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Abstract—Iterative decoding algorithms may be viewed as
high-dimensional nonlinear dynamical systems, depending on
a large number of parameters. In this work, we introduce a
simplified description of several iterative decoding algorithms
in terms of the a posteriori average entropy, and study them as
a function of a single parameter that closely approximates the
signal-to-noise ratio (SNR). Using this approach, we show that
virtually all the iterative decoding schemes in use today exhibit
similar qualitative dynamics. In particular, a whole range of phe-
nomena known to occur in nonlinear systems, such as existence of
multiple fixed points, oscillatory behavior, bifurcations, chaos, and
transient chaos are found in iterative decoding algorithms. As an
application, we develop an adaptive technique to control transient
chaos in the turbo-decoding algorithm, leading to a substantial
improvement in performance. We also propose a new stopping
criterion for turbo codes that achieves the same performance with
considerably fewer iterations.

Index Terms—Bifurcation theory, chaos, dynamical systems,
iterative decoding, low-density parity-check codes, product codes,
turbo codes.

I. INTRODUCTION

DURING the past decade, it has been recognized that two
classes of codes, namely, turbo codes [4] and low-density

parity-check (LDPC) codes [13], [19], [23], perform at rates ex-
tremely close to the Shannon limit. Both classes of codes are
based on a similar philosophy: constrained random code ensem-
bles, decoded using iterative decoding algorithms. It is known
[1], [15], [21], [27] that iterative decoding algorithms may be
viewed as complex nonlinear dynamical systems. The goal of
the present work is to contribute to the in-depth understanding
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of these powerful families of error-correcting codes from the
point of view of the well-developed theory of nonlinear dynam-
ical systems [26], [30].

Richardson [21] has developed a geometrical interpretation
of the turbo-decoding algorithm, and formalized it as a dis-
crete-time dynamical system defined on a continuous set. In the
formalism of [21], the turbo-decoding algorithm appears as an
iterative algorithm aimed at solving a system of equations in

unknowns, where is the number of information bits for the
turbo code at hand. If the algorithm converges to a codeword,
then this codeword constitutes a solution to this system of
equations. Conversely, solutions to these equations provide
fixed points of the turbo-decoding algorithm, when seen as
a nonlinear mapping [9]. In a follow-up paper by Agrawal
and Vardy [1], a bifurcation analysis of the fixed points in the
turbo-decoding algorithm, as function of the signal-to-noise
ratio (SNR), has been carried out. Further recent work has
been concerned with the convergence behavior of iterative
decoding systems, such as turbo codes [5] and LDPC codes
[17], when the block length tends to infinity. These papers
open new promising directions for analyzing and designing
coding schemes based on iterative decoding.

In this paper, following the approach of [21] and [1], we study
iterative decoding algorithms as discrete-time nonlinear dynam-
ical systems. The original contributions with respect to [1], [21]
include a simplified measure of the performance of an iterative
decoding algorithm in terms of a posteriori average entropy. In
addition, we present a detailed characterization of the dynam-
ical systems at hand and carry out an in-depth bifurcation anal-
ysis. For example, in [1], Lyapunov exponents were computed
only at the fixed points (using the Jacobian matrix calculated at
the fixed points). Herein, we compute the largest Lyapunov ex-
ponent of the chaotic attractors as well as the average chaotic
transient lifetime. Furthermore, we show that, in general, itera-
tive decoding algorithms exhibit a whole range of phenomena
known to occur in nonlinear dynamical systems [20]. These phe-
nomena include the existence of multiple fixed points, oscilla-
tory behavior, chaos (for a finite block length), and transient
chaos. Some of this was briefly discussed in the earlier work
of Tasev, Popovski, Maggio, and Kocarev [27]. In this paper,
we give a much more detailed and rigorous characterization of
these phenomena. Moreover, we extend the results reported by
Lehmann and Maggio in [17] for regular LDPC codes to the
case of irregular LDPC codes, emphasizing the differences in
dynamical behavior.

Subsequently, we show how the general principles distilled
from our analysis may be applied to enhance the performance
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of existing iterative decoding schemes. In particular, prelimi-
nary results on control of transient chaos, reported in [15], are
further developed in this paper, and supported by the frame sta-
tistics with and without control. Another original contribution
of this paper are new stopping criteria for turbo codes, which
are derived starting from the definition of a posteriori average
entropy herein (see Section IV-C).

In summary, this paper presents a self-contained comprehen-
sive analysis of the dynamical behavior of most iterative de-
coding systems currently known, with a view toward improving
their performance. For the interested reader, we should also
mention the related recent work of Fu [12]. That work, which
is completely independent1 from ours, confirms some of our re-
sults concerning the dynamical behavior of turbo codes and sug-
gests several interesting applications.

The rest of this paper is organized as follows. The next sec-
tion is a primer on the theory of nonlinear dynamical systems.
In Section III, we briefly review several well-known coding
schemes based on iterative decoding, namely, parallel concate-
nated codes (PCC), serially concatenated codes (SCC), product
codes (PC), and LDPC codes. Section IV is devoted to the inves-
tigation of nonlinear dynamics of parallel-concatenated turbo
codes, using the classical turbo code of Berrou, Glavieux, and
Thitimajshima [4] as a case study. For this code, the turbo de-
coding algorithm is first described as a high-dimensional dis-
crete-time dynamical system, depending on a large number of
parameters. Subsequently, we propose a simplified description
of the dynamics of this algorithm, as a function of a single pa-
rameter that is closely related to the channel SNR. We then carry
out a detailed bifurcation analysis. Similar considerations apply
to other classes of codes. In particular, in Section V, we describe
the nonlinear dynamics of SCCs, PCs, and LDPC codes (both
regular and irregular). Finally, in Section VI, we discuss some
applications based on the theory of nonlinear dynamic systems.
First, we develop a simple technique for controlling the tran-
sient chaos in turbo decoding, thereby reducing the number of
iterations required to reach an unequivocal fixed point. We then
propose a new stopping criterion for iterative decoding, based
on the average entropy of an information block. We conclude
the paper with a brief discussion in Section VII.

II. NONLINEAR DYNAMICAL SYSTEMS

We define a differentiable discrete-time dynamical system by
an evolution equation of the form

where is a differentiable function and the variables vary
over a state-space , which can be or a compact manifold.
Computer experiments with iterative decoding algorithms usu-
ally exhibit transient behavior followed by what appears to be an
asymptotic regime. Thus, iterative decoding algorithms are dis-
sipative systems. In general, for dissipative systems, there exists
a set , which is asymptotically contracted by the time
evolution to a compact set—that is, the set is com-
pact. The long-term behavior of a general dissipative dynamical

1The manuscript by Fu [12] was submitted seven months after the submission
date of the present paper.

system can be always categorized into one of the following two
attractor classes:

• Regular attractors: fixed points, periodic orbits, and limit
cycles (certain dynamical systems can also have an at-
tractor that is a product of limit cycles, called a torus);

• Irregular attractors: chaotic and strange attractors.

Precise definitions of the terms above, along with several illus-
trative examples, are given later in this section.

A. One-Dimensional Chaotic Maps

We now give precise definitions of chaos for the one-dimen-
sional case. Namely, we consider systems of the form

where (1)

The fundamental property of chaotic systems is their sensitivity
to initial conditions. From a practical point of view, this prop-
erty implies that the trajectories (time evolution) of two nearby
initial conditions diverge from each other quickly and their sep-
aration increases exponentially on the average. In the following
two definitions, we assume that is a subset of .

Definition 1 (topological transitivity): A function
is said to be topologically transitive if for every pair of open sets

, there is an integer such that .

A topologically transitive map has points which, under the it-
eration of , eventually move from any (arbitrarily small) neigh-
borhood into any other neighborhood. We note that if a map has
a dense orbit, then it is topologically transitive. For compact sub-
sets of , the converse is also true.

Definition 2 (sensitive dependence): A function
has sensitive dependence of initial conditions if there is a
such that for every and every open interval containing ,
there is a with for some .

A map has sensitive dependence of initial conditions if, for all
, there exist points arbitrary close to which, under the

iteration of , eventually separate from by at least . We stress
that not all points near need to be separated from under the
iteration of , but there must be at least one such point in every
neighborhood of .

