(θ
u)µdu

n
→gn(d

u
n)





which, using (36), simplifies to

mn(x
u
n) = Ĥu

nx
u
n

+
∑

{θu′}
u′ 6=u

∑

{du′
n

}
u′ 6=u

∏

u′ 6=u

µθu′→gn
(θu

′

)
∏

u′ 6=u

µdu′
n

→gn
(du

′

n )

×
∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n.

The first (resp. second) term in the previous equation is the

expected signal contribution of (resp. the expected MUI af-

fecting) the u-th user on the n-th subcarrier. Now, exchanging

the order of summations in the second term and exploiting

(36) leads to

mn(x
u
n) = Ĥu

nx
u
n +

∑

u′ 6=u

Ĥu′

n x̂u′

n\n, (37)

which is the desired expectation in (20).

Furthermore, according to the moment-matching method we

obtain the covariance of (19) as [29, p. 106]

Sn(x
u
n) =

∑

{θu}U

u=1

∑

{du
n
}U

u=1

U
∏

u=1

µθu→gn(θ
u)

U
∏

u=1

µdu
n
→gn(d

u
n)

×

[

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H +R

+



θuHu
n(d

u
n)x

u
n +

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n −mn(x
u
n)





×



θuHu
n(d

u
n)x

u
n +

∑

u′ 6=u

θu
′

Hu′

n (du
′

n )x̂u′

n\n −mn(x
u
n)





H
]

.

Plugging (37) into the previous expression and expanding the

first term in the bracket using (36), we obtain

Sn(x
u
n) =

R+
∑

u′ 6=u

{

∑

θu
′

∑

du
′

n

µ
θu

′
→gn

(θu
′

)µ
du

′
n

→gn
(du

′

n )

× θ
u′

H
u′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H
}

+
∑

{θu}U
u=1

∑

{du
n
}U
u=1

U
∏

u=1

µθu→gn(θ
u)

U
∏

u=1

µdu
n
→gn(d

u
n)

×



(θuHu
n(d

u
n)− Ĥ

u
n)x

u
n +

∑

u′ 6=u

(θu
′

H
u′

n (du
′

n )− Ĥ
u′

n )x̂u′

n\n





×



(θuHu
n(d

u
n)− Ĥ

u
n)x

u
n +

∑

u′ 6=u

(θu
′

H
u′

n (du
′

n )− Ĥ
u′

n )x̂u′

n\n





H

.

Now, all cross terms inside the last double summa-

tion vanish due to the independence of (θu, dun) w.r.t

({θu
′

}u′ 6=u, {du
′

n }u′ 6=u), so that

Sn(x
u
n) =

∑

θu

∑

du
n

µθu→gn(θ
u)µdu

n
→gn(d

u
n)

× (θuHu
n(d

u
n)− Ĥ

u
n)x

u
nx

u
n
H(θuHu

n(d
u
n)− Ĥ

u
n)

H

+
∑

u′ 6=u

{

∑

θu
′

∑

du
′

n

µ
θu

′
→gn

(θu
′

)µ
du

′
n

→gn
(du

′

n )

× θ
u′

H
u′

n (du
′

n )Pu′

n\nH
u′

n (du
′

n )H
}

+
∑

{θu
′
}
u′ 6=u

∑

{du
′

n
}
u′ 6=u

∏

u′ 6=u

µ
θu

′
→gn

(θu
′

)
∏

u′ 6=u

µ
du

′
n

→gn
(du

′

n )

×





∑

u′ 6=u

(θu
′

H
u′

n (du
′

n )− Ĥ
u′

n )x̂u′

n\n





×





∑

u′ 6=u

(θu
′

H
u′

n (du
′

n )− Ĥ
u′

n )x̂u′

n\n





H

+R.
(38)

It follows that E[Sn(x
u
n)] =

∫

Sn(x
u
n)p(x

u
n)dx

u
n = D̂u

n +
∑

u′ 6=u I
u′

n +R, as desired in (20). Indeed in (38), after aver-
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aging out xu
n using the prior (2), the first double summation is

the u-th user’s desired signal covariance D̂u
n (see (21)). Also,

after some algebra the remaining summations in (38) are equal

to
∑

u′ 6=u I
u′

n , where Iu
′

n denotes the covariance of the MUI

originating from the u′-th user (see (16)).
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