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A message-passing receiver for OFDM-based

self-interference-limited networks
Frederic Lehmann

Abstract—In this paper, we develop a reliable bandwidth-
efficient solution for coherent reception in networks prone to
self-interference. Our primary focus is on OFDM-based amplify-
and-forward two-way relaying, where each source node suffers
from re-radiation of its own signal. An important issue is
the superposition of the desired and interfering signals, which
makes the channel estimation task difficult, especially for varying
channel coefficients. To address this challenging problem, we
introduce a factor-graph model of the estimation and detec-
tion problem at hand. Exploiting the conditional independence
between unknown variables in the factor-graph, an efficient
message-passing algorithm, that performs joint Bayesian channel
estimation, self-interference mitigation and decoding, is derived.
Simulation results show that the performance of the proposed
method is close to that given by perfect knowledge of the channel
for the target and interfering signals, even with limited training
overhead.

Index Terms—Self-interference cancellation, two-way relay
networks, OFDM, joint channel estimation and detection, factor-
graph, message-passing receiver.

I. INTRODUCTION

In order to increase the network throughput, recently pro-

posed communications systems accept that a node can be

affected by a perturbation originating from itself. This per-

turbation, referred to as self-interference, is superposed to the

signal of interest and can be the limiting factor of the system

if its contribution cannot be mitigated down to the thermal

noise level. Examples of emerging communication networks

using this paradigm to boost the throughput include full-

duplexing [1]-[3], where transceivers transmit and receive at

the same time on the same frequency band, multi hop wireless

protocols, where collisions with earlier received packets can

be resolved [4], and analog network coding for two-way

relays [5], where a destination node receives a weighted sum of

the its own signal along with the intended signal. Even in one-

way protocols, where self-interference is absent, joint channel

estimation and detection, especially in the case of varying

channel coefficients, can be a non-trivial task [6]. It follows

that in the presence of self-interference, channel estimation

and detection become even more complicated, since we have

a multiple received overlapping signal problem. Indeed, the

channel and data of the intended signal are a priori unknown.

Also, the self-interference channel must be estimated with high
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accuracy and combined with the known self-interference data

to provide proper self-interference cancellation.

In this paper, we focus on orthogonal frequency-division

multiplexing (OFDM) modulated amplify-and-forward two-

way relaying, although the proposed algorithm is relevant for

all the aforementioned applications. The superposition of the

signals from the source nodes at the relay antenna is broadcast

using the amplify-and-forward strategy [5], which in turn

generates self-interference at the source nodes. Other strate-

gies, such as denoise-and-forward or decode-and-forward [7],

are not considered here due to increased relay processing

complexity.

Several self-interference cancellation methods suitable for

OFDM modulated amplify-and-forward two-way relaying

have been investigated in the litterature. Self-interference can-

cellation has been introduced in [8] under the assumption of

perfect channel impulse response (CIR) or channel frequency

response (CFR) knowledge. For practical environments, joint

estimation of the intended and self-interference node-to-relay-

to-node composite channels is mandatory. These techniques

can loosely be classified as follows: blind, data-aided (DA) and

iterative estimation methods. Blind composite CFR estimation

based on second order statistics is investigated in [9], with the

drawback that a significant number of OFDM symbols must

be devoted to the estimation of the correlation matrix of the

received signal. DA methods perform channel estimation based

on a known OFDM block, with the implicit assumption that the

channel will remain quasi-static during subsequent data blocks.

For instance, the least square (LS) and the linear minimum

mean square error (LMMSE) estimator are used for DA com-

posite CIR estimation in [10] and [11], respectively. DA-LS

composite CFR estimation is also investigated in [12]. In ad-

dition to known training symbols, iterative channel estimation

also exploits a priori information on the data symbols, in order

to better reconstruct the channel [13]. A priori information

originates from soft demodulation, equalization, or channel

decoding, which in turn benefits from the resulting improved

channel reconstruction. In the context of two-way relaying

with OFDM modulation, iterative composite CIR estimation

methods using expectation conditional maximization [14] and

soft-input Kalman filtering [15], have appeared.

In this paper, we introduce a frequency-domain self-

interference mitigation method, suitable for block fading chan-

nels. Unlike most aforementioned methods, that require the

wireless channel to be constant between two training blocks,

we accomodate faster time variations by assuming the channel

to be constant only over each OFDM symbol. Processing is

performed in the frequency domain, so we need to estimate

the composite intended and self-interference CFR with the
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Fig. 1. OFDM-based amplify-and-forward two-way relaying: solid (resp.
dashed) arrows represent the first or MAC (resp. second or broadcast) phase.

help of a limited number of pilot symbols, spread among the

subcarriers. After introducing a state-space model for the CFRs

and an observation model for the received baseband signal, we

propose a factor-graph representation [16]-[17] of the problem

at hand. As a result, we derive a semi-blind message-passing

algorithm exploiting channel coding for the purpose of reliable

joint channel estimation, self-interference mitigation and data

detection. Since we are in the presence of a complicated mixed

discrete-continuous Bayesian inference estimation problem,

the calculation of continuous-valued messages requires some

form of approximation, since it involves multiplications and

integrals that cannot in general be expressed in closed form. To

get a tractable solution, we resort to a Gaussian approximation,

in the same spirit as belief propagation in Gaussian graphical

models [18].