Definition 3 (chaotic set): Let be an arbitrarry set. A func-
tion is said to be chaotic on if

1) has sensitive dependence of initial conditions;
2) is topologically transitive; and
3) periodic points of are dense in .

Example 1 (Logistic Map): Let be a real number with
, and consider the map given by

(2)

Clearly, the maximum value of , achieved at , is ,
which is strictly greater than by the choice of . Hence, there
exists an open interval centered at with the following
property: if , then . But implies that

for all . It follows that is a set of the points
which immediately escape from the unit interval . In
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general, let us define the set of points which escape from the
interval at the th iteration as follows:

for and

Since is an open interval centered at , the set con-
sists of two closed intervals: and . This, in turn, implies
that consists of two disjoint open intervals. Continuing this
argument inductively, we find that consists of disjoint
open intervals and consists of
closed intervals . Moreover, it is easy to see that maps
each monotonically onto . This implies that has at least

fixed points for all . Now, let us define

Then it can be shown that is a Cantor set and the quadratic
map in (2) is chaotic on .

A set is said to be invariant if . We say that a
compact invariant set is topologically transitive if there exists
an such that , where is the set of limit
points of the orbit . Equivalently, a compact invariant
set is topologically transitive if the map is topo-
logically transitive (see Definition 1).

Definition 4 (attracting set): A closed invariant set is
called an attracting set if there is a neighborhood of such
that and as .

Definition 5 (basin of attraction): The domain or basin of
attraction of an attracting set is given by .

Note that even if is noninvertible, still makes sense for
sets: is the set of points in that maps into under .
Extending this idea, we can define inductively for all

. Thus, in Definition 5 is well-defined.

Definition 6 (attractor, chaotic attractor): An attractor is
a topologically transitive attracting set. A chaotic attractor is
a topologically transitive attracting set which is also chaotic.

Example 2: Consider again the map in (2),
but now choose and think of as a map from
into . Depending on the value of , three cases are
possible. This logistic map either

• has a periodic attractor, which is unique and attracts al-
most every point; or

• has a nonchaotic attractor: almost every point is attracted
to a Cantor set on which the map is not sensitive to initial
conditions; or

• has a chaotic attractor: almost every point is attracted to
a finite union of intervals, which is a chaotic set.

Definition 7 (repelling hyperbolic set and chaotic saddle): A
set is a repelling hyperbolic set for if is closed, bounded,
and invariant under and there exists an integer such that

for all and for all . A repelling
hyperbolic set which is also chaotic is called a chaotic saddle.

For example, the set in Example 1 is a chaotic saddle. Here
is another explicit example of a chaotic saddle.

Example 3 (piecewise linear map): Consider a piecewise lin-
ear function defined by

(3)

where the parameters and are chosen
so that , and the map is continuous.
If for all , the map has two attractors: a chaotic one,
which is a subset of , and a fixed point located at . The
basin of attraction of the chaotic attractor is the interval .
On the other hand, if for all , the map has only one
attractor: the fixed point at . However, the map admits a
chaotic saddle: this is the set of initial points which stay in the
unit interval when time goes to infinity.

B. Lyapunov Exponents

Lyapunov exponents are useful quantitative indicators of
asymptotic expansion and contraction rates in a dynamical
system. They, therefore, have fundamental bearing upon sta-
bility and bifurcations. In particular, the local stability of
fixed points (or periodic orbits) depends on whether the corre-
sponding Lyapunov exponents are negative or not. For invariant
sets with more complex dynamics, such as chaotic attractors
and chaotic saddles, the situation is much more subtle. Invariant
measures in this case are often not unique—for instance, asso-
ciated to each (unstable) periodic orbit contained in an attractor
is a Dirac ergodic measure whose support is the orbit. Ergodic
measures are thus not unique if there is more than one periodic
orbit (as is the case with most chaotic attractors), and each
ergodic measure carries its own Lyapunov exponents.

Theorem 1 (multiplicative ergodic theorem): Let be a prob-
ability measure on the space . Let be a measure-
preserving map such that is ergodic. Let
denote the matrix of partial derivatives of the components
at . Define the matrix

and let be the adjoint of . Then for -almost all , the
following limit exists:

(4)

Definition 8 (Lyapunov exponents): Logarithms of the eigen-
values of in (4) are called Lyapunov exponents.

We denote the Lyapunov exponents by or by
when they are no longer repeated by their

multiplicity . It is well known [20], [26] that if is ergodic,
then Lyapunov exponents are almost everywhere constant.
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The finite set captures the asymptotic behavior of the
derivative along almost every orbit, in such a way that a posi-
tive indicates eventual expansion (and, hence, sensitive de-
pendence on initial conditions) while negative indicate con-
traction along certain directions.

The exponential rate of growth of distances is given, in gen-
eral, by —if one picks a vector at random, then its growth rate
is . The growth rate of a -dimensional Euclidean volume el-
ement is given by .

Remark: There are well-developed techniques for com-
puting all the Lyapunov exponents of a dynamical system
(cf. [18]). Here, we describe a simple method for numerically
computing the largest Lyapunov exponent, which will be used
throughout this paper. Consider a trajectory of
an -dimensional dynamical system , initialized
at , as well as a nearby trajectory with initial condition

. Let us write for convenience . Then the
time evolution of is given by , where

is the Jacobian matrix of . Let denote the
Euclidean norm and define , where ,
for . Then the quantity approaches
the largest Lyapunov exponent as . For more details on
this, we refer the reader to [18].

C. Largest Lyapunov Exponent as a Classification Tool

In experiments with iterative decoding we have encountered
a number of qualitatively different attractors, each associated
with a different type of time evolution. We found that the largest
Lyapunov exponent is a good indicator for deducing what kind
of state the ergodic measure is describing.

Attracting Fixed Points and Periodic Points: A point
is a fixed point of if . It is an

attracting fixed point if there exists a neighborhood of
such that for all . The asymptotic
measure of an attracting fixed point is the measure ,
where is the Dirac delta function at . This measure is
invariant and ergodic. A point is a periodic point of period
if . The least positive for which is
called the prime period of ; then is a fixed point of . The
set of all iterates of a periodic point forms a periodic trajectory
(orbit). The Lyapunov exponents in both cases are simply
related to the eigenvalues of the Jacobian matrix evaluated
at (cf.[1]) and, therefore, are all negative. Thus, the largest
Lyapunov exponent satisfies in this case.

Attracting Limit Cycle: Let be a closed curve in ,
homeomorphic to a circle. If is an attractor, a volume ele-
ment is not contracted along the direction of . Therefore, its
asymptotic measure has one Lyapunov exponent equal to zero
while all the others are negative. Thus, .

Chaotic Attractor: An attractor is chaotic if its asymp-
totic measure (natural measure) has a positive Lyapunov ex-
ponent. If any one of the Lyapunov exponents is positive, a
volume element is expanded in some direction at an exponen-
tial rate and neighboring trajectories are diverging. This is pre-
cisely the sensitive dependence on initial conditions (cf. Defi-

Fig. 1. Route to chaos for the simple two-dimensional map given by (5). The
values of the parameter a corresponding to the invariant sets, starting from the
fixed point toward chaos, are 1:9; 2:1;2:16; and 2:27.

nition 2). It follows that for chaotic attractors, we have
while (since the invariant set is an attractor).

Example 4: Let be a parameter, and consider the two-
dimensional system defined on the plane as follows:

(5)

The system has a fixed point at , which is stable
for . As passes through the value , this fixed point
looses stability and spawns an attracting invariant circle. This
circle grows as the parameter increases, becoming noticeably
warped. When , the circle completely breaks down,
forming a chaotic attractor. Fig. 1 shows a typical route to chaos
for this system, as well as the different attractors: fixed point,
limit-cycle, and chaotic attractor.

Example 5: Consider a three-dimensional dynamical system
parameterized by a constant along with three constant
vectors and
in , and defined by the following recursions:

(6)

where the pair of system variables and
vary over and the six iteration maps

,
and are functions from to parameterized by the
constants . These functions are
given explicitly in (8) on the bottom of the following page.
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In order to obtain a one-dimensional representation of this
dynamical system, we define the quantity

(7)

where is the binary
entropy function and

for

The significance of the quantity in (7) will be discussed
later (see Section IV-C). It is clear, however, that we could try to
study the time evolution of in order to obtain some insight
into the dynamical behavior of the system in (6) and (8), at the
bottom of the page. For example, Figs. 2 and 3 show, in terms
of , limit-cycle attractors for this system, under different
settings of parameter values and . In both figures, we have
assumed that the system is initialized with .

