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Analysis of the Iterative Decoding of LDPC and Product
Codes Using the Gaussian Approximation

Frederic Lehmann and Gian Mario Maggio, Member, IEEE

Abstract—We propose a novel density evolution approach to analyze the
iterative decoding algorithms of low-density parity-check (LDPC) codes
and product codes, based on Gaussian densities. Namely, for these classes
of codes we derive a one–dimensional (1-D) map whose iterates directly
represent the error probability both for the additive white Gaussian noise
(AWGN) and the Rayleigh-fading channel. These simple models allow a
qualitative analysis of the nonlinear dynamics of the decoding algorithm.
As an application, we compute the decoding thresholds and show that they
are consistent with the simulation results available in the literature.

Index Terms—Density evolution, Gaussian approximation, low-density
parity-check (LDPC) codes, nonlinear dynamics, threshold computation.

I. INTRODUCTION

Recently, it has been demonstrated that iterative-decoding algo-
rithms can perform at rates extremely close to the Shannon limit
imposed by the noisy channel coding theorem [1], yet with reasonable
complexity. In particular, irregularlow-density parity-check(LDPC)
codesand product codesare among the most promising candidates
for future applications. LDPC codes were originally introduced by
Gallager [2] in 1962, and rediscovered by MacKayet al. [3] in 1996.
The crucial innovation of LDPC codes being the introduction of
iterative decoding algorithms. Recently, it has been recognized that
the various message-passing decoding algorithms, which provide
good decoding performances for these codes, can be formulated in
terms of a general framework, namely, the sum-product algorithm
[4]. On the other hand, product codes were introduced by Elias [5]
as a class of powerful concatenated block codes with high minimum
distance. Elias proposed a suboptimal decoding algorithm based on
the sequential algebraic decoding of the constituent codes to keep the
decoding complexity relatively low. The introduction of turbo codes
[6] later showed that performance near capacity can be obtained by
decoding constituent codes with an iterative soft-input soft-output
(SISO) decoder. Using the same idea, Pyndiah [7], [8], improved the
decoding scheme of Elias by replacing the algebraic decoders by
iterative SISO decoding based on the Chase algorithm [9].

Recently, several techniques have been proposed in the literature
to analyze iterative decoding by tracking the density of the informa-
tion exchanged in the decoder. This idea was originally introduced
for LDPC codes [10], [11], under the name ofdensity evolution. For
these particular codes, the exact densities of the messages exchanged
in the decoder are available because the extrinsic information admits
a closed-form representation given by the “tanh rule. ” Density evo-
lution, though, requires a numerical evaluation of the densities of the
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messages used by the decoder and is usually computationally inten-
sive. Often, the density of the extrinsic information is approximated
by a Gaussian either to simplify the analysis or when a closed-form
expression of the extrinsic information is not available. The validity
of this assumption was first recognized for LDPC and turbo codes by
Wiberg [12] and used in [13] to perform an approximate analysis of
LDPC codes. The Gaussian approximation in conjunction with Monte
Carlo simulations has also been proposed to analyze the performances
of the turbo decoding algorithm [14], [15]. Previous work concerning
Gaussian approximations has relied on different parameters in order to
obtain a one-dimensional (1–D) model, namely, the mean value in [13],
the signal-to-noise ratio (SNR) in [14], [15], the mutual information
in [16], [17], and the bit-error rate (BER) [17], [18]. Another method
based on matching mean and covariance was presented in [19].

In this correspondence, we propose a model of the iterative decoding
of LDPC and product codes based on the BER, using the Gaussian
approximation. Under the Gaussian approximation, the mean, SNR,
and mutual information can be easily converted to the corresponding
BER as shown in [13], [14], and [17], respectively. In contrast with
this approach, our expression of the BER is not merely a byproduct,
but the parameter by which we identify the tail of the Gaussian distri-
bution. For LDPC codes, we follow a method somewhat similar to the
one suggested in [13] in order to analyze the message-passing decoder.
However, our method is based on a closed-form expression in terms of
error probabilities. By error probability we mean here the probability
that variable nodes are sending incorrect messages. Moreover, we show
that our approach leads to the correct stability condition, that is consis-
tent with density evolution. On the other hand, for product codes our
starting point is [8]. For this class of codes, we introduce a novel density
evolution approach based upon the evaluation of the extrinsic informa-
tion exchanged by the constituent decoders. In both cases, despite the
simplicity of the model, it is possible to predict the thresholds of the de-
coder with acceptable accuracy, when compared to simulation results.

