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Nonlinear Analysis of the Iterative Decoding of Parallel
Concatenated Convolutional Codes

Frederic Lehmann and Gian Mario Maggio, Senior Member, IEEE

Abstract—In this correspondence, we introduce a simple one-dimen-
sional (1-D) nonlinear map to describe the iterates of the bit-error rate
(BER) of parallel-concatenated convolutional codes (PCCC) on the bi-
nary-input Gaussian channel. A lower bound on this map is derived based
upon the weight enumerator of the constituent codes, thus enabling the
characterization of the dynamics of the decoder in terms of fixed points,
along with the associated stability analysis.

Index Terms—Concatenated codes, density evolution,Gaussian densities,
iterative decoding, nonlinear dynamics, stability condition.

I. INTRODUCTION

Concatenated codes were first introduced by Elias [1] and Forney
[2], as a class of powerful codes with high error-correcting capabilities.
Low decoding complexity was achieved with suboptimum sequential
hard-input/hard-output decoding of the constituent codes. The intro-
duction of turbo decoding, which consists of iterative soft-input/soft-
output (SISO) decoding of the constituent codes followed by the ex-
change of extrinsic information [3], [4], later showed that decoding
performances close to the Shannon limit can be obtained with concate-
nated codes.
The very general framework of codes on graphs [5] enables to inter-

pret the exchange of extrinsic information as a message-passing algo-
rithm, updating the likelihood of variables in a graph. The first attempt
to analyze message-passing decoding taking a dynamical system point
of view is found in [6]. Recently, several techniques have been proposed
to analyze iterative decoding by tracking the density of the extrinsic
information exchanged by the constituent decoders. This procedure,
known as density evolution, was originally introduced for low-density
parity-check (LDPC) codes [7], and later extended to turbo codes [8].
The rationale behind density evolution is that for codes with large block
lengths, the concentration theorem [7] ensures that the performance of
a particular graph chosen at random may be assimilated to the average
performance of the corresponding cycle-free graph, i.e., the messages
exchanged at every iteration are independent and identically distributed
(i.i.d.) random variables. Moreover, the density of the extrinsic infor-
mation is symmetric (f(x) = f(�x)ex). A general property of den-
sity evolution is the existence of an interesting threshold effect. If the
channel SNR is below a certain threshold, the iterates of the bit-error
rate (BER) converge to a fixed point which has in general an extremely
large value, that makes it useless in practice.
In order to get a closed-form analysis [9] and/or avoid numerical

evaluation of densities using Monte Carlo techniques [8], a convenient
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approximation introduced by Wiberg [10] considers that the extrinsic
information is Gaussian distributed.
In this work, we propose an analysis of the iterative decoding of

parallel-concatenated convolutional codes (PCCC) based on matching
the BER at the output of the SISO decoders with the error rate cor-
responding to Gaussian distributed log-likelihood ratios, as originally
suggested in [11]. The BER of the constituent decoders can be obtained
by Monte Carlo simulation as in [11]. The drawback of this purely nu-
merical method is that the dynamics of the iterative decoder cannot be
related to the parameters of the constituent encoders. Therefore, we cal-
culate a tight lower bound on the BER of the constituent codes when
the extrinsic information has a large absolute value, based on weight
enumerating techniques. This alternative tool to analyze iterative de-
coders is the main original contribution of this correspondence.We also
emphasize the similarity of our work with [12], although our BER cal-
culation is based on [13].
This correspondence is organized as follows. In Section II, we

briefly review the principles of PCCC and iterative decoding. Section
III presents our analysis of the iterative decoding based on the BER.
Then, in Section IV, we investigate the nonlinear dynamics of the
PCCC presented in Section II as a function of the parameters of the
constituent codes, the channel signal-to-noise ratio (SNR), and the
interleaver size. Finally, in Section V, we discuss the limitations of the
proposed approach.