D. Transient Chaos

Chaotic saddles are nonattracting closed chaotic invariant sets
having a dense orbit. A trajectory starting from a random ini-
tial condition in a state-space region that contains a chaotic
saddle typically stays near the saddle, exhibiting chaotic-like
dynamics, for a finite amount of time before eventually exiting
the region and asymptotically approaching a final state, that is
usually nonchaotic. Thus, in this case, chaos is only transient.

The natural measure for a chaotic saddle can be defined as
follows. Let be the region that encloses a chaotic saddle. If
we iterate initial conditions, chosen uniformly in , then the
orbits which leave never return to . Let be the number
of orbits that have not left after iterates. For large , this
number will decay exponentially with time

We say that is the lifetime of the chaotic transient. Let be
a subset of . Then the natural measure of is

where is the number of orbit points which fall in at
time . The last two equations imply that if the initial conditions

Fig. 2. Limit-cycle attractor, in terms of the evolution of E(n), for the system
of Example 5 parameterized by � = 3:125, aaa = (�0:4486; 2:1564;0:3722);
bbb = (1:8710;1:9027;0:9954), ccc = (�0:4469;1:0577;1:4175).

Fig. 3. Limit-cycle attractor, in terms of the evolution of E(n), for the system
of Example 5 parameterized by � = 3:125;aaa = (0:6746;�0:2706;1:2499);
bbb = (0:4669;2:7908;1:6528), and ccc = (0:1764;2:6040;1:0167).

are distributed according to the natural measure and evolved in
time, then the distribution will decay exponentially at the rate

. Points which leave after a long time do so by
being attracted along the stable manifold of the saddle, bouncing
around on the saddle in a (perhaps) chaotic way, and then ex-
iting along the unstable manifold. For the natural measure of
a chaotic saddle, one has

(8)
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where are the Lyapunov exponents and is the measure-
theoretic (or the Kolmogorov–Sinai) entropy [20, p. 235].

We next consider a simple example where the characteristics
of a chaotic saddle, namely, the chaotic transient lifetime and
the Lyapunov exponents, can be computed in a closed form.

Example 6 (piecewise linear map): Consider the piecewise
linear map (3) with for all . In other words, every
linear piece maps a part of the unit interval onto an interval
containing the entire unit interval. This requires
everywhere, and thus all periodic orbits are unstable and the
chaotic saddle is the closure of the set of all finite periodic orbits.
Note that the chaotic saddle is a subset of the unit interval. For
the natural measure of this chaotic saddle, one finds

where is the largest Lyapunov exponent. Note that this
system satisfies the relation , which is character-
istic of a chaotic saddle.

III. ITERATIVE DECODING ALGORITHMS

We now briefly describe the coding schemes, and the associ-
ated iterative decoding algorithms, considered in this paper.

A. Turbo Concatenated Codes

For simplicity, we restrict our attention to concatenated codes
(CC) involving two systematic constituent block codes sepa-
rated by an interleaver. If convolutional codes are used, we as-
sume that the trellis has been terminated. We let and denote
the number of information bits and the coding rate of the CC,
respectively. Throughout the paper, we assume that the codes
are binary and the channel is a memoryless Gaussian channel
with binary phase-shift keying (BPSK) modulation (
and ). We let denote the standard deviation of the
channel noise.

Parallel concatenated codes (PCC): PCCs, or turbo codes
[3], [4], are illustrated in Fig. 4(a). The information bits are
permuted by a random interleaver, then both the information
bits and the permuted information bits are fed to the two con-
stituent encoders. The output codeword is formed by multi-
plexing the information bits with the redundancy produced by
the two encoders.

Serially Concatenated Codes (SCC): SCCs [2] are illus-
trated in Fig. 4(b). An outer code adds redundancy to the
information bits, and the resulting outer codeword is permuted
by a random interleaver. The inner encoder treats the output of
the interleaver as information bits and adds more redundancy.
The output of the inner encoder is the transmitted codeword.

Product codes (PC): PCs [11] are illustrated in Fig. 4(c).
The information bits are placed in an array of rows and
columns. Then the rows are encoded by the row

Fig. 4. Three types of turbo concatenated codes: (a) PCC, (b) SCC, (c) PC.

Fig. 5. Block diagram of an iterative decoder for a turbo concatenated code.

code and the resulting columns are encoded by the
column code. Note that the only difference between PC and SCC
is that the random interleaver is replaced by a block interleaver.

B. Iterative Decoding of Turbo Concatenated Codes

The block diagram of an iterative decoder for a generic CC is
illustrated in Fig. 5. The decoding process iterates between two
decoders denoted SISO1 and SISO2. We assume that each of
the two decoders is a maximum a posteriori probability (MAP)
decoder (although, in practice, approximations to MAP de-
coding are often employed). SISO1 uses channel observations

and a priori information , in the form of log-likelihood
ratios (LLRs), to generate a posteriori bit-by-bit LLRs . The
extrinsic information is then given by .
After interleaving, is used as the a priori information ,
in conjunction with , by SISO2 to generate a poste-
riori bit-by-bit LLRs . Then, the extrinsic information

is used as the a priori information for
SISO1, after deinterleaving. And so on, for a specified number
of iterations.

SISO1 corresponds to the decoding of the first code, the outer
code, and the row code for PCC, SCC, and PC, respectively.
Similarly, SISO2 corresponds to the decoding of the second
code, the inner code, and the column code for PCC, SCC, and
PC, respectively. Throughout the paper, we assume that all the
quantities exchanged by the decoders are in the form of LLRs
and can be modeled [23] as independent and identically dis-
tributed (i.i.d.) random variables having a symmetric Gaussian
distribution.
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This iterative decoding system may be viewed as a closed-
loop dynamical system, with SISO1 and SISO2 acting as the
constituent decoders in the corresponding open-loop system.

C. LDPC Codes and Their Decoding

An LDPC code is defined by a bipartite graph consisting of
variable and check nodes appropriately related by edges. Let
and be the maximum variable and check node degrees, re-
spectively. We denote the variable (resp., check) degree-distri-
bution polynomials [22] by

and

where (resp., ) is the fraction of variable (resp., check)
nodes of degree . If and , the
bipartite graph is regular and the corresponding LDPC code is
said to be regular; otherwise, the code is irregular.

The message-passing (or sum–product) algorithm [16], [23]
used to decode LDPC codes proceeds as follows. The message

sent by a variable node to a check node on an edge is the
log-likelihood ratio of that variable node, given the LLRs of the
check nodes , received on all incoming edges except , and
given the channel log-likelihood ratio of the variable node
itself. Thus,

(9)

The message sent by a check node to a variable node on an
edge is the log-likelihood ratio of that check node, given the
LLRs of the variable nodes received on all incoming edges
except . Thus,

(10)

Equations (9) and (10) constitute one decoding iteration.
Initially, each variable node (message) is initialized with the
channel log-likelihood ratio of the corresponding bit.

IV. DYNAMICS OF PARALLEL-CONCATENATED TURBO CODES

In this section, we study the nonlinear dynamics of parallel-
concatenated turbo codes. We then derive a simplified represen-
tation qualitatively describing the dynamics of the iterative de-
coding algorithm for this class of codes. Similar considerations
apply to other types of codes as well (our bifurcation analysis
for these codes is presented in Section V).

As a case study, we shall consider (in Sections IV-D and
IV-E) the classical rate- turbo code of Berrou, Glavieux,
and Thitimajshima [4], for which the two constituent codes
are identical memory- recursive convolutional codes, with the
feedforward polynomial and the feedback polynomial

. The interleaver length is 1024
bits throughout (except in Sections IV-A and IV-E).

Fig. 6 shows the performance of this code, as a function of
the number of iterations. Referring to Fig. 6 (see also [1] and
other papers), the performance of the turbo decoding algorithm
can be classified into three distinct regions.

Fig. 6. Performance of the classical rate-1=3 parallel-concatenated turbo code
with interleaver length 1024, for increasing number of iterations. The waterfall
region corresponds to SNRs between about 0.25 and 1.25 dB.