This correspondence is organized as follows. In Section II, we
recall the basic principles of LDPC codes and derive a 1-D model of
the message-passing decoder based on Gaussian densities, both for
the additive white Gaussian noise (AWGN) and the Rayleigh-fading
channel models. Section III is devoted to the iterative decoding of
product codes. Namely, for both the AWGN and the Rayleigh-fading
channel, we derive a 1-D map based on the Gaussian approximation.
Section IV shows an application of the models derived for the iterative
decoding of LDPC and product codes, for threshold computation pur-
poses. Specifically, we illustrate the qualitative nonlinear dynamics of
the iterative decoding process and explain the mechanisms underlying
the existence of the threshold.

II. M ODEL OF THEMESSAGE-PASSINGDECODING OFLDPC CODES

A. Preliminaries on LDPC Codes

An LDPC code is defined by a bipartite graph [10] formed by vari-
able and check nodes appropriately related by edges. Assumedv (resp.,
dc) is the maximum variable (resp., check) node degree; we denote the
variable (resp., check) degree distribution polynomial of the graph by
�(x) = d

i=2
�ix

i�1 (resp.,�(x) = d

i=2
�ix

i�1) [11]. In partic-
ular, if�(x) = xd �1 and�(x) = xd �1, the code is said to beregular,
otherwise, the code is said to beirregular.

The message-passing algorithm used to decode LDPC codes imple-
ments the sum-product algorithm applied to the bipartite graph of the
code. The messagev sent by a variable node to a check node on edgee
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is the log-likelihood ratio of that variable node, given the log-likelihood
ratios of the check nodesui received on all incoming edges excepte

and given the channel log-likelihood ratiou0[10]

v = u0 +
i

ui: (1)

The messageu sent by a check node to a variable node on edgee is the
log-likelihood ratio of that check node, given the log-likelihood ratios
of the variable nodesvi received on all incoming edges excepte[10]

tanh
u

2
=

i

tanh
vi

2
: (2)

Equations (1) and (2) constitute one decoding iteration and each vari-
able node message is initialized with the channel log-likelihood ratio
u0 of the corresponding bit [11], [13].

B. Gaussian Density Approximation

As already stated in [13], the density of variable and check node
messages is close to a Gaussian, although this is less obvious for check
node messages. This is especially true when the right degree distribu-
tion polynomial�(x) is concentrated on a few degrees, which is ver-
ified for regular codes and for almost all good irregular codes as well
[13]. Moreover, the analysis is greatly simplified if a density, call itf ,
verifies the so-called symmetry condition:f(x) = exf(�x). It was
shown by Richardsonet al.[11] that the densities ofu0, v, andu in (1)
and (2) satisfy the symmetry condition. Therefore, we can assume that
all the messages involved in the decoding process have a symmetric
Gaussian distribution of the form

fm(x) =
1p
4�m

e
�

;

where the parameterm is the mean.
Throughout this analysis, we will restrict ourselves to binary phase-

shift keying (BPSK) modulation (binary0 ! +1, binary1 ! �1).
The message-passing algorithm can be analyzed with the following as-
sumption. If the block length of the code tends to infinity, the con-
centration theorem [10] ensures that the performance of a particular
bipartite graph chosen at random can be assimilated to the average
performance of the cycle-free graph, i.e., the messages received by
every node at every iteration are independent and identically distributed
(i.i.d.) random variables. In the remainder of the present correspon-
dence, this assumption is supposed to be valid. Without loss of gener-
ality, we will also suppose that the all-zero codeword is sent, therefore,
the error probabilityP l

e(�) at iterationl is simply the average proba-
bility that the variable node messages are negative [11].