The proposed algorithm has several distinctive features

with respect to methods available in the literature. First, con-

ventional receiver processing substracts the self-interference,

based on estimating the self-interference channel. Therefore,

low residual self-interference requires high estimation accu-

racy. However unlike in our method, at the self-interference

mitigation and at the demodulation level, there is generally no

principled way to take the estimation accuracy into account.

Secondly, exploiting the conditional independences between

the hidden and observed variables, leads to separate Bayesian

estimators for the intended and self-interference channels,

where coupled estimation is in order in existing methods.

Thirdly, we show how the improved detection performances

of the proposed method enable reduced pilot overhead.

Throughout the paper, N (x : m,P ) (resp. NC(x : m,P ))
denotes a real (resp. complex) Gaussian distribution of the

variable x, with mean m and variance P .

This paper is organized as follows. First, Sec. II describes

the system model for OFDM modulated amplify-and-forward

two-way relaying. In Sec. III the exact message-passing algo-

rithm for joint channel estimation, demodulation and decoding

is derived. In Sec. IV, a low-complexity receiver based on

Gaussian messages is introduced. Sec. V analyses the conver-

gence behavior. Finally, simulation results in Sec. VI, compare

the proposed method with existing algorithms.

N symbols

data P 0P 0 …... P 0 data P 0

Source node T
0

N symbols

data …... data

Source node T
1

P0 P0 P0 P0

d
0

d
1

Fig. 2. Data format at the source nodes: pilot symbols (P), zero values (0)
and coded data symbols (data) are assigned to the N subcarriers.

II. SYSTEM MODEL

A. Communication system

We consider the bidirectional communication scheme illus-

trated in Fig. 1, where two terminal nodes T 0 and T 1 exchange

their packets within two time slots, with the help of a relay

node R. All nodes are subject to the half-duplex constraint

(i.e. a node is not allowed to transmit and receive at the same

time), and are equipped with a single antenna.

During the first phase (or multiple access phase), T 0 and

T 1 send their packets simultaneously to R. Terminal node

T i generates a sequence of independently and uniformly

distributed information bits, bi = [bi1, b
i
2, . . . , b

i
B]

T . Using bit-

interlaved coded modulation (BICM) [19], bi is encoded by

the convolutional code CCi, passed trough the bit interleaver

πi and mapped into complex symbols. Also, pilot symbols

are periodically inserted for the purpose of channel estima-

tion, as depicted in Fig. 2, to obtain the modulated vector

d
i = [di(0), di(1), . . . , di(N − 1)]T , with the normalization

E[|di(n)|2] = 1 ∀n. We use the notation d
i = Ci(bi), where

Ci denotes the deterministic transformation corresponding to

the combined effect of channel coding, interleaving and pilot

insertion. Then an OFDM symbol is obtained by feeding√
Esd

i to an N -point inverse discrete Fourier transform

(IDFT) and adding a length-G cyclic prefix (CP) [1], where

Es denotes the average energy per transmitted symbol.

During the second phase (or broadcast phase), a relay with

limited processing capability, amplifies the received signal by

a constant factor β and forwards it to the terminal nodes [5].

B. Channel modeling and simulation

The frequency-selective fading channel between T i and

R (resp. between R and T i) is modeled by a discrete-

time CIR h0,i = [h0,i(0), . . . , h0,i(L − 1)]T (resp. h1,i =
[h1,i(0), . . . , h1,i(L − 1)]T ), using the wide-sense stationary

uncorrelated scattering (WSSUS) model [20]. Assuming quasi-

static fading, for each OFDM symbol the CIR coefficients are

drawn independently at random from a circularly symmetric

complex Gaussian distribution

h0,i(l) ∼ NC(0, E
[

|h0,i(l)|2
]

)

h1,i(l) ∼ NC(0, E
[

|h1,i(l)|2
]

)
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with
∑L−1

l=0 E
[

|h0,i(l)|2
]

=
∑L−1

l=0 E
[

|h1,i(l)|2
]

= 1. As

a result, the CFR between T i and R, {H0,i(n)}N−1
n=0 (resp.

between R and T i, {H1,i(n)}N−1
n=0 ) is obtained from the zero-

padded N -point discrete Fourier transform (DFT) of h0,i

(resp. of h1,i). It follows that ∀n, H0,i(n) and H1,i(n) are

random variables with prior NC(0, 1). Moreover, the channel

noise is modeled by a zero-mean complex additive white

Gaussian noise (AWGN) term with variance N0. Here, we

choose

β =

√

Es

2Es +N0

in order to normalize the average transmitted energy per

symbol to Es at R.