Low SNR Region: For very low values of SNR, the extrinsic
LLRs often converge to values leading to a large number of in-
correct decisions. The corresponding performance curves de-
crease slowly with SNR.

High SNR Region: For very high SNRs, the extrinsic LLRs
often converge to values leading to mostly correct decisions.
However, the corresponding performance curves reach an “error
floor” and decrease slowly with SNR.

Waterfall Region: The transition between the aforemen-
tioned SNR regions is called the “waterfall region,” as the
performance curves decrease sharply with SNR in this region.

In this section, we study the dynamics of iterative turbo de-
coding, qualitatively and quantitatively, in each of these regions.

A. A Simple Example

Consider a simple parallel-concatenated turbo code of [3], for
which the constituent codes are identical memory- recursive
systematic convolutional codes, with the feedforward polyno-
mial and feedback polynomial . As-
sume that both encoders are initialized to the all-zero state.

For the sake of this example, let us first assume that .
Thus, there are only three information bits . We
choose the cyclic interleaver . Let us denote
the parity bits generated by constituent encoders, upon input

and by and ,
respectively. Then, we have

(11)

where all the summations are modulo . Let
, and denote the channel output

sequences corresponding to the input sequences , and
, respectively. Further, let and

denote the extrinsic information at the
output of two decoders, SISO1 and SISO2, respectively. We
order the vectors and so that they correspond to the in-
formation bits in the natural, noninterleaved, order (thus, both
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and reflect the extrinsic information for the bit ). Re-
ferring to Fig. 5, while noting that and are just permuted
versions of and , respectively, we can write

(12)

where denotes the iteration number. We now wish to give ex-
plicit closed-form expressions for the functions

, and
. As shown, for example, in [1], the extrinsic log-

likelihood ratio for the th information bit at the output of the
SISO1 decoder is given by

(13)

for all , where is the “a priori” probability of the
information bits given by

(14)

while

(15)

(16)

Similarly, the extrinsic log-likelihood ratio for the th informa-
tion bit at the output of the SISO2 decoder is given by

(17)

for all , where is still given by (15), while
and are now given by

(18)

(19)

Using (11), we can write (16) and (19) explicitly in terms of
the information bits . Now, substituting (14)–(16) and
(18), (19) into the summations of (13) and (17), we finally ob-
tain the explicit closed-form expressions for the iteration maps

, and in (12).
We find that these maps are given by (8), with

, and . Thus, what we have here is precisely the
three-dimensional dynamical system of Example 5. It follows
that Figs. 2 and 3 depict limit-cycle attractors for this iterative
decoder, under a certain choice of parameter values (in partic-
ular, for which corresponds to ).

B. Turbo Decoding as a Nonlinear Mapping

We now show how the derivations in Section IV-A extend to
the case of general parallel concatenated turbo codes. As before,
let denote the sequence (of length ) of information bits at
the input to the turbo encoder. Let and be the parity
bits produced by the first and second encoder, respectively. Let

denote the channel outputs corresponding to the input

sequences , and , respectively. Then, as in (12), the
turbo decoding algorithm can be described by a discrete-time
dynamical system of the form

(20)

where is the extrinsic information exchanged by
the two SISO decoders, whereas and

are nonlinear functions, parameter-
ized by the channel output , which depend on the con-
stituent codes. Specifically, as in (13), is given by

(21)

for , where and are exponential func-
tions of . A similar expression holds for the function

. The exact form of and depends on the specific con-
stituent codes and on the specific SISO decoding algorithm. As
shown in [21], the system (20) always depends smoothly on its

variables and parameters .
Assuming a priori a uniform probability distribution of the

information bits, the initial conditions in (20) should be set2 at
the origin: . At each iteration , the decoder
computes the values of . A decision on the th bit
can be made according to the sign of the log-likelihood ratio

(22)

where and are the probabilities that the th infor-
mation bit is or , respectively. Note that, if is known,
and can be computed from and , and vice
versa, using (22). Let us write . Then the
system (20) can be rewritten in equivalent form as

(23)

where is a nonlinear function. The dynamical system (23)
is again high dimensional with a large number of parameters.
However, it is advantageous in that . A typical tra-
jectory of the turbo decoding algorithm in the form of (20)
starts at the origin and converges to an attractor (chaotic or non-
chaotic), usually located in the region of large (positive or nega-
tive) values of . In contrast, a typical trajectory in the
form of (23) starts at the point and con-
verges to an attractor that is always in .

C. A Simplified Model of Iterative Decoding

The dynamical systems (20) and (23) are much too complex
for detailed analysis. In order to study the dynamics of these
systems, we suggest the following simplified representation of
turbo decoding trajectories. Define

(24)

2However, one may use other initial conditions; for instance, to compute the
Lyapunov exponents or the average chaotic transient lifetime.
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The quantity represents the a posteriori average entropy,
which gives a measure of the reliability of the decisions for a
given length- information sequence. Note that if all bits are de-
tected correctly, is either or for all , and . On the
other hand, if all bits are equally probable (that is, ambiguous),
we have . Note that does not automatically mean
that the decisions are correct, but rather that the turbo decoding
algorithm is very confident about its decisions. However, the ex-
cellent performance of turbo decoding seems to indicate that, in
most cases, the decisions are, in fact, correct when .

In what follows, we consider three types of plots: ver-
sus , versus , and versus SNR for .
By plotting the iterates of , we obtain a simple represen-
tation of the trajectories of the turbo-decoding algorithm in the
interval . On the other hand, recursive plots of
versus are useful to visualize the invariant sets of the de-
coding algorithm. Finally, a plot of versus SNR
represents a bifurcation diagram.

Although both (20) and (23) depend on parameters, we
will study these systems as a function of a single parameter
(which closely approximates the channel SNR), following the
approach developed by Agrawal and Vardy [1]. As in [1], we
assume that the noise samples corresponding to the channel ob-
servations , represented in vector form as

(25)

are such that the noise ratios are
fixed. Then the noise sequence in (25) is completely deter-
mined by the sample variance

(26)

It follows that one can parameterize the system by the single pa-
rameter . Note that is a good approximation of the channel
noise variance , since is typically a large integer. Thus, the
SNR is well approximated by , where
is the energy per information bit, is the noise power spectral
density, and is the code rate.

D. Bifurcation and Chaos in Turbo Decoding

We now give a qualitative description of the behavior of the
turbo decoding algorithm, for small interleaver lengths (e.g.,

). Our conclusions are based on comprehensive sim-
ulations of the algorithm for SNRs ranging from to
with different realizations of the noise (different noise ratios

). Fig. 7 schematically summa-
rizes the results of our bifurcation analysis: The turbo decoding
algorithm exhibits all three types of attractors previously dis-
cussed: fixed points (or periodic-orbit attractors), limit-cycle
attractors, and chaotic attractors, which correspond to negative,
zero, and positive largest Lyapunov exponents, respectively.

1) Fixed Points and Bifurcations: As shown in [1], the turbo
decoding algorithm admits two types of fixed points—indeci-
sive and unequivocal.

Unequivocal fixed point: In this case, is close to or for
all , so the log-likelihoods assume large values, and con-
sequently . Decisions corresponding to an unequivocal

Fig. 7. Schematic bifurcation diagram of the turbo decoding algorithm in (20),
for small to moderate interleaver lengths. Unequivocal fixed point corresponds
toE = 0; it is shown using a bold dotted line when is unstable and a bold solid
line when is stable. The basin of attraction for the unequivocal fixed point is also
shown schematically as a function of SNR.

fixed point will typically form a valid codeword, which usually
coincides with the transmitted codeword.

Indecisive fixed point: At this fixed point, the turbo decoding
algorithm is ambiguous regarding the values of the information
bits, with being close to for all . Thus, and

. Decisions corresponding to this fixed point typically
will not form a valid codeword.

It is proved in [1] that for asymptotically low SNRs, the turbo
decoding algorithm has a unique indecisive fixed point. Exper-
iments show that not only is this true, but the SNR required for
the existence and stability of this fixed point is not extremely
low: we found that the indecisive fixed point is stable for all
SNRs less than 7 dB.

