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Analysis of the Iterative Decoding of LDPC and Product  messages used by the decoder and is usually computationally inten-

Codes Using the Gaussian Approximation sive. Often, the density of the extrinsic information is approximated
by a Gaussian either to simplify the analysis or when a closed-form
Frederic Lehmann and Gian Mario MaggMember, IEEE expression of the extrinsic information is not available. The validity

of this assumption was first recognized for LDPC and turbo codes by

) . Wiberg [12] and used in [13] to perform an approximate analysis of
Abstract—We propose a novel density evolution approach to analyze the LDPC codes. The Gaussian approximation in conjunction with Monte
iterative decoding algorithms of low-density parity-check (LDPC) codes . .
and product codes, based on Gaussian densities. Namely, for these classeSarlo simulations has also Pee“ proposed to ar_]alyze the performgnces
of codes we derive a one—dimensional (1-D) map whose iterates directly Of the turbo decoding algorithm [14], [15]. Previous work concerning
represent the error probability both for the additive white Gaussian noise  Gaussian approximations has relied on different parameters in order to
(AWGN) and the Rayleigh-fading channel. These simple models allow a optain a one-dimensional (1-D) model, namely, the mean value in [13],

qualitative analysis of the nonlinear dynamics of the decoding algorithm. . . - . . .
As an application, we compute the decoding thresholds and show that they the signal-to-noise ratio (SNR) in [14], [15], the mutual information

are consistent with the simulation results available in the literature. in [16], [17], and the bit-error rate (BER) [17], [18]. Another method
based on matching mean and covariance was presented in [19].

In this correspondence, we propose a model of the iterative decoding
of LDPC and product codes based on the BER, using the Gaussian
approximation. Under the Gaussian approximation, the mean, SNR,
|. INTRODUCTION and mutual information can be easily converted to the corresponding

Recently, it has been demonstrated that iterative-decoding allﬁigR as shown in [13], [14], and [17], respectively. In contrast with
i

rithms can perform at rates extremely close to the Shannon i s approach, our expression of the BER is not merely a byproduct,

imposed by the noisy channel coding theorem [1], yet with reasonal?l%t_the parameter by which V\f/e”identify thﬁ tail of thehGau_ssi_T\n diSt':i'
complexity. In particular, irregulalow-density parity-checkLDPC) bution. For LDPC codes, we follow a method somewhat similar to the

codesand product codesare among the most promising candidate8"€ suggested in [13] in order to analyze the message-pz'assi.ng decoder.
for future applications. LDPC codes were originally introduced b owever, our method is based on a closed-form expression in terms of

Gallager [2] in 1962, and rediscovered by Mackawl. [3] in 1996. 0" prpbabilities. By error propability we mean here the probability
The crucial innovation of LDPC codes being the introduction Otpatvarlable nodes are sending incorrect messages. Moreover, we show

iterative decoding algorithms. Recently, it has been recognized tfiA@t our approach leads to the correct stability condition, that is consis-

the various message-passing decoding algorithms, which provf&@t with density evolution. On the other hand, for product codes our

good decoding performances for these codes, can be formulatec?tﬁ'nrting pointis [8]. For this class of codes, we introduce a novel density
terms of a general framework, namely, the sum-product algorith'ﬁ‘(omtion approach based upon the evaluation of the extrinsic informa-
[4]. On the other hand, product codes were introduced by Elias [gﬁ’n e_xghanged by the pqnstitue_nt decoder_s. In both cases, despite the
as a class of powerful concatenated block codes with high minimu?’rlinp"c'ty of the model, it is possible to predict the thresholds of the de-

distance. Elias proposed a suboptimal decoding algorithm basedc&qer with acceptable accuracy, when compared to simulation results.

the sequential algebraic decoding of the constituent codes to keep th-ghIS correspondence is organized as follows. In Section II, we

decoding complexity relatively low. The introduction of turbo codekecall the basic principles of LDPC codes and de.rive a 1D model of
[6] later showed that performance near capacity can be obtainedtﬁﬁ message-passing de_coder_based on Gaussian den5|t_|es, b‘?th for
decoding constituent codes with an iterative soft-input soft-outpme additive white Gau-ssmn noise (AWGN) and_ the _Raylelgh-f_adlng
(SISO) decoder. Using the same idea, Pyndiah [7], [8], improved tﬁgannel models. Section 1l is devoted to the iterative de.codlng. of
decoding scheme of Elias by replacing the algebraic decoders FHr?dUCt codes. Namely, for both the AWGN and the_ Raylelgh-fadlng
iterative SISO decoding based on the Chase algorithm [9]. channel, we derive a 1-D map based on the Gaussian approximation.