II. PARALLEL-CONCATENATED CONVOLUTIONAL CODES (PCCC) AND
ITERATIVE DECODING

A. Parallel Concatenated Convolutional Codes (PCCC)

For the sake of simplicity, we restrict ourselves to PCCC involving
two constituent convolutional codes separated by an interleaver. We as-
sume that the trellis of each constituent is terminated. We let k; I; and
R denote the number of information bits, the size of the interleaver,
and the coding rate of the PCCC, respectively. Throughout the corre-
spondence, binary linear codes are employed and the channel is the
binary-input Gaussian channel (binary 0! +1, binary 1! �1); we
let � denote the standard deviation of the noise. Therefore, without loss
of generality, we can assume that the all-0 codeword is transmitted.
PCCCs [14] are illustrated in Fig. 1(a) and (b). The k information

bits are permuted by a random interleaver, then both nonpermuted and
permuted bits are fed to the first and second constituent encoders, re-
spectively. If the constituent codes are nonrecursive nonsystematic, the
codeword is formed by multiplexing the outputs of the constituent en-
coders as shown in Fig. 1(a). If the constituent codes are recursive sys-
tematic, the codeword is formed by multiplexing the information bits
with the redundancy produced by the constituent encoders, as shown
in Fig. 1(b). Although it is already a well-known fact that iterative de-
coding performs badly for nonrecursive nonsystematic PCCC [15], we
would like to reproduce this result using our method.

B. Iterative Decoding

A generic iterative decoder is illustrated in Fig. 2. The decoding
is performed iteratively using two decoders denoted by SISO1 and
SISO2, respectively. We consider only maximum a posteriori (MAP)
decoding, although this is not always practically feasible. SISO1 uses
channel observations Z and a priori information A1 in the form of
log-likelihood ratios to generate the a posteriori bit-by-bit log-likeli-
hood ratios L1. The extrinsic information is then defined as E1 =
L1 � Z � A1. After interleaving, E1 is used as a priori informa-
tion A2, in conjunction with Z , by SISO2 to generate the a poste-
riori bit-by-bit log-likelihood ratios L2. The extrinsic information is
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Fig. 1. Concatenated codes. (a) Nonrecursive nonsystematic PCCC. (b) Recursive systematic PCCC.

Fig. 2. Block diagram of the iterative decoder of a convolutional code.

then defined as E2 = L2 � Z � A2, and is used as a priori infor-
mation for SISO1 after deinterleaving. SISO1 and SISO2 correspond
to the decoding of the first and second constituent code of the PCCC,
respectively. Throughout the correspondence, we will assume that all
the quantities exchanged by the decoder are in the form of log-like-
lihood ratios and can be modeled as i.i.d. random variables having a
symmetric Gaussian distribution [7].

Remark 2.1: From the viewpoint of dynamical system theory, the
iterative decoding system may be seen as a closed-loop dynamical
system, where SISO1 and SISO2 act as the (nonlinear) constituent
blocks in the corresponding open-loop system.

III. NONLINEAR ANALYSIS OF THE ITERATIVE DECODING OF PCCC

For simplicity, we make the standard assumption that the considered
PCCC is formed by two identical constituent codes. Let 2x be equal
to the mean of the a priori log-likelihood ratios at the input of either
SISO. Let f(1=� ) and fx be the density of the channel and a priori
log-likelihood ratios at the input of a decoder, respectively. Then we
have

f (t) =

q
t�

2=�

2=�

fx(t) =
q t�2x

2
p
x

2
p
x

where q(t) = (1=
p
2�)e�t =2. We define P (x; �) as the post-de-

coding BER of a constituent code, assuming that the densities of the
channel and a priori log-likelihood ratios are f(1=� ) and fx, respec-
tively. As mentioned before, numerical values of P (x; �) can be ob-
tained through Monte Carlo simulation. The post-decoding log-likeli-
hood ratio is the sum of the a priori and extrinsic log-likelihood ratios
plus the channel log-likelihood ratio if available, so its density p is also
a symmetric Gaussian defined solely by the meanm and we have

P (x; �) =
0

�1
p(t)dt = Q

m

2

where Q(x) =
+1
x

q(t)dt. Therefore, the mean of the extrinsic log-
likelihood ratio is given by

2([Q�1(P (x; �))]2 � x)

for a nonrecursive nonsystematic constituent encoder (since channel
log-likelihood ratios are not available) and by

2 [Q�1(P (x; �))]2 �
1

�2
� x

for a recursive systematic constituent encoder (since channel log-likeli-
hood ratios are available). It follows that the BER at the output of either
SISO can be described, at each half iteration l, by yl = h(yl�1; �),
where h is the nonlinear map defined by

h(y; �) = P [Q�1(y)]2 � P�1(y; �); � (1)
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for nonrecursive nonsystematic constituent encoders and by

h(y; �) = P [Q�1(y)]2 �
1

�2
� P�1(y; �); � (2)

for recursive systematic constituent encoders. The inverse function
P�1 is well defined since P is bijective. The fixed points of the map
for y > 0 are the solutions of h(y; �) = y, which is equivalent to

[Q�1(y)]2 � 2P�1(y; �) = 0

for nonrecursive nonsystematic constituent encoders and to

[Q�1(y)]2 � 2P�1(y; �) =
1

�2

for recursive systematic constituent encoders.