When the SNR approaches , the average entropy for the
indecisive fixed point approaches the limit . We found that
the indecisive fixed point moves toward smaller values of with
increasing SNR. It eventually looses its stability (or disappears),
typically in the SNR range of 7 to 5 dB.

As is well known [20], [30], there are three ways in which
a fixed point of a discrete-time dynamical system may loose
its stability: when the Jacobian matrix evaluated at the fixed
point admits complex conjugate eigenvalues on the unit circle
(Neimark–Sacker bifurcation), or an eigenvalue at (tangent
bifurcation), or an eigenvalue at (flip bifurcation). In our ex-
periments, we have observed all three types of bifurcations in
the turbo-decoding algorithm.

For high SNRs, the turbo-decoding algorithm typically con-
verges to an unequivocal fixed point. In each instance of the al-
gorithm that we have analyzed, an unequivocal fixed point ex-
isted for all values of SNR from to . This point is al-
ways represented by the average entropy value of , and
becomes stable at about 1.5 dB. However, when the SNR is
less than about 0 to 0.5 dB, the decoding algorithm “cannot see”
this fixed point, since the initial conditions are not within its
basin of attraction. The basin of attraction of the unequivocal
fixed point grows with SNR.

2) Chaotic Attractors and Transient Chaos: The turbo-de-
coding algorithm also has limit cycle and chaotic attractors.
Given a general dynamical system with only nonchaotic,
asymptotically stable behavior, how do chaotic attractors arise
as a parameter of the system varies?
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Fig. 8. Torus-breakdown route to chaos for the classical rate-1=3 turbo code.
The values of SNR corresponding to the invariant sets, starting from the fixed
point toward chaos, are: �6.7 dB, �6.6 dB, �6.5 dB, �6.2 dB.

Several ways (routes) by which this can occur are well docu-
mented [20]. These include infinite period-doubling cascades,
intermittency, crises, and torus breakdown.

Our analysis indicates that torus breakdown route to chaos
is dominant in the turbo-decoding algorithm. This route is ev-
ident, for example, in Fig. 8, where a fixed point undergoes
a Neimark–Sacker bifurcation giving rise to a periodic orbit
(limit-cycle attractor), which then further bifurcates leading to
a chaotic attractor. Comparing Fig. 8 with Fig. 1, we see that
turbo-decoding algorithm exhibits the same qualitative dynam-
ical behavior (and the same route to chaos) as the two-dimen-
sional map of Example 4, given by (5).

Remark: We found that such quasi-periodic route to chaos is
generic for turbo concatenated codes for moderate values of the
interleaver length (on the order of ). This is reasonable,
since the eigenvalues of a random high-dimensional system are
spread throughout the complex plane, with relatively few of
them on the real axis. For other values of the interleaver length
(or other high-dimensional systems), the route to chaos may be
much more complicated, involving multiple Neimark–Sacker,
inverse Neimark–Sacker, and other bifurcations, with regions
of chaos interspersed with region of quasi-periodicity.

From the schematic bifurcation diagram in Fig. 7, we see that
turbo-decoding algorithm exhibits chaotic behavior for a rela-
tively large range of SNRs. An example of a typical chaotic at-
tractor is shown in Fig. 9. The largest Lyapunov exponent of this
attractor was computed to be . The attractor persists
for all values of SNR in the interval ( 6.1 dB, 0.5 dB).

In Fig. 10, we have plotted the largest Lyapunov exponent for
the natural measure of the turbo-decoding algorithm (starting
with initial conditions at the origin), for two different noise re-
alizations. Curve A corresponds to the same noise realization
that was used to produce Figs. 8 and 9. Notice that in the SNR
region of 6.6 dB to 6.2 dB, the largest Lyapunov exponent
is equal to zero, which indicates a limit-cycle attractor.

In the waterfall region (cf. Fig. 6), the turbo-decoding algo-
rithm converges either to the chaotic invariant set or to the un-
equivocal fixed point, but only after a long transient behavior,

Fig. 9. Chaotic attractor for the classical rate-1=3 turbo code, with interleaver
of length k = 1024. This attractor is observed at the SNR of �6.1 dB.

Fig. 10. Largest Lyapunov exponent � versus SNR for two different noise
realizations (curves A and B). Negative value of � reflects the existence of an
(attracting) fixed point, the case � = 0 corresponds to (attracting) limit cycle,
whereas positive values of � indicate chaos. Note the abrupt transition of the
value (and sign) of � for high SNR, caused by the unequivocal fixed point.

which indicates the existence of a chaotic nonattracting invariant
set in the vicinity of the fixed point.

In some cases, the algorithm spends several thousand itera-
tions before reaching the fixed-point solution. For example, for
the noise realization represented by Curve A in Fig. 10, at the
SNR of 0.8 dB, the average chaotic transient lifetime is 378
iter-ations. As the SNR increases, the average chaotic transient
lifetime decreases. In Table I, we report the results of the fol-
lowing experiment. For each SNR, we generate 1000 different
noise realizations (1000 different parameter frames) and com-
pute the number of decoding trajectories that approach the fixed
point in less than a given number of iterations. For example, at
the SNR of 0.6 dB, there are 492 frames that converge to the
unequivocal fixed point in five or less iterations, another 226
frames converge in 10 or less iterations, and so on, while 58
frames remain chaotic after 2000 iterations (which means that
their trajectory either approaches a chaotic attractor or that the
transient chaos lifetime is very large).
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TABLE I
DISTRIBUTION OF FRAMES THAT CONVERGE TO THE UNEQUIVOCAL FIXED

POINT AS A FUNCTION OF THE NUMBER OF ITERATIONS

We note that this transient chaos behavior is characteristic
of the waterfall region of turbo decoding for small to moderate
interleaver lengths. In Section VI-A, we show how this fact can
be exploited to enhance the performance of turbo codes.

E. Qualitative Description for Small and Large Code Lengths

We found that there are several stark differences between the
dynamics of the turbo-decoding algorithm for small interleaver
lengths and large interleaver lengths (e.g., ). We now
give a qualitative description of these differences.

Although the turbo-decoding algorithm is a high-dimensional
dynamical system, it apparently has only a few active variables.
That is, out of the total of variables, most are “slave” to just
a few. In other words, the dynamics of the algorithm can be
effectively described by the mapping

(27)

where is an -dimensional vector, with , representing
an appropriate combination of the variables in (20). We
believe that for large . That is, for turbo de-
coding can be always described as a one-dimensional map!

In some cases, even for , we have found that
the turbo-decoding algorithm behaves as a one-dimensional
system. However, for small , the number of frames for which
the decoding algorithm can be described as one-dimensional
map is also small. In contrast, for large , we found that for all
frames, the turbo-decoding algorithm is actually a one-dimen-
sional map.

Unfortunately, we do not have a closed analytical form for
the function and/or the variable in (27). Nevertheless, we
now present a qualitative analysis of the dynamics of the turbo
decoder in the case where it can be approximated by a one-
dimensional map. To do so, we will use an “equivalent” map,
with the average entropy playing the role of the variable in
(27). A schematic representation of this map is given in Fig. 11.

We first discuss the case of small , following the outline of
Section IV-D. The decoding algorithm admits two kinds of fixed
points: stable indecisive and unstable unequivocal (Fig. 11a). As
the SNR grows, indecisive fixed point bifurcates—for example,
via the tangent bifurcation. Fig. 11b shows the map immedi-
ately after the bifurcation. Observe that the trajectory in Fig. 11b
spends a long time in the vicinity of the vanishing fixed point,

Fig. 11. Schematic one-dimensional map describing the qualitative dynamics
of the turbo-decoding algorithm. Graphs a), b), and c) are for small k (e.g.,
k = 1024), while graphs d), e), and f) are for large k (e.g., k = 2 ). Note that
for large k the algorithm does not exhibit chaotic behavior.

before it approaches a chaotic attractor. If we further increase the
SNR, the map would look as shown in Fig. 11c. Namely, a typ-
ical trajectory spends a long time in the vicinity of the chaotic
attractor, eventually escaping this region and converging to a
stable unequivocal fixed point.