Let us define the self-interference and intended composite

CFR at T 0 on the n-th subcarrier as X0(n) and X1(n),
respectively. We have

X0(n) = β
√

EsH0,0(n)H1,0(n)

X1(n) = β
√

EsH0,1(n)H1,0(n).
(1)

X1(n) has a complex double Gaussian prior distribu-

tion [21], whose first two moments are

E
[

X1(n)
]

= 0

E
[

|X1(n)|2
]

= β2Es.
(2)

Assuming channel reciprocity, H0,0(n) = H1,0(n) ∀n, then

the distribution of X0(n) is readily available from [22] and

the two first two moments are

E
[

X0(n)
]

= 0

E
[

|X0(n)|2
]

= 2β2Es.
(3)

Otherwise, in non-reciprocal channel environments, X0(n) has

a complex double Gaussian prior distribution, whose first two

moments are

E
[

X0(n)
]

= 0

E
[

|X0(n)|2
]

= β2Es.
(4)

Using the WSSUS assumption [20], the CFRs in (1) have

zero intercorrelation, but exhibits strong autocorrelation in the

frequency domain within their respective correlation band-

widths. For simplicity, we will model the self-interference and

intended CFRs as independent first-order Markov processes.

C. Observation model

Without loss of generality, we consider the received base-

band signal at T 0 during the second phase. We assume ideal

timing and frequency synchronization, and G ≥ 2L − 1 to

avoid interblock interference. Moreover, the superposed sig-

nals impinging at the relay R have different timing offsets due

to different propagation delays. As shown in [23], for OFDM

modulation with AF relaying, a long enough CP will solve the

problem of asynchronism between the terminal nodes. After

CP removal and DFT, the frequency-domain received signal is

a linear combination of the modulated symbols from T 0 and

T 1, for all subcarriers n = 0, . . . , N − 1

Y 0(n) = X0(n)d0(n) +X1(n)d1(n) +N0(n), (5)
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Fig. 3. Factor graph corresponding to receiver processing at source node T 0.

where the first term is the self-interference signal, the second

term is the desired signal and the white noise term N0(n),
having a distribution that can be approximated as NC(0, R

0)
where R0 = (β2 + 1)N0, is the AWGN contribution.

D. Factor-graph framework

A factor-graph is a graphical representation of the fac-

torization of a function of several variables [16]-[17]. Here,

the function is the a posteriori probability density function

(p.d.f.) of interest, while the variables are the unobserved

state variables and the observed variables defined previously.

Bayesian inference can then be performed in an efficient way

by applying the sum-product algorithm (SPA) [16]-[17].

At node T 0, the self and intended CFR, the modulated data

and the bit sequence sent by T 1 belong to the unobserved

variables, while the bit sequence sent by T 0 and the noisy

observations (5) belong to the observed variables. Therefore,

the p.d.f. of interest has the form

p
(

{X0(n)}N−1
n=0 , {X1(n)}N−1

n=0 ,d
1,b1|{Y 0(n)}N−1

n=0 ,d
0
)

∝ p
(

{Y 0(n)}N−1
n=0 , {X0(n)}N−1

n=0 , {X1(n)}N−1
n=0 ,d

1,b1|d0
)

,

where the second line in obtained from Bayes’s rule. Now, as-

suming statistical independence between the self-interference

CFR, the intended CFR and the transmitted data, we obtain

the following factorization

p
(

{X0(n)}N−1
n=0 , {X1(n)}N−1

n=0 ,d
1,b1|{Y 0(n)}N−1

n=0 ,d
0
)

∝ p
(

{Y 0(n)}N−1
n=0 |{X0(n)}N−1

n=0 , {X1(n)}N−1
n=0 ,d

1,d0
)

× p({X0(n)}N−1
n=0 )p({X1(n)}N−1

n=0 )p(d
1|b1)p(b1).

This expression can be further simplified by using the mem-

oryless channel assumption (see Sec. II-C), the first-order

Markov assumption for the self and intended CFR (see

Sec. II-B), the deterministic transformation relating d
1 to b

1

(see Sec. II-A) and the fact that the information bits are
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independently and uniformly distributed (see Sec. II-A)

p
(

{X0(n)}N−1
n=0 , {X1(n)}N−1

n=0 ,d
1,b1|{Y 0(n)}N−1

n=0 ,d
0
)

∝
N−1
∏

n=0

p
(

Y 0(n)|X0(n), d0(n), X1(n), d1(n)
)

× p(X0(0))

N−1
∏

n=1

p(X0(n)|X0(n− 1))

× p(X1(0))

N−1
∏

n=1

p(X1(n)|X1(n− 1))

× I(d1 = C1(b1)).
(6)

where I(.) denotes the indicator function. The factor-graph

corresponding to the above factorization is depicted in Fig. 3.

Variable nodes are represented as circles and the local func-

tions appearing in the factorization, denoted by

f0(n) = p(X0(n)|X0(n− 1))

f1(n) = p(X1(n)|X1(n− 1))

g(n) = p
(

Y 0(n)|X0(n), d0(n), X1(n), d1(n)
)

(7)

are represented as squares. We notice that the resulting factor-

graph can be decomposed into several subgraphs correspond-

ing to distinct Bayesian estimation tasks, namely the self-

interference CFR estimation subgraph, the intended CFR es-

timation subgraph and the demodulation and decoding sub-

graph.

III. EXACT MESSAGE-PASSING RECEIVER

In this section, we derive the messages propagated by

the sum-product algorithm along the edges of the factor-

graph [16]-[17], without any approximation. Let µu→v(.)
denote the message sent by node u to node v in the factor-

graph.