Remark 3.1: By definition of the noise threshold ��, when � � ��,
the iterates of the BER, yl, starting at y0 = Q(1=�) reach 0 without
getting stuck in any other fixed point.We suggest that a possiblemethod
to evaluate �� consists of finding the highest value of � for which
h(y; �) = y admits one solution only, namely 0. Since the value of
the fixed point responsible for the threshold effect is typically close to
y0, a valid expression of P (x; �) at high BER (evaluated numerically
through Monte Carlo simulation, for instance) is required.

Theorem 3.2: Assume thatP (x; �) is not available, but that we have
a bijective lower bound Pl(x; �) which is a decreasing function of x
such that Pl(x; �) � P (x; �);8x � 0. Let the corresponding map be
defined by

hl(y; �) = Pl([Q
�1(y)]2 � P�1l (y; �); �)

for nonrecursive nonsystematic constituent encoders and by

hl(y; �) = Pl [Q�1(y)]2 �
1

�2
� P�1l (y; �); �

for recursive systematic constituent encoders. It follows that
hl(y; �) � h(y; �);8y.

The proof is postponed to Appendix A.

IV. NONLINEAR DYNAMICS OF THE ITERATIVE DECODING OF PCCC

For each PCCC presented in Section II, we study the dynamics of the
iterative decoding. Lower bounds on the BER based on weight enu-
merating techniques enable to establish a link between the decoding
process and the parameters of the constituent codes.

A. Nonrecursive Nonsystematic PCCC

A lower bound on the BER of information bits for nonrecursive non-
systematic terminated convolutional codes is obtained as

Pl(x; �) = Q x+
dmin

�2
(3)

where dmin denotes the free distance of the code.
Proof: Since the all-zero codeword is sent, let iii0 = (i01; . . . ; i

0

k)
and ccc0 = (c01; . . . ; c

0

n) be the corresponding information sequence
and transmitted codeword. Let cccw;d = (cw;d

1
; . . . ; cw;d

n ) be any
other codeword with information weight w and weight d, and
iiiw;d = (iw;d

1
; . . . ; iw;d

k ) be the corresponding information sequence.
Since each SISO performs MAP decoding, the probability of con-
fusing ccc0 with cccw;d is

Pw;d = Pr ln
P (yyy j ccc0)P (ccc0)

P (yyy j cccw;d)P (cccw;d)
< 0

where yyy = (y1; . . . ; yn) is the received sequence, given that ccc0 was
transmitted.
On the binary-input Gaussian channel, the likelihood of ccc0 and cccw;d

is calculated by a SISO as

P (yyy j ccc0)P (ccc0) = C exp

n

j=1

1� 2c0j
yj
�2

+

k

j=1

1� 2i0j Aj=2

P (yyy j cccw;h)P (cccw;h) = C exp

n

j=1

1� 2cw;h
j

yj
�2

+

k

j=1

1� 2iw;h
j Aj=2

where C is a constant and AAA = (A1; . . . ; Ak) is the vector of a priori
log-likelihood ratios. It follows that

ln
P (yyy j ccc0)P (ccc0)

P (yyy j cccw;h)P (cccw;h)
= 2

j:c =1

yj
�2

+

j:i =1

Aj=2 :

This expression is a random variable with a symmetric Gaussian den-
sity and mean 2(wx + d=�2). We recall that for a PCCC, AAA is zero
for redundancy bits and a Gaussian symmetric random variable with
mean 2x for information bits. Therefore, Pw;d = Q( wx+ d=�2).
Let Aw;d represent the number of codewords in the terminated con-
stituent code with information weight w and weight d. A lower bound
on the bit-error probability of the information bits is obtained as the
first term of the union bound (w = 1)

Pl(x; �) =
d�d

1

k
A1;dQ x +

d

�2
:

Noting that for a terminated nonrecursive nonsystematic convolutional
code, A1;d = k and A1;d = 0 for d > dmin, the desired result
follows. It is also interesting to note that this lower bound is tight when
the value of x is large.