We next consider the case . The corresponding map
is depicted in Fig. 11d, e, and f. For low SNRs, this map
has two fixed points: the stable indecisive and the unstable
unequivocal (see Fig. 11d). The map may have three fixed
points at some SNRs, as in Fig. 11e. However, it does not
exhibit chaotic behavior for any SNR. When the SNR exceeds
a certain threshold (after the tangent bifurcation), the trajectory
of the decodingalgorithm approaches the stable unequivocal
fixed point (Fig. 11e). Comparing Fig. 11a, b, c with Fig. 11d,
e, f, one can see how the nonlinear map in (27) transforms
as increases.

In order to further support our argument, we show in Fig. 12
several trajectories of the turbo-decoding algorithm plotted as

versus . The trajectory in Fig. 12a approaches
the stable indecisive fixed point. A different trajectory is plotted
in Fig. 12b and c (with Fig. 12b being a zoom of the upper-
right corner of Fig. 12c). This trajectory spends some time in
the vicinity of the vanishing fixed point (Fig. 12b), and then
approaches a chaotic attractor (Fig. 12 c). The cloud of points in
Fig. 12c indicates that either the one-dimensional map has many
minima and maxima in this region or that the dynamics of the
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Fig. 12. One-dimensional trajectories of the turbo decoding algorithm: a) The
trajectory approaches stable indecisive fixed point at�7.65 dB (for k = 1024);
b), c) the trajectory in the vicinity of a tangent bifurcation at �7.64 dB (for
k = 1024); d) the trajectory for k = 2 at 0.5 dB.

algorithm are effectively high dimensional. While
in Fig. 12a, b, and c, Fig. 12d shows a trajectory of the turbo-
decoding algorithm for . Note the absense of chaotic
behavior in this figure.

Remark: The work of ten Brink [5] further supports the con-
clusion that for the turbo-decoding algorithm can be
described as a one-dimensional map. In [5], mutual information
transfer characteristics of decoders are proposed as a tool for un-
derstanding the convergence behavior of iterative decoding sys-
tems. The exchange of extrinsic information is then visualized
as a decoding trajectory in the so-called EXIT chart. The anal-
ysis of [5] clearly shows that the turbo-decoding algorithm can
be approximated as a one-dimensional map, at least for .
The results of this section can be viewed as an extension of [5] to
small (on the order of ), for which the dynamical system
at hand is rich in nonlinear phenomena, including chaos.

However, an important difference between the present work
and [5] lies in the approach used to arrive at the (same) con-
clusions. The EXIT chart method of [5] iterates the average
mutual information (computed numerically, using Monte Carlo
techniques) between the constituent decoders. Herein, we con-
sider the turbo decoder as a dynamical system parameterized
by a single parameter (which closely approximates the channel
SNR), following the approach developed in [1]. We then use
methods rooted in the theory of nonlinear dynamical systems.

Remark: For LDPC codes, an approximate one-dimensional
representation of the iterative decoding algorithm for
was derived in closed form in [17]. The thresholds obtained
with this approximate model are in close agreement with the
values computed through the density evolution method of [23]
or through Monte Carlo simulations [10].

Fig. 13. Iterative decoding trajectories for a serially concatenated turbo code.
a) Number of decision errors versus the iteration number. b) E(n+1) versus
E(n). Values of SNR are: 1)�10 dB, 2) 0.40 dB, (3) 0.60 dB, and (4) 0.80 dB.

Fig. 14. Iterative decoding trajectories for a serially concatenated turbo code.
a) Number of decision errors versus the iteration number. b) E(n+1) versus
E(n). Values of SNR are: 1) �10 dB, 2) 0.00 dB, 3) 0.20 dB, and 4) 0.40 dB.

V. DYNAMICS OF OTHER ITERATIVE CODING SCHEMES

We now briefly discuss the nonlinear dynamics exhibited by
serially concatenated turbo codes, product codes, and LDPC
codes (both regular and irregular). We find that these dynamics
are, in principle, similar to those of parallel concatenated turbo
codes, although there are several important differences.

A. Serially Concatenated Turbo Codes

In serial concatenation [2], a rate- code is obtained by
concatenating a rate- outer code with a rate- inner
code through an interleaver. As a case study, we consider a
rate- serially concatenated turbo code made up of two -state
constituent convolutional codes. Both codes are obtained from
the same recursive systematic code (mother code) of rate ,
with parity-check polynomials . In our sim-
ulations, the frame length was information bits, and an
-random interleaver of [8] was used.

In Figs. 13 and 14, we have plottted the number of errors in
the information bits, as well as as a function of .
We show decoder trajectories for two different noise realiza-
tions (one in Fig. 13 and the other in Fig. 14) across a range of
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Fig. 15. Iterative decoding trajectories for the [BCH (32; 26)] product code.
a) Number of decision errors versus the iteration number. b) E(n+1) versus
E(n). Values of SNR are: 1) 1.60 dB and 2) 1.61 dB.

SNRs from 10.0 to 1.0 dB. When the SNR is low, both trajec-
tories converge to an indecisive fixed point: the decoder output
is not a valid codeword and the average entropy remains stuck at

(Figs. 13.1 and 14.1). When the SNR is sufficiently
high, both trajectories converge to an unequivocal fixed point
with (Figs. 13.4 and 14.4). In the intermediate cases, we
see that the decoder trajectories may become chaotic or exhibit
a chaotic transient.

B. Product Codes

We next consider iterative decoding of the BCH
and the BCH product codes. That is, in both cases,
the row code and the column code are taken as the same
Bose–Chaudhuri–Hocquenghem (BCH) code. As component
soft-input soft-output (SISO) decoders, we employ suboptimum
soft decoders based on the Chase algorithm [6]. Using the tech-
niques developed in Section IV, we study the trajectories of the
resulting iterative decoding algorithm.

As in Section V-A, we plot the number of errors in the in-
formation bits as a function of the iteration number , as well
as versus . Fig. 15 shows a typical decoding tra-
jectory for the BCH product code. At low SNRs, no
indecisive fixed point exists, but the trajectory is already chaotic.
At an SNR of 1.60 dB, just before the chaotic attractor looses
its stability, repeatedly reaches a value close to before
going back to chaotic behavior. Finally, at an SNR of 1.61 dB,
the trajectory converges, after a very short transient, to an un-
equivocal fixed point. Similar behavior is observed in Fig. 16
for the BCH product code.

C. Regular LDPC Codes

Consider the ensemble of regular LDPC codes
(the SNR threshold [23] for infinite-length LDPC codes
is 1.1 dB). We pick a code at random from this ensemble and
study typical trajectories of the iterative decoding algorithm de-
scribed in Section III-C. We find that, as in the case of parallel
concatenated turbo codes, the trajectories of this decoding algo-
rithm exhibit indecisive and unequivocal fixed points, periodic
orbits, chaotic invariant sets, and chaotic transients.

Fig. 16. Iterative decoding trajectories for the [BCH (64; 51)] product code.
a) Number of decision errors versus the iteration number. b) E(n+1) versus
E(n). Values of SNR are: 1) 2.770 dB and 2) 2.771 dB.

Fig. 17. Iterative decoding trajectories for a (216;3; 6) LDPC code illus-
trating the occurrence of a Neimark–Sacker bifurcation. a) Number of decision
errors versus the iteration number. b) E(n+1) versus E(n). Values of SNR
are: 1) 1.19 dB, 2) 1.20 dB, 3) 1.44 dB, 4) 1.45 dB, and 5) 1.52 dB.

The first example of a typical trajectory is shown in Fig. 17.
Fig. 17.1 reveals the existence of a stable indecisive fixed
point at low SNRs (the iterates of the number of errors and
average entropy are plotted for iterations to skip the
initial transient behavior). Fig. 17.2 is characteristic of the
Neimark–Sacker bifurcation. The indecisive fixed point be-
comes unstable at the SNR of 1.20 dB and is surrounded by a
small periodic closed orbit. Observe that this does not affect
any of the bit decisions, since the variations in the LLRs are not
large enough to induce a sign change. Fig. 17.3 shows that if the
SNR is further increased to 1.44 dB, the periodic closed orbit
becomes larger. Note that, in this case, the number of errors
also exhibits a periodic behavior because of the periodic sign
changes in the LLRs. When the SNR is increased to 1.45 dB in
Fig. 17.4, the trajectory eventually converges to an unequivocal
fixed point, with and correct decisions throughout. Note
the presence of a chaotic transient during the first 63 iterations,
which indicates the existence of a nonattracting chaotic in-
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Fig. 18. Torus-breakdown route to chaos for a (216; 3; 6) LDPC code. The
values of SNR corresponding to the invariant sets, starting from the fixed point
toward chaos, are: 1.19 dB, 1.23 dB, 1.27 dB, 1.33 dB, and 1.44 dB.