Recently, several techniques have been proposed in the Iiteratﬁﬁ,gio,n IV shows an application of the models derived for the iFerative
to analyze iterative decoding by tracking the density of the im‘ormg-eco‘jmg of LDPC and product codes, for threshold computation pur-

tion exchanged in the decoder. This idea was originally introduc@§S€S- Specifically, we illustrate the qualitative nonlinear dynamics of
for LDPC codes [10], [11], under the name dgnsity evolutionFor the iterative decoding process and explain the mechanisms underlying

these particular codes, the exact densities of the messages exchaﬂbeeamstence of the threshold.
in the decoder are available because the extrinsic information admits
a closed-form representation given by the “tanh rule. " Density evo-

lution, though, requires a numerical evaluation of the densities of thﬁ M ODEL OF THEMESSAGEPASSING DECODING OFLDPC CODES

A. Preliminaries on LDPC Codes

Index Terms—PDensity evolution, Gaussian approximation, low-density
parity-check (LDPC) codes, nonlinear dynamics, threshold computation.

An LDPC code is defined by a bipartite graph [10] formed by vari-
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is the log-likelihood ratio of that variable node, given the log-likelihoodlow, by averaging over all the possible check node degrees and
ratios of the check nodes received on all incoming edges except keeping in mind that the density af is approximately a symmetric
and given the channel log-likelihood ratig[10] Gaussian density, we obtain the average probability ef 0 as

o | e G=1

The message sent by a check node to a variable node on edgehe where
log-likelihood ratio of that check node, given the log-likelihood ratios

) . ; . « 1 teo 2
of the variable nodes; received on all incoming edges excefit0] Q(z) = \/7 / e~ dt.
7T T
tanh (l) = Htanh (ﬂ) . 2 Similarly, consider (1) in the case of a variable nedef degree;,
2 2

i then
Equations (1) and (2) constitute one decoding iteration and each vari- mirt = My + (1 — I)m’u+1
able node message is initialized with the channel log-likelihood ratio
uo of the corresponding bit [11], [13]. and the density ob is a symmetric Gaussian sineeis a sum of

random variables whose density is Gaussian and symmetric; therefore,
B. Gaussian Density Approximation the probability ofv < 0'is
As already stated in [13], the density of variable and check node mit! 1 ) mbtt

messages is close to a Gaussian, although this is less obvious for check 9 =0 ) +(i-1) 2 :
node messages. This is especially true when the right degree distribu-

tion polynomialp(x) is concentrated on a few degrees, which is veiNow, by averaging over all the possible variable node degrees, we ob-
ified for regular codes and for almost all good irregular codes as wédin
[13]. Moreover, the analysis is greatly simplified if a density, cafl,it

verifies the so-called symmetry conditiofitz) = e” f(—z). It was P (o) = JZU/\ZQ (\/01_2 e 1)mff’l ) . 4

shown by Richardsoet al.[11] that the densities af,, v, andw in (1) 2
and (2) satisfy the symmetry condition. Therefore, we can assume that

all the messages involved in the decoding process have a symmettien by combining (3) and (4), and defining the polynomial) as
Gaussian distribution of the form

d
. 1 = ¢ F—
() 1 ,(r;w)Q s(x) = 5 ij [1 —(1- 21,)(] 1)]
ml) = e m s —~
Vamrm i J

we obtain the expression of the error probability at iteratienl as

where the parameter is the mean. dy
Throughout this analysis, we will restrict ourselves to binary phase?/ ™' (¢) = Y " \.Q <\/i2 + (i = 1){Q~" (s (Po))}” ) 5)

shift keying (BPSK) modulation (binay — +1, binaryl — —1). i=2 g

The message-passing algorithm can be analyzed with the following gsother words, (5) represents a nonlinear 1-D map of the form

sumption. If the block length of the code tends to infinity, the con- 41 a

centration theorem [10] ensures that the performance of a particular Per(o)=f (Pe(”)v”) > 121 (6)

bipartite graph chosen at random can be assimilated to the averg@gcriing the dynamics of the message-passing algorithm in terms of

performance of the cycle-free graph, i.e., the messages received,iy, probability, withP® (o) = Q (L) The nonlinear mag («; o) is
every node at every iteration are independent and identically distribuigthined as 7 ’