Applying Theorem 3.2, we immediately obtain a lower bound on the
map describing the iterative decoder as

hl(y; �) = Q
2dmin

�2
(4)

which is both independent of y and tight for small values of y. Conse-
quently, the iterative decoding trajectory will reach a stable fixed point
at Q( 2dmin=�2). Note that the performances of iteratively decoded
nonrecursive nonsystematic PCCC are only 3 dB better than the per-
formances of the constituent codes. This explains why nonrecursive
nonsystematic constituent codes make poor turbo codes, as shown pre-
viously in [15].

Example 4.1: We consider terminated rate-1=2 nonrecursive non-
systematic convolutional constituent codes with generators g0(D) =
1 + D + D2 and g1(D) = 1 + D2 and k = 1024 information bits.
The resulting turbo code is a rate-1=4 PCCC with interleaver size I =
1024. ForEb=N0 = 5 dB, Fig. 3, illustrates the BER P (x; �) obtained
through Monte Carlo simulation (solid) along with the lower bound
(3) (dash-dotted). Note the tightness of the lower bound when x > 5.
The turbo decoding trajectory (simulated average BER versus average
a priori information) is marked by circles. As expected, starting from
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Fig. 3. P (x; �) atEb=N0 =5 dB for a PCCC with rate-1=2 state-4 nonrecursive nonsystematic convolutional code (solid line) versus the corresponding lower
bound (dash-dotted line).

no a priori information (x = 0), the BER is decreasing as the number
of iterations increases until it reaches a fixed point at 3:55�10�5 which
is consistent with (4), since dmin = 5.
Fig. 4 illustrates the iterative decoding map h(y; �) defined by (1)

(solid) along with the lower bound (4) (dash-dotted). It can be seen that
the iterative decoding trajectory (circles) is bouncing back and forth
between the curves z = h(y; �) (solid) and z = y (dashed).1

B. Recursive Systematic PCCC

A lower bound on the BER of information bits for recursive system-
atic terminated convolutional codes is obtained as

Pl(x; �) =
h

2

I
A2;hQ 2

1

�2
+ x + h

1

�2
(5)

whereA2;h denotes the number of codewords with information weight
2 and redundancy weight h.

Proof: We modify the proof of (3) by taking into account that
information bits and redundancy bits are sent on the binary-input
Gaussian channel. Therefore, the probability of confusing ccc0 with
any other codeword cccw;h with information weight w and redundancy
weight h can be written as

Pw;h = Q( w(1=�2 + x) + h=�2:

A lower bound on the bit-error probability of the information bits is ob-
tained as the first term of the union bound. Since the code is recursive

1Note that when considering a one-dimensional (1-D) map of the form
x = f(x ), the trajectory starting from a certain initial condition, x , may
be constructed geometrically by “bouncing” back and forth between the map
itself and the bisectrix defined by x = x [17]. Also, the fixed points of
the map are defined by x = f(x ), thus, the intersections of the map with
the bisectrix.

systematic, the terms corresponding to w = 1 are negligible (informa-
tion weight-w = 1 codewords have an infinite number of nonzero re-
dundancy bits when I !1), so the desired result is obtained by taking
into account the terms corresponding to w = 2. This lower bound is
tight when the value of x is large.

Applying Theorem. 3.2, we immediately obtain a lower bound on
the map describing the iterative decoder from (5).

Example 4.2: We consider terminated rate-1=2 recursive systematic
convolutional constituent codes with generators

g0(D) = 1 +D +D2 and g1(D) = 1 +D2

and k = 8192 information bits. The resulting turbo code is a rate-1=3
PCCC with interleaver size I = 8192. For Eb=N0 = 2 dB, Fig. 5
illustrates the BER P (x; �) obtained through Monte Carlo simulation
(solid) along with the lower bound (5) (dash-dotted). Note the tightness
of the lower boundwhen x > 7. The turbo decoding trajectory (average
BER versus average a priori information) is denoted by circles. Starting
from no a priori information (x = 0), the BER is decreasing as the
number of iterations increases until a fixed point �10�6 is reached.
Unfortunately, the four last decoding iterations are not lying on the
curve y = P (x; �), indicating that the assumption of i.i.d. extrinsic
information breaks down for a large number of iterations.
Fig. 6, illustrates the iterative decoding map h(y; �) defined by (2)

(solid) along with the lower bound obtained from (5) (dash-dotted),
which becomes tight for small values of y, and the z = y curve
(dashed). The iterative decoding trajectory (circles) goes through the
decoding tunnel [15] between the z = h(y; �) and the z = y curves,
until convergence is reached close to y � 10�6. Observe that the map
z = h(y; �) is not able to predict the existence of this fixed point,
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Fig. 4. h(y; �) at Eb=N0 =5 dB for a PCCC with rate-1=2 state-4 nonrecursive nonsystematic constituent convolutional codes (solid), along with the lower
bound (dash-dot) and the bisectrix (dash).