Fig. 19. Iterative decoding trajectories for a (216;3; 6) LDPC code illus-
trating the occurrence of a tangent bifurcation. a) Number of decision errors
versus the iteration number. b) E(n+1) versus E(n). Values of SNR are as
follows: 1) 0.59 dB, 2) 0.60 dB, 3) 0.76 dB, 4) 1.64 dB, and 5) 1.76 dB.

variant set near the fixed point. A similar behavior is observed at
the SNR of 1.52 dB in Fig. 17.5, but the duration of the chaotic
transient is reduced to only 21 iterations. Further increasing
the SNR reduces the duration of the transient chaos even more
until it disappears completely: the average entropy decreases
monotonically with the number of iterations. This indicates that
the size of the basin of attraction of the unequivocal fixed point
grows with SNR.

We find that regular LDPC codes exhibit, qualitatively, the
same torus-breakdown route to chaos that was already observed
for turbo codes in Section IV-D. This is illustrated in Fig. 18
(which corresponds to the same noise realizations that were used
to produce Fig. 17). Comparing Fig. 18 with Fig. 8 and 1 clearly
shows similar dynamical behavior.

A second typical trajectory, which is depicted in Fig. 19, is
characteristic of a tangent bifurcation. Fig. 19.1 shows a stable

Fig. 20. Iterative decoding trajectories for a (216;3; 6) LDPC code illus-
trating the occurrence of a flip bifurcation. a) Number of decision errors versus
the iteration number. b) E(n+1) versus E(n). Values of SNR are as follows:
1) �1.1 dB, 2) �1.0 dB, 3) �0.03 dB, 4) 0.79 dB, and 5) 0.87 dB.

indecisive fixed point at an SNR of 0.59 dB. Fig. 19.2 shows
the beginning of a bifurcation: the indecisive fixed point dis-
appears at 0.60 dB, and the trajectory converges to a periodic
closed orbit. The fact that the closed orbit is tangent to the bisec-
trix line is a remnant of the tangent bifurca-
tion. Observe that the corresponding decision errors are, again,
periodic. Figs. 19.3 and 19.4 show a typical torus-breakdown
route to chaos, where a closed orbit is gradually transformed
into a chaotic attractor. Finally, Fig. 19.5 shows that the chaotic
attractor eventually looses its stability: the trajectory then con-
verges to an unequivocal fixed point after a chaotic transient.

The trajectory shown in Fig. 20 is similar to that of Fig. 19.
However, the dynamics in Fig. 20 are more complex because
of the occurrence of a flip bifurcation. At SNR slightly less than
0.79 dB, the trajectory converges to a stable chaotic attractor. At
0.79 dB, the system exhibits a periodic window, and the trajec-
tory converges to a stable period- periodic point. This is mani-
fested by the two points in Fig. 20.4b, alternatively visited by the
iterates of the average entropy . The periodic point even-
tually bifurcates at 0.87 dB and, once again, the trajectory con-
verges to a unequivocal fixed point after a chaotic transient.

D. Irregular LDPC Codes

Now consider the ensemble of irregular
LDPC codes with degree distributions

(28)

These polynomials were optimized using the density-evolution
techniques of [22]. The infinite-length SNR threshold for the
resulting ensemble is 0.8085 dB.

One of the primary differences between regular and irregular
LDPC codes is that the irregular codes exhibit multiple fixed-
points at low SNRs, in contrast to the unique indecisive fixed
point observed in all prior cases (cf. [1]). This is not surprising,
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Fig. 21. Iterative decoding trajectories for an irregular LDPC code of (28),
undergoing a tangent bifurcation. a) Number of decision errors versus the
iteration number. b) E(n+1) versus E(n). Values of SNR are: 1) 0.32 dB, 2)
0.34 dB, 3) 0.70 dB, 4) 0.72 dB, and 5) 2.48 dB.

since the density evolution approach of [22] exhibits a similar
behavior for infinite-length irregular LDPC codes.

Fig. 21 illustrates this phenomenon. Specifically, Fig. 21.1
and 21.2 shows the disappearance of an indecisive fixed point
via a tangent bifurcation and the formation of a closed periodic
orbit. As the SNR increases, a torus-breakdown route to chaos
takes place until the chaotic attractor looses its stability at about
0.72 dB (see Fig. 21.3 and 21.4). The trajectory then converges
to another indecisive fixed point with . If the SNR is
further increased, the new fixed point gradually moves down and
the corresponding trajectory becomes tangent to the bisectrix
line , as shown in Fig. 21.5. Eventually, an
unequivocal fixed point is reached at a sufficiently high
SNR. Nevertheless, the number of decision errors remains at an
“error floor” of six residual errors.

VI. APPLICATIONS

This section is devoted to applications of the findings from
the nonlinear dynamical analyses in Sections IV and V. Once
again, we use parallel concatenated turbo codes as a case study.

A. Ultra-Fast Convergence

We consider an application of nonlinear control theory [28],
[7] in order to speed up the convergence of the turbo decoding
algorithm. We have developed a simple adaptive control mech-
anism to reduce the long transient behavior in the algorithm.
A block diagram of the turbo decoder with adaptive control is
depicted in Fig. 22. Our control function is given by

(29)

where are the extrinsic information variables in (20),
while and are parameters. In simulations, we have used

and , although similar results were obtained
with other values of and .

We point that the adaptive control algorithm of Fig. 22 and
(29) is very simple, and can be readily implemented (either in

Fig. 22. Block diagram of the turbo decoder with control of the transient chaos.
The control function is given by g(XXX ) = �XXX e , where � and � are
appropriately chosen real constants. Conventional turbo codes correspond to the
identity control function g(XXX ) = XXX (see Fig. 5).

software and/or in hardware) without significantly increasing
the complexity of the decoding algorithm.

The intuition behind our control strategy can be explained as
follows. Let us write as

(30)

where are the corresponding attenuation/gain factors. The
probability that the th information bit is zero is can be written
as , where . If is
small, then the attenuation factor in (30) is close to (since

is close to and is small). In other words, the control algo-
rithm does nothing. If, however, is large, then the control al-
gorithm reduces the value of , thereby attenuating the effect
of on the decoder. If the th bit is a part of a valid code-
word, the control algorithm does not affect the decoding: the
turbo decoding algorithm makes a decision for the th bit with
probability close to with or without control. However, if the
th bit is not a part of a valid codeword and the turbo decoding

algorithm “struggles” to find the valid codeword, the attenuation
effect of helps a great deal in reducing the long transient be-
havior. We found that the average chaotic transient lifetime with
control is only nine iterations, as compared to about 350 itera-
tions without control.

The performance of our control strategy in (29) is reported
in Fig. 23. On average, turbo decoding with control exhibits
a gain of 0.25 to 0.3 dB over the conventional turbo-decoding
al-gorithm. Note that the turbo-decoding algorithm with con-
trol, stopped after eight iterations, shows better performance
than the conventional turbo-decoding algorithm stopped after
32 iterations. Thus, adaptive control produces an algorithm that
is four times faster, while providing about 0.2-dB gain over the
conventional turbo-decoding algorithm. On the other hand, we
can see from Fig. 23 that control is not very effective in the
error-floor region. This is to be expected since the iterative de-
coding process does not exhibit transient chaos in this region.

The error frame statistics with and without control, as a func-
tion of SNR, are reported in Fig. 24. The simulation results cor-
responding to the application of the adaptive control method, for
the case of the Max-Log-MAP algorithm, are shown in Fig. 25
as a function of the number of iterations. From this figure, one
can see the coding gain due to adaptive control, as the number
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Fig. 23. Performance of the classical rate-1=3 parallel concatenated turbo
code for interleaver length 1024, with/without control of the transient chaos.

Fig. 24. Histogram showing the number of frames which remain chaotic after
a certain number of iterations, with and without control of the transient chaos.

of iterations progresses. After iterations, the turbo-de-
coding algorithm with control exhibits an average gain of about
0.2 dB versus the case without control.