(i.i.d.) random variables. In the remainder of the present correspon-
dence, this assumption is supposed to be valid. Without loss of gener-
ality, we will also suppose that the all-zero codeword is sent, therefore,
the error probabilityP. (+) at iteration! is simply the average proba-
bility that the variable node messages are negative [11]. wheres acts as a control parameter.

1) AWGN Channel:We consider here an AWGN channel and de- We now show that the mafyz; o) admits the same stability condi-
note bys the noise standard deviation. Let,, = :—2 be the mean of tion derived in [11] by using density evolution.
uo, andm!, andm’, be the mean of andv at iteration/, respectively.
Our goal is to find an expression & ™' (¢), the error probability at 1
iteration! + 1, as a nonlinear function d? (s ), the error probability at and only ifA’(0)p'(1) < e2-2.

f(-’"l,ﬂ'):id;vz)\iQ <\/;*2+(77—1){Q71(9(m))}2> @)

Theorem 2.1:2 = 0 is a stable fixed point of the maf{x; o) if

iteration?. In order to achieve this, consider a check nedsf degree Proof: From (7), we have [20]
Jj atiteration/ 4 1; then it follows from (2) that h“}) flzi0)=0
sign(u) = Z sign(v;) mod 2 thus,0 is a fixed point of the map. Moreover, this fixed point is stable if

' ling g—f(:v,a) <1
r— jx
wheresign(z) is0 if x > 0, andl otherwise. It was shown by Gallager

[2] that the probability oft < 0 for degreej nodes is Itis shown in Appendix | that

lim ?(,r,o) = TN (0)0' (1)

1 1 1 ZPI (7 ) x—0 Ox
2 _( B '3(”)> ' which completes the proof. O
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2) Rayleigh-Fading ChannelOn the Rayleigh-fading channel, the
density of the channel log-likelihood ratios is [17]

2 wo — V14 202 ug|
Pug (Uo) = : exp (8)
2v/1 + 2062 2
while the channel crossover probability is given by
= /.U (uo)dug = 1 <1 — 71—> 9)
P = _Dopuo 0 O—2 1+20_2 -

The check-node messages have a density which can be approximatec

a symmetric Gaussian with mear " at iteration(! + 1). It follows
that, at iteration/ 4+ 1), the density of a variable node of degree
i is the convolution ofp.., (uo) with a symmetric Gaussian of mean
(i — )mLtt. The probability thav < 0 is known as [17]

1

Q( )‘m

XQ(\/(I—FQO’))( ) l+l)
XGXP<M)_

2
By averaging this expression over all the variable node degrees

b fE5)

e (i)

I+1
mit

(i 1)
2

(10

I+1

(i — Dmk

may

2

o ox o2 (i — 1)mbH!
XD — .
I+1
Recalling that™s— = [Q " (s( P’((r)))] we can define the map in

(112) (see the bottom of the page). The iterates of the error probabi
of the variable node messages are then given by

{Pc”r1 (o) f(Pi(a),0)

P(o) 1=
Similarly to the AWGN casd) is a fixed point off, whose stability
condition (see Appendix Il) is given by

1420

1
14—
< +202

X(0)e'(0)

which is consistent with [21].

12)

A. Preliminaries on Product Codes

M ODEL OF THEITERATIVE DECODING OFPRODUCT CODES

A product code’, = C'1 Q) C- is defined by the serial concatena-
tion of two block code€™; (1, k1, d1) andCs(n2, k2, d2). We assume

2003 2995

A | A _
ka2

Checks

k1 Information bits on

rows
m
Y

Checks

Checks on columns on
checks

Fig. 1. Product cod€’, = C; Q C-.

array ofk; lines andks columns. The columns (resp.,
coded using; (resp.,C-2), as described in Fig. 1.