Fig. 5. P (x; �) atEb=N0 =2 dB for a PCCC with rate-1=2 state-4 recursive systematic convolutional code (solid), lower bound (dash-dot) and turbo decoding
trajectory (circles).
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Fig. 6. h(y; �) atEb=N0 =2 dB for a PCCC with rate-1=2 state-4 recursive systematic constituent convolutional codes (solid line). As usual, the dash-dotted
curve represents the lower bound, while the bisectrix line is dashed.

which is due to the correlation of the extrinsic information when the
number of iterations is large.
We now study qualitatively the behavior of iterative decoding close

to y = 0. UsingQ(
p
z + y) � Q(

p
z)e�y=2, (5) can be approximated

as

Pl(x; �) � �(�)Q(
p
2x) (6)

where

�(�) =
2

I
h

A2;h e
�

h+2

: (7)

Then the corresponding lower bound on h(y; �) becomes

hl(y; �)

� �(�)Q 2 [Q�1(y)]2 � 1

�2
� 1

2
Q�1

y

�(�)

2

:

As shown in Appendix B (by choosing A = B = 2 and � = �(�)),
we have limy!0 hl(y; �) = 0 and limy!0(@hl(y; �)=@y) =

(�(�)e1=2� )2. It follows that y = 0 is a fixed point of hl, whose
stability condition is given by

�(�)e < 1: (8)

Let the noise threshold �� be the solution of �(�)e1=2� = 1, if � >
��, a decoding trajectory starting close to y = 0will diverge. A similar
result has already appeared in [12].

Example 4.3: We consider terminated rate-1=2 recursive systematic
convolutional constituent codes with generators

g0(D) = 1 +D2 +D3 and g1(D) = 1 +D +D3

and k = 8192 information bits. The resulting turbo code is a rate-1=3
PCCC with interleaver size I = 8192. The noise threshold calculated
from (8) is �� = 1:62 and the corresponding bit energy to noise power
spectral density is (Eb=N0)

� = �2.4 dB. This value is below the
Shannon limit, therefore, a decoding tunnel is always open close to
y = 0 for practical values of SNRs. Fig. 7 illustrates the evolution of
the average extrinsic log-likelihood ratio as a function of the average a
priori log-likelihood ratio at each half-iteration l for Eb=N0 = �3 dB
(squares) andEb=N0 = �2 dB (triangles), starting with i.i.d. Gaussian
distributed a priori log-likelihood ratios with mean 15. Clearly, itera-
tive decoding diverges below the threshold (Eb=N0)

� since the average
extrinsic information recedes to a value close to 0. Above the threshold,
the average extrinsic information increases until it reaches a fixed point
close to 20.

V. DISCUSSION

Although the model we develop in this correspondence is not able
to provide an explanation for some typical nonlinear phenomena such
as quasi-periodic and periodic phase trajectories reported in [21], the
closed-formmodel we propose enables to link the dynamics of the iter-
ative decoding system to the parameters of the constituent codes. An-
other limitation of the proposed method is that the predicted error floor
can reach zero. This is due to the fact that i.i.d. log-likelihood ratios are
considered in our analysis. This hypothesis is no longer valid when the
number of iterations becomes large. An analysis based on stopping sets
and pseudocodewords [22], [23] is available to explain this error floor.

VI. CONCLUSION

In this correspondence, we have presented an approximate analytical
model for the iterative decoding of PCCC. Assuming that the density
of the extrinsic information can be approximated by a Gaussian, we
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Fig. 7. Average extrinsic log-likelihood ratio versus average a priori log-likelihood ratio at each half-iteration lfor a PCCC with rate-1=2 state-8 recursive
systematic constituent convolutional codes, with Eb=N0 = �3 dB (squares) and Eb=N0 = �2 dB (triangles), respectively.

described the evolution of the BER at the output of the constituent de-
coders as the iterates of a nonlinear map for the binary-input Gaussian
channel.
We showed how the fixed points of the iterative decoding system and

their stability depend on the parameters of the constituent codes. For
nonrecursive nonsystematic constituent codes, information weight-1
codewords generate a stable fixed point decreasing with the channel
SNR and the free distance. For recursive systematic constituent codes,
information weight-2 codewords generate a decoding tunnel which is
open only if a stability condition is verified. Possible extensions of this
work include threshold evaluation, application to multiple concatena-
tions, and other channel models.