1) AWGN Channel:We consider here an AWGN channel and de-
note by� the noise standard deviation. Letmu = 2

�
be the mean of

u0, andml
u andml

v be the mean ofu andv at iterationl, respectively.
Our goal is to find an expression ofP l+1

e (�), the error probability at
iterationl+1, as a nonlinear function ofP l

e(�), the error probability at
iterationl. In order to achieve this, consider a check nodeu of degree
j at iterationl + 1; then it follows from (2) that

sign(u) =
i

sign(vi) mod 2

wheresign(x) is0 if x > 0, and1 otherwise. It was shown by Gallager
[2] that the probability ofu < 0 for degreej nodes is

1

2
1� 1� 2P l

e(�)
(j�1)

:

Now, by averaging over all the possible check node degrees and
keeping in mind that the density ofu is approximately a symmetric
Gaussian density, we obtain the average probability ofu < 0 as

Q
ml+1

u

2
=

1

2

d

j=2

�j 1� 1� 2P l
e(�)

(j�1)

(3)

where

Q(x) =
1p
2�

+1

x

e
�

dt:

Similarly, consider (1) in the case of a variable nodev of degreei,
then

m
l+1
v = mu + (i� 1)ml+1

u

and the density ofv is a symmetric Gaussian sincev is a sum of
random variables whose density is Gaussian and symmetric; therefore,
the probability ofv < 0 is

Q
ml+1

v

2
= Q

1

�2
+ (i� 1)

ml+1
u

2
:

Now, by averaging over all the possible variable node degrees, we ob-
tain

P
l+1
e (�) =

d

i=2

�iQ
1

�2
+ (i� 1)

ml+1
u

2
: (4)

Then by combining (3) and (4), and defining the polynomials(x) as

s(x) =
1

2

d

j=2

�j 1� (1� 2x)(j�1)

we obtain the expression of the error probability at iterationl+ 1 as

P
l+1
e (�) =

d

i=2

�iQ
1

�2
+ (i� 1)fQ�1 (s (P l

e(�)))g2 : (5)

In other words, (5) represents a nonlinear 1-D map of the form

P
l+1
e (�) = f P

l
e(�); � ; l � 1 (6)

describing the dynamics of the message-passing algorithm in terms of
error probability, withP 0

e (�) = Q 1
�

. The nonlinear mapf(x;�) is
defined as

f(x;�) =
d

i=2

�iQ
1
�

+ (i� 1)fQ�1 (s (x))g2 (7)

where� acts as a control parameter.
We now show that the mapf(x;�) admits the same stability condi-

tion derived in [11] by using density evolution.

Theorem 2.1:x = 0 is a stable fixed point of the mapf(x;�) if
and only if�0(0)�0(1) < e .

Proof: From (7), we have [20]

lim
x!0

f(x;�) = 0

thus,0 is a fixed point of the map. Moreover, this fixed point is stable if

lim
x!0

@f

@x
(x; �) < 1:

It is shown in Appendix I that

lim
x!0

@f

@x
(x; �) = e

�

�
0(0)�0(1)

which completes the proof.
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2) Rayleigh-Fading Channel:On the Rayleigh-fading channel, the
density of the channel log-likelihood ratios is [17]

pu (u0) =
�2

2
p
1 + 2�2

exp
u0 �

p
1 + 2�2ju0j
2

(8)

while the channel crossover probability is given by

p =
0

�1

pu (u0)du0 =
1

2
1� 1p

1 + 2�2
: (9)

The check-node messages have a density which can be approximated as
a symmetric Gaussian with meanml+1

u at iteration(l + 1). It follows
that, at iteration(l + 1), the density of a variable nodev of degree
i is the convolution ofpu (u0) with a symmetric Gaussian of mean
(i� 1)ml+1

u . The probability thatv < 0 is known as [17]