A. Self-interference CFR estimation subgraph

The incoming messages on the self-interference CFR es-

timation subgraph are computed from the sum-product rule

applied at the factor node g(n)

µg(n)→X0(n)(X
0(n))

∝
∑

d1(n)

µd1(n)→g(n)(d
1(n))

×
∫

p
(

Y 0(n)|X0(n), d0(n), X1(n), d1(n)
)

× µX1(n)→g(n)(X
1(n))dX1(n).

(8)

The above message acts as the conditional likelihood of

observation Y 0(n), averaged over the discrete symbols d1(n)
sent by T 1 and the intended CFR X1(n).

Then, the forward messages on the self-interference CFR

estimation subgraph are obtained from the recursion

µf0(n+1)→X0(n+1)(X
0(n+ 1))

∝
∫

p(X0(n+ 1)|X0(n))µg(n)→X0(n)(X
0(n))

× µf0(n)→X0(n)(X
0(n))dX0(n).

(9)

Similarly, the backward messages are obtained from the re-

cursion

µf0(n)→X0(n−1)(X
0(n− 1))

∝
∫

p(X0(n)|X0(n− 1))µg(n)→X0(n)(X
0(n))

× µf0(n+1)→X0(n)(X
0(n))dX0(n).

(10)

Finally, the outgoing messages from the self-interference CFR

estimation subgraph are computed from the sum-product rule

applied at the variable node X0(n)

µX0(n)→g(n)(X
0(n))

∝ µf0(n)→X0(n)(X
0(n))µf0(n+1)→X0(n)(X

0(n)).
(11)

Note that (8) acts as the conditional likelihood of a single

observation, averaged over the distribution of the intended

channel and the modulated symbol sent by T 1, while (9)-

(11) act as a forward-backward [16] self-interference channel

estimator.

B. Intended CFR estimation subgraph

Since the self-interference and intended CFR estimation

subgraph have the same tree-like structure, the messages

exchanged over the intended CFR estimation subgraph have

the same expression as in Sec. III-A, replacing X0 by X1 and

f0 by f1.

C. Demodulation and decoding subgraph

Demodulating the desired symbols consists of comput-

ing symbol-by-symbol a posteriori probabilities given by

µg(n)→d1(n)(d
1(n)). Applying the sum-product rule at the

function node g(n),

µg(n)→d1(n)(d
1(n))

∝
∫ ∫

p
(

Y 0(n)|X0(n), d0(n), X1(n), d1(n)
)

× µX0(n)→g(n)(X
0(n))

× µX1(n)→g(n)(X
1(n))dX0(n)dX1(n),

(12)

where the two last terms in the integrand have been obtain

in Sec III-A and Sec III-B, respectively. Note that since the

channel variables X0(n) and X1(n) are integrated out, the soft

demodulation step takes the channel estimation uncertainty

explicitly into account.

Then, the message from d1(n) to the bit interleaver π1

and from the bit interleaver π1 to d1(n), corresponds to the

bit-level probabilities computed by the turbo-demodulation

algorithm introduced in [24]. Furthermore, it is well-known

that exact message-passing on the decoding subgraph is im-

plemented by the BCJR algorithm [25].

IV. LOW-COMPLEXITY RECEIVER DESIGN

The continuous-valued messages obtained in Sec. III require

some form of approximation, since the involved multiplica-

tions and integrals cannot be expressed in closed form. To

achieve this goal, we seek a canonical distribution [26], so

that the corresponding recursions boil down to the update

of a limited number of parameters. Here, we adopt complex
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Gaussian messages to allow tractable derivations and thus

reasonable complexity. To this end, we first model the channel

CFRs as Gaussian processes. It follows that to obtain the chan-

nel estimation messages, it suffices to update the mean and

variance. Our simulations will demonstrate that this approach,

although not exact, is sufficient if only the first and second

order moments are of interest.

A. Channel state-space model

We introduce a state-space model, which approximates

the self-interference and intended channel CFR as Gaussian

processes. We adopt the random walk model introduced in [27]
{

X0(n) = X0(n− 1) + ∆u0(n)

X1(n) = X1(n− 1) + ∆u1(n),
(13)

where ∆u0(n) ∼ NC(0, q
0) and ∆u1(n) ∼ NC(0, q

1) are

independent and identically distributed (i.i.d.) driving noises.

The parameter q0 (resp. q1) must be optimized based on

the coherence bandwidth [20] of the self-interference (resp.

intended) composite channel CFR. An initialization in the form

of a prior distribution for X0(0) and X1(0) is needed, which

is chosen as the circularly symmetric complex Gaussian with

parameters given by (2)-(4).

B. Self-interference CFR estimation subgraph

Assume that µX1(n)→g1(n)(X
1(n)) is parameterized by the

Gaussian message

µX1(n)→g(n)(X
1(n)) ∝ NC(X

1(n) : X1
n\n, P

1
n\n) (14)

and the the symbol-level probabilities

µd1(n)→g(n)(d
1(n)) (15)

are available for all possible values of d1(n) in the modulation

alphabet. According to (5), (8) becomes

µg(n)→X0(n)(X
0(n))

∝
∑

d1(n)

µd1(n)→g(n)(d
1(n))

×
∫

NC(Y
0(n) : X0(n)d0(n) +X1(n)d1(n), R0)

×NC(X
1(n) : X1

n\n, P
1
n\n)dX

1(n)

∝
∑

d1(n)

µd1(n)→g(n)(d
1(n))×

NC

(

Y 0(n) : X0(n)d0(n) +X1
n\nd

1(n), |d1(n)|2P 1
n\n +R0

)

.