The iterative decoding process is described in Fig. 2. The decoding
is performed iteratively column-wise then row-wise using the modified
Chase SISO algorithm [8]. The column decoder uses channel obser-
vationsZ anda priori information A in the form of log-likelihood
ratios to generate aa posteriorilog-likelihood ratioL.. for each bit.
Theextrinsicinformation is then defined a8. = L. — Z — A... After
block interleaving,E. is used a® priori information A, in conjunc-
tion with Z by the row decoder to generate aposteriorilog-likeli-
hood ratioL, for each bit. Theextrinsicinformation is then defined as
E,. = L,.—Z— A, andis used aa priori information for the columns
Wi ter block interleaving.

rows) are en-

B. Analysis of the Iterative Decoder

Let us assume that Chase Algorithm 2 is used as the row/column
decoder with the modification proposed in [8] to obtain soft outputs.
Let C(n,k,d) be one of the constituent codes; the error-correcting
capability of the code it = [(d — 1)/2] and the number of least
reliable positions used to generate the list of candidate codewords is
1 = [d/2]. Assume also that BPSK signaling is used (birfary +1,
binaryl — —1) and that the all-zero codeword is transmitted. We
modify the method proposed in [22] to obtain a good approximation
of the BER of the constituent decoder. Assume the decoder admits as
its input a log-likelihood ratio vectar = (ri,...,7,) instead of the
channel outputs. Lek = (as,. ..,an) be the corresponding relia-
bility vector with ov; = |ri], 7 = 1,..., n. If ¢ transmission errors
-occur, the reliability values correspondlng to theard decision errors
(resp.,n — i correct hard decisions) are reordered in decreasing order:

here that binary codes are used. The information bits are placed ind&i) > B2(i) > «-- > 3:(i) (resp.,ya(n — i) > ya(n —i) > -+ >
dy 5
f(zo) = ;} )\i{Q <\/(7 -1~ (S(I))]_>
. . 1 , (12)
-0 (¢<1 +202)(i — 1) [Q—" (s(x))] )p (=17 (s(e))?) }
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Fig. 2. Block diagram of the iterative decoder of a product code.

ym—i(n — i)). A good approximation of the word error rate of Chasevhereq(x) = ﬁe” /2 sinceL. = Z + A, + E., the density

Algorithm 2 is given by [22] pL.(z) of L. is again Gaussian argymmetric Let ;. denote its
I+t mean, it follows that

_ n\ o n—ip, . ) . 0 -
h=2 <i>p o P 2 =) = [ mww=a()") (19)

—o0

+ Z <7>p"(1—p)""‘ (13) whereQ(x) = [ q(t)dt. As aresult
13

izt

N . ) mp, =2 [Q_ (Plf)]“ —mz—mg,. (20)
wherep represents the channel crossover probability. With a slight ) ] )
modification, we obtain an approximation of the BER as An analog method is used to describe the row decoder. The input log-

likelihood ratio of the row decoder 8 4+ A, with meanmy + my, .
I+t . . . .
i P ) . We obtain the post-decoding row BER by applying the method de-
b= Z n < )7’ (L=p)" P (B (i) 2 yn—i—e(n = 1)) scribed in Section 111-B with
1=t+41
n Z ( > (1=p)" . (14 ‘ <ar— (mz+m,EC)>
PR Fla) = 2(my +mg,) . (21)
Assume that the elementsofre i.i.d. with probability density func- V2(mz +me,)

tion f(x) and letf (x) (resp..f5(x)) be the density associated with a

reliability corresponding to a correct (resp., erroneous) hard decisidiPting thatl, = Z + A, + E, has asymmetridSaussian distribution
then with mean ofm 7, , it follows that

p= /7 OOO f(a)da (15) Py =Q Q/@) (22)

(o and finally
fete) =Sy (16) o

( i) me, =2[Q7 (B)] —mz —me,. (23)
fala) = p u(x), 17) By iterating this process with the initialization ., = 0, we obtain

a description of the iterative decoding of product codes on the AWGN
whereu(z) is the unlt step function. The method to calculate the terg5nnel.