Q
(i� 1)ml+1

u

2
� 1p

1 + 2�2

�Q (1 + 2�2)
(i� 1)

2
ml+1

u

� exp
�2(i� 1)ml+1

u

2
: (10)

By averaging this expression over all the variable node degrees

P l+1
e (�) =

d

i=2

�i Q
(i� 1)ml+1

u

2

� 1p
1 + 2�2

Q (1 + 2�2)
(i� 1)

2
ml+1

u

� exp
�2(i� 1)ml+1

u

2
:

Recalling thatm
2

= Q�1 s(P l
e(�))

2
, we can define the map in

(11) (see the bottom of the page). The iterates of the error probability
of the variable node messages are then given by

P l+1
e (�) = f P l

e(�); �

P 0
e (�) = 1

2
1� 1p

1+2�
:

Similarly to the AWGN case,0 is a fixed point off , whose stability
condition (see Appendix II) is given by

�0(0)�0(0) < 1 +
1

2�2
(12)

which is consistent with [21].

III. M ODEL OF THEITERATIVE DECODING OFPRODUCTCODES

A. Preliminaries on Product Codes

A product codeCp = C1 C2 is defined by the serial concatena-
tion of two block codesC1(n1; k1; d1) andC2(n2; k2; d2). We assume
here that binary codes are used. The information bits are placed in an

Fig. 1. Product codeC = C C .

array ofk1 lines andk2 columns. The columns (resp., rows) are en-
coded usingC1 (resp.,C2), as described in Fig. 1.

The iterative decoding process is described in Fig. 2. The decoding
is performed iteratively column-wise then row-wise using the modified
Chase SISO algorithm [8]. The column decoder uses channel obser-
vationsZ anda priori informationAc in the form of log-likelihood
ratios to generate ana posteriori log-likelihood ratioLc for each bit.
Theextrinsicinformation is then defined asEc = Lc�Z �Ac. After
block interleaving,Ec is used asa priori informationAr in conjunc-
tion with Z by the row decoder to generate ana posteriorilog-likeli-
hood ratioLr for each bit. Theextrinsicinformation is then defined as
Er = Lr�Z�Ar and is used asa priori information for the columns
after block interleaving.

B. Analysis of the Iterative Decoder

Let us assume that Chase Algorithm 2 is used as the row/column
decoder with the modification proposed in [8] to obtain soft outputs.
Let C(n; k; d) be one of the constituent codes; the error-correcting
capability of the code ist = b(d � 1)=2c and the number of least
reliable positions used to generate the list of candidate codewords is
l = bd=2c. Assume also that BPSK signaling is used (binary0 ! +1,
binary 1 ! �1) and that the all-zero codeword is transmitted. We
modify the method proposed in [22] to obtain a good approximation
of the BER of the constituent decoder. Assume the decoder admits as
its input a log-likelihood ratio vectorrrr = (r1; . . . ; rn) instead of the
channel outputs. Let��� = (�1; . . . ; �n) be the corresponding relia-
bility vector with �i = jrij, i = 1; . . . ; n. If i transmission errors
occur, the reliability values corresponding to thei hard decision errors
(resp.,n� i correct hard decisions) are reordered in decreasing order:
�1(i) � �2(i) � � � � � �i(i) (resp.,
1(n � i) � 
2(n� i) � � � � �

f(x;�) =
d

i=2

�i Q (i� 1) [Q�1 (s(x))]2

� 1p
1+2�

Q (1 + 2�2)(i� 1) [Q�1 (s(x))]2 exp �2(i� 1) Q�1 (s(x))
2

:
(11)
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Fig. 2. Block diagram of the iterative decoder of a product code.


n�i(n � i)). A good approximation of the word error rate of Chase
Algorithm 2 is given by [22]

Pe =

l+t

i=t+1

n

i
pi(1� p)n�iP (�t+1(i) � 
n�l�t(n� i))

+

n

i=l+t+1

n

i
pi(1� p)n�i (13)

wherep represents the channel crossover probability. With a slight
modification, we obtain an approximation of the BER as