(16)

In order to get a tractable expression for the purpose of

self-interference channel estimation, we collapse (16) to a

Gaussian messsage. Using the moment-matching technique

recalled in Appendix A and assuming that the normalization
∑

d1(n) µd1(n)→g(n)(d
1(n)) = 1 holds

µg(n)→X0(n)(X
0(n))

∝NC

(

Y 0(n) : X0(n)d0(n) + b1(n), S1(n)
)

.
(17)

The bias term b1(n) is the average contribution of the desired

data sent by T 1

b1(n) = X1
n\nd̃

1(n), d̃1(n) =
∑

d1(n)

µd1(n)→g(n)(d
1(n))d1(n)

where d̃1(n) is the soft symbol estimate on n-th subcarrier.

The variance S1(n) accounts for the channel noise and the

residual uncertainty associated with the intended data and

channel estimates

S1(n) = R0

+
∑

d1(n)

µd1(n)→g(n)(d
1(n))

×
{

P 1
n\n|d1(n)|2 + |d1(n)− d̃1(n)|2|X1

n\n|2
}

.

Now, we inject the result (17) in the recursions (9) and (10).

Let the corresponding Gaussian messages be

µf0(n)→X0(n)(X
0(n)) ∝ NC(X

0(n) : X0
n|n−1, P

0
n|n−1)

µf0(n+1)→X0(n)(X
0(n))

∝ NC(X
0(n) : X0

n|n+1:N−1, P
0
n|n+1:N−1),

(18)

the mean and variance update rule in the first and second

line boils down to the standard forward and backward Kalman

prediction, respectively. Finally, injecting (18) into (11) leads

to

µX0(n)→g(n)(X
0(n)) ∝ NC(X

0(n) : X0
n\n, P

0
n\n), (19)

where the smoothed self-interference CFR mean and variance

are expressed as

P 0
n\n =

P 0
n|n−1P

0
n|n+1:N−1

P 0
n|n−1 + P 0

n|n+1:N−1

X0
n\n = P 0

n\n

[

X0
n|n−1

P 0
n|n−1

+
X0

n|n+1:N−1

P 0
n|n+1:N−1

]

.

C. Intended CFR estimation subgraph

In a similar manner, we calculate

µg(n)→X1(n)(X
1(n))

∝
∑

d1(n)

µd1(n)→g(n)(d
1(n))

×
∫

p
(

Y 0(n)|X0(n), d0(n), X1(n), d1(n)
)

× µX0(n)→g(n)(X
0(n))dX0(n).

(20)

Using (5) and (19) results in

µg(n)→X1(n)(X
1(n))

∝
∑

d1(n)

µd1(n)→g(n)(d
1(n))×

NC

(

Y 0(n) : X0
n\nd

0(n) +X1(n)d1(n), |d0(n)|2P 0
n\n +R0

)

,

(21)
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which is again collapsed to a Gaussian message (see Ap-

pendix B for the demonstration)

µg(n)→X1(n)(X
1(n))

∝NC

(

Y 0(n) : X1(n)d̃1(n) + b0(n), S0(n)
)

,
(22)

where the bias term b0(n) is the average self-interference

b0(n) = X0
n\nd

0(n),

and the variance S0(n) accounts for the channel noise, the

estimation accuracy associated with the self-interference and

intended channel, as well as the residual uncertainty about the

desired data

S0(n) =R0 + P 0
n\n|d0(n)|2

+
∑

d1(n)

µd1(n)→g(n)(d
1(n))|d1(n)− d̃1(n)|2β2Es.

It follows that if, as per hypothesis, the intended CFR estima-

tion messages are Gaussian of the form

µf1(n)→X1(n)(X
1(n)) ∝ NC(X

1(n) : X1
n|n−1, P

1
n|n−1)

µf1(n+1)→X1(n)(X
1(n))

∝ NC(X
1(n) : X1

n|n+1:N−1, P
1
n|n+1:N−1),

(23)

the corresponding mean and variance update rule is given

by a conventional forward and backward Kalman prediction.

Consequently, the smoothed intended CFR estimation message

is obtained as

µX1(n)→g(n)(X
1(n)) ∝ NC(X

1(n) : X1
n\n, P

1
n\n), (24)

where

P 1
n\n =

P 1
n|n−1P

1
n|n+1:N−1

P 1
n|n−1 + P 1

n|n+1:N−1

X1
n\n = P 1

n\n

[

X1
n|n−1

P 1
n|n−1

+
X1

n|n+1:N−1

P 1
n|n+1:N−1

]

.

D. Demodulation and decoding subgraph

Using (19) and (24), the soft demodulation formula (12)

simplifies to the computation of

µg(n)→d1(n)(d
1(n))

∝NC

(

Y 0(n) : X0
n\nd

0(n) +X1
n\nd

1(n),

|d0(n)|2P 0
n\n + |d1(n)|2P 1

n\n +R0
)

.