P (Bi41(i) 2 Yn—1—«(n — 7)) in(14) using (16) and (17) canbefound ) Rayleigh-Fading ChannelOn the Rayleigh-fading channel, the

in [22]. distribution of the channel log-likelihood rati6 is [17]
C. Gaussian Density Approximation po(z) = o exp <Z —Vi+ 202|Z|> _ (24)
A widely used model for the density of thextrinsicinformation is 2vV1+ 207

thesymmetricGaussian [13], [15], [18] which is described solely by itsTherefore, the distribution of the input log-likelihood ratio of the
meanm z, for the rows andn , for the columns, the variance beingcolumn decodeZ + A. is the convolution op (=) with asymmetric
twice the mean. We will use this model in the rest of this analysi§aussian with meam ,[17] shown in (25) at the top of the next
Furthermore, we assume that thgriori information is i.i.d., even if page. Usingf(x), we obtain the column BER; by applying the

this is true in practice only for very large interleavers. method described in Section IlI-B. Sinde. = Z + A. + E.,
1) AWGN Channel:On the AWGN channel, the channel log-like-the densityp;,. () of L. is also the convolution ofz(z) with a
lihood ratioZ is distributed as aymmetricGaussian with meam z = SymmetricGaussian with meam = my, +my, . It follows that [17]
2/a%, whereo is the standard deviation of the channel noise. There- 0
fore, the input log-likelihood ratio of the column decod@r A. is ry= / pL.(@)de =T, (m) (26)
also distributed as symmetricGaussian with meam z + mpg,.. We e
obtain the post-decoding column BER by applying the method de- Where
scribed in Section I1I-B with Lo (m)=0Q < ﬂ)-@ ( (1+2U2)m> 1 - <U%m> '
2 2 V14202 2
q<,r—(m7+mF )) (27)
F) = 2(mz+mg,) (18) As aresult
V2(mz 4 mp,) mp, =T, ' (PY) — mg,. (28)
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2 2 : e , I 2
N o cimy, 14+ V14202 \ o [ 2//me, +me (14 202)
flx) = Wite exp < o) > exp <72 ¢> erfc < >
+exp <1 — 1+ 202 T) erfe <—'r/\/mm +yme, (1420 )>
—.ﬁx G .
The row decoder is described with the same equations, but replacing TABLE |
[ch with be and inverting the roles Ofl/b'r and7nﬂc . By iterating this THRESHOLDS OFREGULAR LDPC CoDES OBTAINED WITH DENSITY

EVOLUTION (0}, ;;) AND GAUSSIAN ANALYSIS (0%, ,) WITH THEIR

process with the initializatiom , = 0, we obtain a description of the £y,
CORRESPONDINGN—O

iterative decoding of product codes on the Rayleigh-fading channel.

« By ) x Ep )
d | de | rate | obp (Wﬁ') pr || 964 (N%>CA
IV. APPLICATION: THRESHOLD COMPUTATION 3|16 1/2(080] 1.11dB | 0.848 | 1.43 dB
. . . . 319]23]0708] 1.75dB || 0.690 | 1.97 dB
This par.t of the corregpondgnce is concerr?ed with Fhe compu.tatlon 3 T12 134 10632 | 222 a8 10619 | 241 dB
of a decoding threshold in the iterative decoding algorithm. As will be 3 | 15 | 4/5 || 0587 | 2.59dB || 0577 | 2.74 dB
shown, the existence of the threshold can be explained in terms of the 3 [ 18] 5/6 || 0557 | 2.86 dB || 0.548 | 3.01 dB
nonlinear dynamics of the 1-D model describing the iterative decoding 3 121670534 311dB | 0.527 | 322 dB
svstem 3 247810517 330dB || 0.510 | 3.42 dB
Y ' 3 127]89]0503] 347dB || 0.496 | 3.59 dB

A. LDPC Codes

We study the convergence properties of the message passing alg®efore proceeding to the numerical evaluation of thresholds we add
rithm by means of (6) and the 1-D map derived in Section II-B for thghe following remark on code optimization [11], [13].