Pb =

l+t

i=t+1

i

n

n

i
pi(1� p)n�iP (�t+1(i) � 
n�l�t(n� i))

+

n

i=l+t+1

i

n

n

i
pi(1� p)n�i: (14)

Assume that the elements ofrrr are i.i.d. with probability density func-
tion f(x) and letfc�(x) (resp.,fe�(x)) be the density associated with a
reliability corresponding to a correct (resp., erroneous) hard decision,
then

p =
0

�1
f(x)dx (15)

fc�(x) =
f(x)

1� p
u(x) (16)

fe�(x) =
f(�x)

p
u(x); (17)

whereu(x) is the unit step function. The method to calculate the term
P (�t+1(i) � 
n�l�t(n� i)) in (14) using (16) and (17) can be found
in [22].

C. Gaussian Density Approximation

A widely used model for the density of theextrinsicinformation is
thesymmetricGaussian [13], [15], [18] which is described solely by its
meanmE for the rows andmE for the columns, the variance being
twice the mean. We will use this model in the rest of this analysis.
Furthermore, we assume that thea priori information is i.i.d., even if
this is true in practice only for very large interleavers.

1) AWGN Channel:On the AWGN channel, the channel log-like-
lihood ratioZ is distributed as asymmetricGaussian with meanmZ =
2=�2, where� is the standard deviation of the channel noise. There-
fore, the input log-likelihood ratio of the column decoderZ + Ac is
also distributed as asymmetricGaussian with meanmZ +mE . We
obtain the post-decoding column BERP c

b by applying the method de-
scribed in Section III-B with

f(x) =

q
x� (mZ +mE )

2 (mZ +mE )

2 (mZ +mE )

(18)

whereq(x) = 1p
2�
e�x =2. SinceLc = Z + Ac + Ec, the density

pL (x) of Lc is again Gaussian andsymmetric. Let mL denote its
mean, it follows that

P c
b =

0

�1
pL (x)dx = Q

mL

2
(19)

whereQ(x) = +1
x

q(t)dt. As a result

mE = 2 Q�1 (P c
b )

2 �mZ �mE : (20)

An analog method is used to describe the row decoder. The input log-
likelihood ratio of the row decoder isZ +Ar with meanmZ +mE .
We obtain the post-decoding row BERP r

b by applying the method de-
scribed in Section III-B with

f(x) =

q
x� (mZ +mE )

2 (mZ +mE )

2 (mZ +mE )
: (21)

Noting thatLr = Z +Ar +Er has asymmetricGaussian distribution
with mean ofmL , it follows that

P r
b = Q

mL

2
(22)

and finally

mE = 2 Q�1 (P r
b )

2 �mZ �mE : (23)

By iterating this process with the initializationmE = 0, we obtain
a description of the iterative decoding of product codes on the AWGN
channel.

2) Rayleigh-Fading Channel:On the Rayleigh-fading channel, the
distribution of the channel log-likelihood ratioZ is [17]

pZ(z) =
�2

2
p
1 + 2�2

exp
z �p1 + 2�2jzj

2
: (24)

Therefore, the distribution of the input log-likelihood ratio of the
column decoderZ +Ac is the convolution ofpZ(z) with asymmetric
Gaussian with meanmE [17] shown in (25) at the top of the next
page. Usingf(x), we obtain the column BERP c

b by applying the
method described in Section III-B. SinceLc = Z + Ac + Ec,
the densitypL (x) of Lc is also the convolution ofpZ(z) with a
symmetricGaussian with meanm = mE +mE . It follows that [17]

P c
b =

0

�1
pL (x)dx = T�(m) (26)

where

T�(m)=Q
m

2
�Q (1+2�2)m

2

1p
1+2�2

exp
�2m

2
:

(27)
As a result

mE = T�1� (P c
b )�mE : (28)
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f(x) = �2

4
p
1 + 2�2

exp
�2mE

2 exp 1 +
p
1 + 2�2
2 x erfc

x=
p
mE + mE (1 + 2�2)