(25)

In this expression, the first term of the mean corresponds to

implicit self-interference cancellation, while the two first terms

of the variance account for the self-interference and intended

CFR estimation accuracy. Then, (25) serves as the observation

likelihood conditioned on the symbol values d1(n), at the

input of a standard turbo-demodulation algorithm, as shown

in Sec. III-C.

Soft-Input Kalman 

Channel Estimator 

Soft 

demodulator

π1

CC1 

Soft Decoder
π1

-1

Soft 

Decision

π1

E{d
1
(n)}

V{d
1
(n)}

Y
0
(n)

d
0
(n)

+
-

X
0
(n)

^

X
1
(n)

^

Fig. 4. Iterative self-interference cancellation and turbo-demodulation receiver
with soft-input Kalman channel estimation.

E. Message-passing schedule

Since the factor-graph in Fig. 3 has cycles, the proposed

low-complexity receiver has an iterative structure. Each iter-

ation performs message-passing on the self-interference CFR

estimation subgraph (see Sec. IV-B), then on the intended CFR

estimation subgraph (see Sec. IV-C) and subsequently on the

demodulation and decoding subgraph (see Sec. IV-D).

At the first iteration, a suitable initialization of the intended

CFR message (14) and the symbol-level probabilities (15)

is needed. (14) is initialized with the Gaussian prior p.d.f.

by setting X1
n\n = 0 and P 1

n\n = β2Es. Similarly, (15)

is initialized with the uniform probability mass function for

data subcarriers and with a Kronecker delta function for pilot

subcarriers.

F. Complexity evaluation

The computational complexity of forward or backward

Kalman filtering, as well as Kalman smoothing increases as the

cube of the state size [30]. Therefore, Kalman processing has

complexity O(1) per symbol and per iteration. The complexity

of the summations over all possible modulated symbols for

mean/variance estimation in (17) and (22), as well as in the

bitwise soft demodulation step is O(2m), where m denotes the

modulation order. It follows that the computational complexity

of the CFR estimation and demodulation steps is O(2m) per

symbol and per iteration.

Besides, the computational complexity of the BCJR decod-

ing step is O(2ν+1) per decoded information bit and per iter-

ation [25], where ν denotes the memory of the convolutional

code.

G. Comparison with existing message-passing methods

We seek a benchmark algorithm with more or less the same

computational complexity than the proposed method, taken

from the class of iterative detectors mentioned in Sec. I. We

adapt the iterative receiver proposed in [15] to the state-space

model (see Sec. IV-A) and observation model (see Sec. II-C)

at hand. The resulting iterative method, depicted in Fig. 4, is

basically a turbo-demodulator relying on an intended CFR esti-

mator {X̂1(n)}N−1
n=0 , preceded by a self-interference canceller

relying on a self-interference CFR estimator {X̂0(n)}N−1
n=0 .

Coupled estimation of the self-interference and intended CFR
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Fig. 5. EXIT chart of the proposed method for 8-QAM with perfect CSI or
pilot-only channel estimation, parameterized by different values of Es/N0.

uses the soft-input Kalman estimator [29], fed with the ex-

pectation and variance of the desired symbols {d1(n)}N−1
n=0 .

Note that, the benchmark method uses the self-interference and

intended CFR estimates as if they were the true values [15].

Thus unlike the proposed method, potentially important CFR

reliability information is discarded.

V. EXIT ANALYSIS

The extrinsic information transfer (EXIT) chart is a semi-

analytical tool, convenient for visualizing the convergence

behavior of iterative receivers [31]. The behavior of an iterative

receiver is predicted by plotting the transfer characteristics of

its constituent components. Let X (resp. A) be the random

variable (r.v.) corresponding to the transmitted bits of interest

(resp. the a priori log-likelihood ratios (LLRs) on the trans-

mitted bits). With ideal interleaving between the constituent

components, the a priori LLRs are assumed i.i.d. distributed

according to a symmetric Gaussian [31] with standard devia-

tion σA

pA(ζ|X = x) = N
(

A :
σ2
A

2
x, σA

)

.

It follows that the mutual information between X and A,

I(X,A) can be expressed as a function of σA as follows

IA = J(σA)

J(σ) = 1−
∫ +∞

−∞

e−(ξ−σ2/2)2/2σ2

√
2πσ

log2(1 + e−ξ)dξ.

Let E denote the r.v. corresponding to the extrinsic LLRs

on the transmitted bits of interest, delivered by a constituent

component. Using Monte Carlo simulations, the histogram

method introduced in [31] is used to compute the mutual

information between X and E, I(X,E), that can be expressed

as a function of IA and and possibly also of the signal-to-noise

ratio Es/N0.

For the sake of tractability, the EXIT analysis is performed

on the proposed method for two extreme cases

1) Perfect channel state information (CSI) case: we choose

the proposed method with perfect channel knowledge,

which boils down to a turbo-demodulator preceded by

an interference canceller.

2) DA case: we choose the proposed method with channel

estimation message-passing enabled only at the first

iteration, which boils down to turbo-demodulator with

pilot-only channel estimation.