B. New Stopping Criteria

In this subsection, we propose novel stopping rules for par-
allel concatenated turbo codes and compare these rules with the
current state of the art. It is well known [1], [24], [25], [31],
[32] that rather than performing a fixed number of iterations for
each transmitted frame, one can stop the iterative decoding algo-
rithm on a frame-by-frame basis using a properly defined stop-
ping rule. In principle, this allows to reduce the average number
of iterations and, consequently, save computation.

In what follows, we develop two stopping rules based upon
the a posteriori average entropy , as defined in (24) of Sec-
tion IV-C. These rules complement each other in trying to iden-
tify as early as possible situations where the decoding algorithm

Fig. 25. Performance of the classical turbo code for interleaver length 1024,
using Max-Log-MAP algorithm, with/without control of the transient chaos.

Fig. 26. Typical chaotic trajectories for the classical turbo decoder of [4] at an
SNR of 0.0 dB. (a) Number of decision errors versus n. (b) E(n) versus n.

either has reached a fixed point or, most likely, it will never reach
one in a reasonable number of iterations.

1) Zero-Entropy and Sign-Entropy-Derivative Detection:
Our first stopping rule is based simply on monitoring the
iterates of . When the decoding algorithm converges to
an unequivocal fixed point, the a posteriori entropy of the
system tends to zero. Therefore, we fix a small threshold
and stop the algorithm whenever . We call the
corresponding stopping rule ZED (zero-entropy detection).

In order to avoid unnecessary iterations when the algorithm
exhibits chaotic behavior, we can stop the iterations as soon as
we recognize this behavior. Fig. 26 shows typical chaotic trajec-
tories of a (classical) turbo decoder. From these trajectories, it
can be evinced that an appropriate stopping criterion may be
based upon detecting abrupt changes in the slope of entropy
evolution. Thus, we also propose a stopping rule called SEDD
(sign-entropy-derivative detection), which stops the iterations
whenever the derivative of the entropy changes its sign more
than times, where is a small constant.
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Fig. 27. Performance of the classical turbo code of [4] with the proposed ZED
and SEDD stopping criteria, but without control of the transient chaos. (a) BER
versus SNR. (b) Average number of iterations versus SNR.

Fig. 28. Performance of the classical turbo code of [4] with the proposed ZED
and SEDD stopping criteria and control of the transient chaos. (a) BER versus
SNR. (b) Average number of iterations versus SNR.

As a comparison benchmark, we will use the so-called genie
stopping rule. This rule is based on the fact that the best way to
determine whether the decoder has reached a fixed point con-
sists of evaluating the number of residual decision errors after
each iteration. If this number is zero, we stop the process, other-
wise we let the decoder reach the maximum allowed number of
iterations. With this method, one obtains the performance of the
decoder that always reaches the maximum number of iterations,
while effectively lowering the average number of iterations. Of
course, in order to implement this stopping rule, one needs to
know the information bits or, indeed, be a genie.

In Figs. 27 and 28, we see the results of implementing both
ZED and SEDD for the classical rate- parallel concatenated
turbo code of [4], with and without control of the transient
chaos. To optimize the performance, we devised an adaptive
stopping strategy as a function of SNR. For the ZED stopping
rule, we set the threshold at for SNRs less than
0.8 dB. In this range of SNRs, we essentially match the genie
performance, in terms of both bit-error rate (BER) and the
average number of iterations. For SNRs higher than 0.8 dB, we
reduce the threshold to , because we are entering the

error-floor region, where most of the erroneous frames contain
only a few decision errors (after, say, 10 iterations). Thus, we
need to lower the threshold in order to distinguish this type of
frames from the error-free frames, for which .

Figs. 27 and 28 also show the results of combining the two
stopping criteria: ZED SEDD. The threshold value for SEDD
was in all cases. As expected, we found that SEDD
works especially well for low SNRs, where a lot of frames
exhibit chaotic behavior. In contrast, ZED is more effective in
the waterfall and the error-floor regions. Comparing the per-
formance of SEDD in the two figures, we see that the average
number of iterations with control is higher than the one without
control, especially in the neighborhood of the waterfall region.
Indeed, control of the transient chaos helps some frames with
long transient behavior converge to the unequivocal fixed point
Notably, our stopping criterion does not stop this decoding
process, thus maintaining the gains in terms of BER.

2) Comparison With Current State of the Art: We now com-
pare the performance of the proposed stopping criteria with the
current state of the art. First, let us recall the some of the main
methods in the literature [1], [14], [24], [25], [31], [32] for stop-
ping the iterations of an iterative decoder.

Mean Reliability (Mean). This stopping criterion, described
in [32], is based upon computing, after each iteration ,
the average of the absolute values of the LLRs, namely,
the quantity

The iterative decoding process is stopped after iteration ,
if , where is a fixed threshold.

Minimum LLR (MIN). This stopping criterion [29] is based
upon evaluating the minimum LLR, namely

The iterative decoding process is stopped after iteration ,
if , where is a fixed threshold.

Sum-Reliability (Sum). The sum criterion [14] is based upon
evaluating the sum of the absolute values of the LLRs

The iterative decoding process is stopped after iteration ,
if .

Combined Minimum LLR and Sum-Reliability (Comb). This
stopping criterion [14] is a straightforward combination
of the two stopping criteria above. The iterative decoding
process is stopped after iteration , if

Sign-Change Ratio (SCR). The SCR criterion of [24] evalu-
ates, after each iteration , the sign-change decision func-
tion defined as follows:

if
if
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Fig. 29. Performance comparison of the different stopping criteria for turbo
codes, in terms of (a) BER and (b) FER versus SNR.

Fig. 30. Performance comparison of the different stopping criteria for turbo
codes, in terms of the average number of iterations as function of SNR.

for all . The decoder then computes the
average sign-change ratio, given by

The iterative decoding process is stopped after iteration ,
if , where is a fixed threshold.

In Fig. 29, we compare the performance of the proposed stop-
ping rules ZED and ZED SEDD, in terms of both BER and
FER (frame-error rate), with the performance of the five stop-
ping criteria above. For the Mean, SCR, MIN, and Comb stop-
ping rules, the value of the threshold has been optimized for
best performance. Fig. 30 reports our simulation results for all
the stopping criteria in terms of the average number of itera-
tions. We have also included in Figs. 29 and 30 the so-called

“oracle” stopping rule. This hypothetical rule consists of the fol-
lowing: if a frame cannot be correctly decoded using the max-
imum number of iterations (10 in our case), then no iterations
at all are counted in Fig. 30; otherwise, we count the minimum
number of iterations required to decode this frame.

It can be observed from Fig. 29 that the performance of the
ZED and ZED SEDD stopping rules is comparable to that of
the best known stopping criteria. In fact, all the stopping rules
we have considered, except for Sum and Comb, result in about
the same BER over a wide range of SNRs. The performance
of the Sum and Comb stopping rules is noticeably (by about
0.2 dB) inferior. Discounting the Sum and Comb stopping rules,
it can be seen from Fig. 30 that the ZED SEDD stopping
criterion results in the lowest number of iterations, especially
for low values of SNR. For high values of SNR, we are doing
just slightly worse than the best (SCR) of the five stopping rules
we have chosen as a comparison benchmark.

VII. CONCLUSION

Iterative decoding algorithms can be viewed as high-dimen-
sional dynamical systems parameterized by a large number of
parameters. We have introduced a simplified description of it-
erative decoding for several turbo-concatenated codes and for
LDPC codes. Using this model, we have shown that a whole
range of phenomena known to occur in nonlinear systems, in-
cluding the existence of multiple fixed points, oscillatory be-
havior, bifurcations, chaos, and transient chaos, are found in
iterative decoding algorithms. The observed behavior depends
(apart from SNR) on the particular noise realization.

As an application of the theory developed here, we have de-
vised a simple adaptive technique to control transient chaos
(characteristic of the waterfall region) in the turbo-decoding al-
gorithm. This results in an ultra-fast convergence and significant
performance gains. Finally, we have proposed a novel stopping
criterion for turbo codes, based on the average entropy of an in-
formation block. This stopping criterion is shown to reduce the
average number of iterations and to benefit from the use of our
adaptive control technique.
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