2

+ exp 1�
p
1 + 2�2
2 x erfc

�x=pmE + mE (1 + 2�2)
2 :

:

(25)

The row decoder is described with the same equations, but replacing
P c
b with P r

b and inverting the roles ofmE andmE . By iterating this
process with the initializationmE = 0, we obtain a description of the
iterative decoding of product codes on the Rayleigh-fading channel.1

IV. A PPLICATION: THRESHOLDCOMPUTATION

This part of the correspondence is concerned with the computation
of a decoding threshold in the iterative decoding algorithm. As will be
shown, the existence of the threshold can be explained in terms of the
nonlinear dynamics of the 1-D model describing the iterative decoding
system.

A. LDPC Codes

We study the convergence properties of the message passing algo-
rithm by means of (6) and the 1-D map derived in Section II-B for the
AWGN channel.

Theorem 4.1:Define the threshold

�� = sup � > 0 : lim
l!+1

P l
e(�) = 0 :

If � � ��,P l
e(�) converges to0, otherwiseP l

e(�) converges to a value
strictly larger than0.

Proof: From (7) it is clear thatf(x; �) � 0 and @f

@x
(x; �) > 0;

8� > 0 and8x 2 [0; P 0
e (�)]; therefore,P l

e(�) is decreasing and
converges to a fixed point. It follows that if there is no fixed point in
[0; P 0

e (�)] other than0 hence,P l
e(�) converges to0. Conversely, as-

sume there is a fixed pointx > 0 in [0; P 0
e (�)] thenP l

e(�) � x; 8l > 0

sincef(x;�) is increasing on[x; P 0
e (�)]. Therefore,P l

e(�) converges
to a fixed point strictly greater than0. Now, from (30) in Appendix I it
is easily seen that

@f

@�
(x; �) > 0; 8� > 0 and 8x 2 [0; P 0

e (�)]

therefore,� > �� impliesP l
e(�) > P l

e(�
�), which completes the

proof.

Example 4.2: The following example illustrates the threshold
effect for a (dv = 3; dc = 27) rate 8

9
regular LDPC code on the

AWGN channel. The threshold found with the analysis presented in
Section II-B is��=0:496. Figs. 3–5 show the map derived by (7) and
the successive iteratesP l

e(�), along with the bisectrix line, for values
of � smaller, equal, and larger than��, respectively. At� = ��, a
tangent(or saddle-node) bifurcation occurs [20]: two fixed points, one
stable (S) the other unstable (U), appear (see Fig. 5).

A similar behavior can be observed for the map derived by (11) on
the Rayleigh-fading channel.

1Note that at the first iteration the distribution of the input log-likelihood ratio
of the row decoder is the convolution ofp (z)with a Dirac function, as initially
m = 0.

TABLE I
THRESHOLDS OFREGULAR LDPC CODES OBTAINED WITH DENSITY

EVOLUTION (� ) AND GAUSSIAN ANALYSIS (� ) WITH THEIR

CORRESPONDING

Before proceeding to the numerical evaluation of thresholds we add
the following remark on code optimization [11], [13].

Remark 4.3: The expression of@f
@�

(x; �) in (30) is minimal for all
x 2 [0; P 0

e (�)] whens(x) is minimal for allx: this is the case when the
polynomial�(x) is concentrated on the lowest possible right degree,
for a given�(x). Noting thatlim�!0 f(x;�) = 0 and reminding that
f(x;�) is increasing on all� > 0 and8x 2 [0; P 0

e (�)], this means
intuitively that the threshold�� is maximum for concentrated check
degree distribution polynomials. When performing code optimization
of irregular codes, once�(x) is fixed, it is easy to find a suitable�(x) so
as to maximize the threshold. This is consistent with the fact mentioned
in Section II-B that for good LDPC codes, the polynomial�(x) is con-
centrated and with the fact that the performance of a single parity-check
codes is increased if the number of information bits is reduced. Similar
results for the binary-symmetric channel (BSC) and the binary erasure
channel (BEC) have been presented in [23] and [24], respectively.