AWGN channel. . . L
Remark 4.3: The expression of (z, ) in (30) is minimal for all

5o

Theorem 4.1: Define the threshold x € [0, P2 ()] whens(x) is minimal for allz: this is the case when the
polynomialp(z) is concentrated on the lowest possible right degree,
o =sup {U >0: lim Plo)= 0} . for a givenA(z). Noting thatlim,_o f(x: o) = 0 and reminding that
I=too f(x;0) is increasing on alb > 0 andvx € [0, P?(0)], this means

o intuitively that the threshol@™ is maximum for concentrated check

If ¢ < 0%, Pl(c) converges t0, otherwisel(¢) converges toavalue gegree distribution polynomials. When performing code optimization
strictly larger tharf). o ofirregular codes, onge ) is fixed, it is easy to find a suitablg ) so

Proof: From (7) itis clear thaff(z;7) > 0 and 52 (,0) > 0, 45 to maximize the threshold. This is consistent with the fact mentioned
Vo > 0 andVe € [0, P(s)]; therefore,P!(c) is decreasing and in section I1-B that for good LDPC codes, the polynomiét) is con-
converges to a fixed point. It follows that if there is no fixed point inentrated and with the fact that the performance of a single parity-check
[0, P2 ()] other tharD) hence P!(v) converges td). Conversely, as- codes is increased if the number of information bits is reduced. Similar
sume there is a fixed point> 0in[0. P’ ()] thenP () > 2.V > 0 resyits for the binary-symmetric channel (BSC) and the binary erasure

sincef(x: o) is increasing otfr, P’ (¢ )]. Therefore P (o) converges  channel (BEC) have been presented in [23] and [24], respectively.
to a fixed point strictly greater thah Now, from (30) in Appendix | it

is easily seen that 1) Numerical Results:We conclude this subsection by comparing
the threshold values™ and their corresponding rati<€§€.—g obtained

ﬂ(:ﬂ’g) >0, Vo >0 and Va € [0, P’(0)] with our analysis, ve_rsu?ndensny evolution. In Taple I,Xve give the
da thresholds for raté? = - regular LDPC codes witd,, = 3, for

m = 1,...,8. It can be seen that the model proposed in Section II-B

therefore.c > o implies /(o) > Pi(c"), which completes the estimates the, /N, threshold with accuracy between 0.1 and 0.3 dB.
proof. The accuracy obtained by the authors in [13] is better by approximately

Example 4.2:The following example illustrates the threshold®ne order of magnitude; however, our closed-form analytical model
effect for a(d, = 3,d. = 27) rate & regular LDPC code on the provides more insight into the decoder dynamics.
AWGN channel. The threshold found with the analysis presented in
Section II-B iso* =0.496. Figs. 3-5 show the map derived by (7) and- Product Codes
the successive iteratéé(a), along with the bisectrix line, for values  In order to analyze a 1-D system, we choose to study the iterates of
of o smaller, equal, and larger thait, respectively. A = ¢*, a the BER at the output of the row decodBf (/) as a function of the
tangent(or saddle-nodgbifurcation occurs [20]: two fixed points, one iteration index and the noise parameter P; (0) is arbitrarily set to
stable §) the other unstabldJ), appear (see Fig. 5). the channel crossover probability. It can be verified thag a fixed
&%)int of the iterative decoding model described in Section I1I-B. As for

A similar behavior can be observed for the map derived by (11) I'bPC codes, a threshold

the Rayleigh-fading channel.

* . '
INote that at the first iteration the distribution of the input log-likelihood ratio g =sup {‘7 >0: llliﬂoo Py(l) = 0}
of the row decoder is the convolutionf ( =) with a Dirac function, as initially )
mg, = 0. exists.
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= 3,d. = 27) regular LDPC code.
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Fig. 4. P!*!(0) as a function ofP! (o) at the threshold value* = 0.496 for the(d, = 3,d. = 27) regular LDPC code.

Example 4.4: The following example illustrates the threshold effect .
for the BCH64, 51,6)> product code. The threshold found with the THRESHOLDS OFPRODUCT BCH CODES¢ ™ WITH THE CORRESPONDING -
analysis presented in Section IlI-B4s = 0.745. Fig. 6 shows the
successive iterates @, , along with the bisectrix line, for = ™.

The decoding trajectory starts in the upper right corner and ends at the
origin. Ate = ¢, the decoding trajectory enterbattleneck or tunnel
region [15], [17] near the bisectrix line with a characteristic slowing

down of the convergence rate.