APPENDIX A

We give here the Proof of Theorem 3.2 stated in Section III. We re-
strict ourselves to the case of nonrecursive nonsystematic constituent
encoders. The proof is similar for recursive systematic encoders. By
definition, P (x; �) is the error probability of a constituent code, there-
fore, it is a bijective and decreasing function of x. We assume that the
lower boundPl(x; �) is also a bijective and decreasing function of x. It
follows that 8y; P�1

l (y; �) � P�1(y; �). Using the fact that P (x; �)
is decreasing, we have

P ([Q�1(y)]2 � P�1(y; �); �) � P ([Q�1(y)]2 � P�1
l (y; �); �):

Using the fact that Pl is a lower bound on P , we get

P ([Q�1(y)]2 � P�1(y; �); �) � Pl([Q
�1(y)]2 � P�1

l (y; �); �)

which is the desired result.

APPENDIX B

In order to study the properties of the approximated maps introduced
in Section IV, we define the function

f(y; �) = �Q A [Q�1(y)]2 � 1

�2
� 1

B
Q�1

y

�

2

(9)

whereA;B are integers> 1 and y � 0; � are real numbers. Unless oth-
erwise specified, the control parameter� is a fixed positive real number.

A. Limit of f(y; �) When y ! 0

Using the inequality

1� 1

x2
<
p
2�xex =2Q(x) < 1

when x > 0, we obtain

lim
x!+1

p
2�Q(x)xex =2 = 1:

When 0 < y < 1=2, we choose x = Q�1(y) and x = Q�1(y=�) to
obtain

lim
y!0

p
2�yQ�1(y)e [Q (y)] = 1

lim
y!0

p
2�

y

�
Q�1

y

�
e [Q ( )] = 1: (10)

Consequently

lim
y!0

e [Q ( )] Q�1 y
�

�e [Q (y)] Q�1(y)
= 1: (11)
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From L’Hôpital’s rule, we have

lim
y!0

Q�1 y
�

Q�1(y)
= lim

y!0

@Q ( )
@y

@Q (y)
@y

= lim
y!0

e [Q ( )] Q�1 y
�

�e [Q (y)] Q�1(y)

and (11) implies that

lim
y!0

Q�1 y
�

Q�1(y)
= 1: (12)

Using the inequality Q(x) < e�x =2 and (9), we get

0 � f(y; �)

� �e exp �A
2
[Q�1(y)]2 1� 1

B

Q�1 y
�

2

[Q�1(y)]2
: (13)

Since A > 1; B > 1; and limy!0 Q
�1(y) = +1, combining (12)

and (13) leads to limy!0 f(y; �) = 0.

B. Derivative of f(y; �) With Respect to y

The expression of the partial derivative with respect to y is

@f(y; �)

@y
= C(A;B; �)
(y; B; �)�(y; A; B; �) � 0 (14)

where

C(A;B; �) = �2e A 1� 1

B


(y; B; �) = 1� 1

B

[Q (y)]

[Q ( )]

[Q (y)]

[Q ( )]
� 1

B
� 1=�

[Q ( )]

� 1

B � 1
B � e [Q ( )] Q�1 y

�

�e [Q (y)] Q�1(y)

�(y; A; B; �) =
e [Q ( )] Q�1 y

�

�e [Q (y)] Q�1(y)
: (15)

Since limy!0 Q
�1(y=�) = +1, from (11) and (12), we have imme-

diately that limy!0 
(y; B; �) = 1. Thus, the limit of (@f(y; �)=@y)
is determined solely by the behavior of �(y; A; B; �), for y ! 0.
We assume that A and B span the integers strictly larger than one,

therefore, we can introduce two distinct cases, namel,y A = B = 2
and max(A;B) > 2.