A full EXIT analysis taking channel estimation message-

passing into account would be much more involved, since

channel estimation at a given iteration cannot be seperated

from the channel accurracy obtained at the previous iteration

(see (16) for instance). However, this restriction becomes al-

most irrelevant in most situations, where the proposed method

with channel estimation performs closely to the perfect CSI

case, as shown in Sec. VI. Then, we choose our two constituent

components as

1) the message computation from d1(n) to the bit inter-

leaver π1 in the factor graph, which corresponds to the

combination of self-interference cancellation and soft

demodulation. The corresponding transfer characteristic

is written as

IDEM
E = TDEM (IDEM

A , Es/N0)

2) the message computation from the bit interleaver π1

to d1(n), which corresponds to a BCJR decoder. The

corresponding transfer characteristic is written as

IDEC
E = TDEC(IDEC

A ).

Let l denote the message-passing iteration. At l = 0, the

mutual information at the decoder output is initialized to

IDEC
E (l) = 0 (no prior information). Subsequently, the evolu-

tion of the mutual information is described by the recursion

IDEC
E (l) = TDEC(TDEM (IDEC

E (l − 1), Es/N0)). (26)

Fig 5 illustrates the EXIT chart for the case of 8-QAM

modulation [32], N = 2048 subcarriers, pilot insertion rate

(PIR) equal to 2 : 6 and rate-1/2 recursive systematic con-

volutional encoding, with generator polynomials (1, 5/7) in

octal. The trajectories of the proposed iterative receivers (26),

are expected to converge within 2 − 3 iterations towards the

unique intersection point of the two transfer characteristics.

As expected, in the DA case, a lower mutual information

at the decoder output is reached at convergence than in the

perfect CSI case. At Es/N0 = 30 dB, in the DA case (resp.

the perfect CSI case) the predicted bit-error rate (BER) at

convergence is 4 × 10−6 (resp. 10−6), which is only slightly

lower than the Monte Carlo simulated BER. The small differ-

ence is due to the assumption of i.i.d. LLRs made by EXIT

analysis, which is theoretically correct only under infinite-

length random bit-interleaving. This shows that there is still

room for performance improvement using the proposed low-

complexity receiver. Indeed, the proposed method achieves

better results than its DA counterpart, mainly because it can

better reconstruct the CFRs by iteratively exploiting soft-

decisions from the decoder.
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VI. NUMERICAL RESULTS

Both source nodes emitters implement BICM using rate-1/2
recursive systematic convolutional encoding, with generator

polynomials (1, 5/7) in octal and interleavers drawn indepen-

dently at random. Modulation is performed using either binary

phase shift keying (BPSK), quadrature phase shift keying

(QPSK), or 8-ary quadrature amplitude modulation (8-QAM).

All individual CIRs have length L = N/8 and mimick a

rich scattering multi-path environment with quasi-static fading,

using the WSSUS modeling and simulation method described

in Sec. II-B. Therefore for each OFDM symbol, the discrete-

time channel coefficients hj,i(l), i, j = 0, 1, l = 0, . . . , L− 1
are drawn independently at random from NC(0, PDP (l)),
where the power delay profile (PDP) is chosen as

PDP (l) =
1− e−3

1− e−3L
e−3l.

Accordingly, the parameters of the random walk model for the

composite CFRs in Sec. IV-A are optimized to q0 = q1 = 0.4.

At node T 0, the performance criterion is chosen as the BER

after three iterations (since none of the considered receivers

showed any improvement by further increasing the number

of iterations). The proposed method with channel estimation

message-passing and PIR of 2 : 24 is compared to

• the one-way relaying bound with PIR equal to 2 : 24,

which is the proposed method in the absence of self-

interference

• the proposed method with pilot-only channel estima-

tion, which corresponds to channel estimation message-

passing beeing enabled only during the first iteration (i.e.

the DA case of Sec. V). In the DA case the PIR is 2 : 6.

• the benchmark iterative receiver of Sec. IV-G using the

same PIR as the proposed method, that is 2 : 24 unless

otherwise specified.

A. Influence of the interleaver length

Fig. 6 compares the BER performances at node T 0 for the

BPSK modulated intended data, using the proposed message-

passing receiver with channel estimation or with perfect CSI.

The curves are obtained for different values of subcarrier num-

ber N = 256, 512, 1024. For the BER in the perfect CSI case,

no dependency on N shows up. On the contrary, the BER with

channel estimation is highly dependent on N . Indeed, the BER

first exhibits a decreasing error floor with increasing values

of N , until the BER curve finally reaches the same slope as

in the perfect CSI case for N ≥ 1024. Similar conclusions

can be drawn for higher order modulations. Namely, the BER

curve with channel estimation reaches the same slope as in the

perfect CSI case for N ≥ 1024 (resp. N ≥ 2048) for QPSK

(resp. 8-QAM). We interpret this phenomenon by the influence

of short cycles in the decoding subgraph of the factor graph,

when the interleaver size (or equivalently N ) is too small.

B. CFR Gaussian process assumption

As indicated in Sec. II-B, the true p.d.f. of the intended CFR

is complex double Gaussian. Furthermore, the true p.d.f. of the

self-interference CFR is complex double Gaussian whithout
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Fig. 6. BER using BPSK after 3 iterations, for the proposed method with
channel estimation or perfect CSI, parameterized by different values of N .