In general, we observed that f6t(n, k, d)* product codes where
n and k are fixed, the threshold™ is an increasing function of.
This seems to indicate that well-known constituent codes with high
minimum distance such as the Bose-Chaudhuri-Hocquenghem (BCH)
codes are suitable to obtain product codes with a good threshold under
simulated in [8] on the AWGN and Rayleigh channels, respectively.
1) Numerical Results:Tables Il and Ill give the thresholds calcu-We emphasize that although it is not possible to define rigorously a
lated with the method presented in Section IlI-B for the product cod#dweshold for codes with finite block lengths, the threshold existing in

iterative decoding.

TABLE I

FOR THEAWGN CHANNEL

* Ey ¥
Code Rate 4 ( N ) .

(32,21,6)2 | 0431 | 1.106 | -0.2
(32,26,4)% | 0.660 | 0.803 0.7
(64,51,6)% | 0.635 | 0.745 15
(64,57,4)% | 0.793 | 0.615 22
(128,113,6)% | 0.779 | 0.588 27
(128,120,4)% | 0.879 | 0.513 33
(256, 247,4)7 | 0.931 | 0.447 43
(512,502, 4)% | 0.961 | 0.401 5.1
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TABLE 1l
THRESHOLDS OEFPRODUCT BCH CoDESo* WITH THE CORRESPONDING
N—g FOR THE RAYLEIGH-FADING CHANNEL

the capacity. This confirms that the hypothesis of i.i.d. extrinsic infor-
mation is approximately justified only for large block lengths.

Code Rate | o* (%)w V. CONCLUSION
2

g;’gé’ziz 8’22(1) g’gzg ;g In this correspondence, we have presented 1-D models for the
(64’ 51’6)2 0:635 0:508 4:8 iterative decoding of LDPC and product codes, based on Gaussian
(64:57:4)2 0793 10366 | 6.7 densities. These simple 1-D maps describe the evolution of the
(128,113,6)% | 0.779 | 0.330 77 error probabilities, as a function of the number of iterations, on

(128,120,4)% | 0.879 | 0.246 9.7 both the AWGN and the Rayleigh-fading channel. For LDPC codes,

(256,247,4)? ] 0.931 | 0.170 12.7 our analysis leads to a stability condition which is consistent with

(512,502,4)* [ 0961 [ 0.118 | 157 the density evolution method.

Our approach allows a qualitative analysis of the nonlinear dy-
namics of the decoding algorithm near the threshold. Also, we have

our model is a good indicator of the beginning of theterfall regionof  verified that the thresholds obtained with our approximate models
the BER curves, except when the block length of the constituent codge in good agreement with the values computed through density
is 32. In this particular case, the calculated thresholds are even belewolution or Monte Carlo simulations.
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of EEERC (1-2)
5T o) = 37 Y pi(j = 1) (1 - 2)"

j=2
dy

)32 VQ Gt

S E - DQ Gy
)]

and, if we take the limit at = 0, it can be verified that

de
= =AY pili— 1) = e =N (0)0 (1)

j=2

X exp K (29)

of
LY A

Similarly, the partial derivative with respect4ocan be expressed as

of e 27 !

—(x,0) = W Z/\i :

do 72w V= D{Q (s()}?
X exp |:1 (1-1) {Q )}2 (30)
APPENDIX |l

The partial derivative of the map given by (11) is given by

Af(x,0) 20
o msz 1)(1—22)""

X Z/\ { exp< (14+20%)(i—1)[Q *(s(x))] >

xQ (\/(1+202><i—1>[c3—‘<s<x>)12)

X (i=1)Q" (s(x)) exp ((1—5) [Q‘l(s(w))]z) }

(31)
Noting thatQ ! (s(«x)) — +oo for 2 — 0 and using the fact that
Q) — W 7 fory — 400
it follows that forz — 0
Of z,0) 20"
(Z iU ) iTee
(i—1)Q '(s(x))
Z V(1+20%) i = D[Q (s(2)]
X exXp <<1 - E) [Qil("’(r))]z)
and
Of(.z o)
(Zp] j- 1)) T
X Z/\“/i — lexp <<1 - %) [Q71(3(¢))]Z> .
Finally B
li G 0200 = AzZm—D
-y — X (0)p (1) (32)

1+ﬁ
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