1) Case A = B = 2: Using (11) again, we get

lim
y!0

�(y; A; B; �) = 1

thus,

lim
y!0

@f(y; �)

@y
= C(2;2; �) = �e

2

: (16)

2) Case max(A;B) > 2: From (10) we deduce

lim
y!0

p
2�yQ�1(y)e [Q (y)]

A�1

= 1

lim
y!0

p
2�

y

�
Q�1 y

�
e [Q ( )] = 1: (17)

It follows that

lim
y!0

�(y; A; B; �) = lim
y!0

(
p
2�)A�1yA�1[Q�1(y)]A�2

(
p
2�) 1

�
y Q�1 y

�

�1

= lim
y!0

(
p
2�)A(1� )�1� �1

� Q�1 y
�

Q�1(y)

1�

(yQ�1(y))A(1� )�1:

Finally, (12) leads to

lim
y!0

�(y; A; B; �)

= (
p
2�)A(1� )�1� �1 lim

y!0
(yQ�1(y))A(1� )�1: (18)

We use the inequality Q(x) < e�x =2; x > 0. When 0 < y < 1=2,
we choose x = Q�1(y) and after some straightforward manipulations
we obtain the bound

0 < Q�1(y) < �2 ln y:

It is immediate that

0 < (yQ�1(y))A(1� )�1 < (�2y2 ln y) [A(1� )�1]: (19)

Notice that limy!0 y
2 ln y = 0 and A(1 � 1=B) � 1 > 0, since

A > 1 and B > 1, thus, combining (19) with (18) results in
limy!0 �(y; A; B; �) = 0. We conclude that

lim
y!0

(@f(y; �)=@y) = 0; when max(A;B) > 2:
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Consta-Abelian Polyadic Codes

Chong Jie Lim

Abstract—In this correspondence, the class of polyadic codes is general-
ized to the class of consta-Abelian polyadic codes, which, in particular, in-
cludes the class of constacyclic polyadic codes. Properties such as the equiv-
alence of polyadic codes and the th-root lower bound for the minimum
weight of a subcode of certain types of polyadic codes are preserved in the
consta-Abelian case. Sufficient conditions for the existence of this class of
codes are established. For the special case of constacyclic codes, the char-
acterization of negacyclic self-dual codes of length coprime to the charac-
teristic of the field in terms of negacyclic duadic codes is also given.

Index Terms—Consta-Abelian codes, constacyclic codes, minimum
weight, -splitting, polyadic codes, self-dual codes, twisted discrete
Fourier transform.

I. INTRODUCTION

The class of binary cyclic duadic codes generalizing quadratic
residue codes was first introduced by Leon, Masley, and Pless in [9],
and a different approach was given in [15]. Generalizations of binary
cyclic duadic codes to other base fields were given by Smid [17].
Subsequently, Pless and Rushanan moved on to investigate cyclic
triadic codes [16], and the class of cyclic polyadic codes (or m-adic
codes) was later introduced by Brualdi and Pless [4].
Following the growing interest in Abelian group codes, the class of

cyclic duadic codes was generalized in another direction to the class
of split group codes, or Abelian duadic codes, where in this case, the
“cyclic” property was, in some sense, removed [6]. Only recently, Ling
and Xing unified the two directions of generalizations of duadic codes
to Abelian polyadic codes [12]. In that correspondence, necessary and
sufficient conditions for the existence of nondegenerate polyadic codes
(see [12]) were studied, and anmth-root lower bound for a subcode of
certain types of polyadic codes was established.
In this correspondence, following the idea in [12], we extend the

class of polyadic codes to the class of consta-Abelian polyadic codes,
which, in particular, include constacyclic polyadic codes. We extend
various results established in [4] and [12] for this new class of codes.
For the special case of constacyclic codes, we also give a characteriza-
tion of negacyclic self-dual codes of lengths coprime to the character-
istic of the finite field in terms of negacyclic duadic codes.
The organization of this correspondence is as follows. We first

discuss in detail the generalization to the class of constacyclic
polyadic codes (Sections II–VI), before moving on to generalize
to consta-Abelian polyadic codes (Section VII). In Section II, the
main definitions are given. Section III gives some basic results, while
Section IV gives lower bounds on the minimum weight of a subcode.
Section V establishes sufficient conditions for the existence of the
class of constacyclic polyadic codes, and Section VI deals with the
characterization of negacyclic self-dual codes of lengths coprime to the
characteristic of the finite field. Section VII, as mentioned, is devoted
to the generalization to consta-Abelian polyadic codes. The results
from Sections III–V will be restated in the new setting without proofs
since the proofs are very much similar to the constacyclic case. The
reader who is not interested in this section can skip it without causing
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