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
 / N

0
 (dB)

B
E

R
 a

t n
od

e 
T0

 

 

Proposed method − Non−reciprocal channel

One−way relaying bound − Non−reciprocal channel

Proposed method − Perfect CSI − Non−reciprocal channel

Proposed method − Reciprocal channel

One−way relaying bound − Reciprocal channel

Proposed method − Perfect CSI − Reciprocal channel

Fig. 7. BER using BPSK and N = 1024 after 3 iterations, for the
proposed method with channel estimation or perfect CSI, in reciprocal and
non-reciprocal environments. The one-way relaying bound is also shown for
reference.

channel reciprocity and given in [22] for environments with

channel reciprocity. Consequently, we would like to check

the applicability of the Gaussian process assumption on the

composite CFRs, introduced in Sec. IV-A in order to derive our

low-complexity receiver. Fig. 7 shows the BER performances

of the proposed method at node T 0 for BPSK and N = 1024
subcarriers, are not only quasi-identical in reciprocal and non-

reciprocal channel environments, but also very close to the

perfect CSI case and the one-way relaying bound. In general,

we found that for BPSK, QPSK and 8-QAM, as long as the

BER curves with and without perfect CSI have the same slope,

the power efficiency loss of the proposed method with channel

estimation is only 1.5 − 2 dB (resp. 0.65 − 1.3 dB) with

respect to the perfect CSI case (resp. the one-way relaying

bound) at a BER of 10−5. Thus, modeling the self-interference
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Fig. 8. BER using QPSK and N = 1024 after 3 iterations. The proposed
method with message-passing is compared to the proposed method with pilot-
only channel estimation and the benchmark iterative receiver.
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Fig. 9. BER using 8-QAM and N = 2048 after 3 iterations. The proposed
method with message-passing is compared to the proposed method with pilot-
only channel estimation and the benchmark iterative receiver.

and intended CFRs as Gaussian processes does not incur a

significant performance loss, which in retrospect was to be

expected since in the proposed method, CFR estimation only

takes first and second order moments into account.

C. Comparison with other methods

Fig. 8 compares several iterative receivers for QPSK and

N = 1024 subcarriers. Observe that the pilot-only method

is several dBs away from the proposed method in terms of

power efficiency, even when the PIR is increased by a factor

of 4. The reason is that, due to rapid frequency variations, the

self-interference and intended CFRs cannot be reconstructed

sufficiently well, so that iterative demodulation and decoding

performs as efficiently as in the proposed algorithm. Now,

regarding the benchmark iterative algorithm, its is found to

perform as well as the proposed scheme, but only at the

price of doubling the PIR. Indeed, the disadvantage of the

benchmark method is that it lacks the possibility of exploiting

CFR reliability information, which in turn requires more

accurate channel estimates for the purpose of self-interference

cancellation and demodulation, leading to a higher PIR. Sim-

ilar conclusions can be drawn for 8-QAM modulation, as

illustrated in Fig. 9.

VII. CONCLUSION

In this paper, we introduced a factor-graph approach to

joint channel estimation, interference cancellation and decod-

ing suitable for OFDM-based self-interference limited trans-

missions. As a useful application, we considered bidirec-

tional communications on a two-way relay network, over a

frequency-selective block fading channel.

The proposed method relies on suitable approximations

of the frequency response of the self-interference and the

intended channel as Gaussian processes, in order to obtain

a message-passing receiver with reasonable computational

complexity.

Numerical simulations showed that, unless the pilot over-

head is significantly increased, the resulting iterative receiver

significantly outperforms the conventional turbo receiver with

iterative channel estimation, as well as the standard pilot-only

approach. Thus the proposed method’s performance versus

bandwidth efficiency tradeoff is advantageous in order to

support reliable communications.

Future extensions of this work include the consideration

of robust frequency and timing synchronization schemes,

multiple-input multiple-output channels, as well as other ap-

plications like concurrent communications over wireless net-

works.

APPENDIX A

MOMENT-MATCHING METHOD

Assume that a message sent by node u to node v in the

factor-graph is a Gaussian mixture of the form

µu→v(.) ∝
∑

i

ωiNC(., ai,Σi), (27)

with
∑

i ωi = 1. This message can be approximated by a

single Gaussian with the same expectation and covariance as

the original message, namely

µu→v(.) ∝ NC(., â, Σ̂), (28)

where

â =
∑

i

ωiai

Σ̂ =
∑

i

ωi [Σi + (ai − â)(ai − â)∗] .

The demonstration is readily available from [28] (p. 107).



10

APPENDIX B

Assume the normalization
∑

d1(n) µd1(n)→g(n)(d
1(n)) = 1

holds, the moment matching method approximates (21) by

NC(Y
0(n) : m(X1(n)), S(X1(n))) . The expression of the

mean is

m(X1(n))

=
∑

d1(n)

µd1(n)→g(n)(d
1(n))

[

X0
n\nd

0(n) +X1(n)d1(n)
]

= X0
n\nd

0(n) +X1(n)d̃1(n),

which is the desired result. The expression of the variance is

S(X1(n)) = R0 + P 0
n\n|d0(n)|2

+
∑

d1(n)

µd1(n)→g(n)(d
1(n))|d1(n)− d̃1(n)|2|X1(n)|2.

Now, averaging out X1(n) using (2), in the expression of the

variance leads to the desired value, S0(n).
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