1) Numerical Results:We conclude this subsection by comparing

the threshold values�� and their corresponding ratiosE
N

�

obtained
with our analysis, versus density evolution. In Table I, we give the
thresholds for rateR = m

m+1
regular LDPC codes withdv = 3, for

m = 1; . . . ; 8. It can be seen that the model proposed in Section II-B
estimates theEb=N0 threshold with accuracy between 0.1 and 0.3 dB.
The accuracy obtained by the authors in [13] is better by approximately
one order of magnitude; however, our closed-form analytical model
provides more insight into the decoder dynamics.

B. Product Codes

In order to analyze a 1-D system, we choose to study the iterates of
the BER at the output of the row decoderP r

b (l) as a function of the
iteration indexl and the noise parameter�. P r

b (0) is arbitrarily set to
the channel crossover probability. It can be verified that0 is a fixed
point of the iterative decoding model described in Section III-B. As for
LDPC codes, a threshold

�� = sup � > 0 : lim
l!+1

P r
b (l) = 0

exists.
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Fig. 3. P (�) as a function ofP (�) at� = 0:49 for the(d = 3; d = 27) regular LDPC code.

Fig. 4. P (�) as a function ofP (�) at the threshold value� = 0:496 for the(d = 3; d = 27) regular LDPC code.

Example 4.4: The following example illustrates the threshold effect
for the BCH(64; 51; 6)2 product code. The threshold found with the
analysis presented in Section III-B is�� = 0:745. Fig. 6 shows the
successive iterates ofP r

b , along with the bisectrix line, for� = ��.
The decoding trajectory starts in the upper right corner and ends at the
origin. At� = ��, the decoding trajectory enters abottleneck or tunnel
region [15], [17] near the bisectrix line with a characteristic slowing
down of the convergence rate.

In general, we observed that forC(n; k; d)2 product codes where
n and k are fixed, the threshold�� is an increasing function ofd.
This seems to indicate that well-known constituent codes with high
minimum distance such as the Bose-Chaudhuri–Hocquenghem (BCH)
codes are suitable to obtain product codes with a good threshold under
iterative decoding.

1) Numerical Results:Tables II and III give the thresholds calcu-
lated with the method presented in Section III-B for the product codes

TABLE II
THRESHOLDS OFPRODUCT BCH CODES� WITH THE CORRESPONDING

FOR THEAWGN CHANNEL

simulated in [8] on the AWGN and Rayleigh channels, respectively.
We emphasize that although it is not possible to define rigorously a
threshold for codes with finite block lengths, the threshold existing in
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Fig. 5. P (�) as a function ofP (�) at� = 0:50 for the(d = 3; d = 27) regular LDPC code. Note the appearance of a stable (S) and unstable (U) fixed
points due to the occurrence of a tangent bifurcation.

Fig. 6. P (l + 1) as a function ofP (l) at� = 0:745 for the BCH(64;51;6) product code on the AWGN channel.

TABLE III
THRESHOLDS OFPRODUCT BCH CODES� WITH THE CORRESPONDING

FOR THERAYLEIGH-FADING CHANNEL

our model is a good indicator of the beginning of thewaterfall regionof
the BER curves, except when the block length of the constituent codes
is 32. In this particular case, the calculated thresholds are even below

the capacity. This confirms that the hypothesis of i.i.d. extrinsic infor-
mation is approximately justified only for large block lengths.

V. CONCLUSION

In this correspondence, we have presented 1-D models for the
iterative decoding of LDPC and product codes, based on Gaussian
densities. These simple 1-D maps describe the evolution of the
error probabilities, as a function of the number of iterations, on
both the AWGN and the Rayleigh-fading channel. For LDPC codes,
our analysis leads to a stability condition which is consistent with
the density evolution method.

Our approach allows a qualitative analysis of the nonlinear dy-
namics of the decoding algorithm near the threshold. Also, we have
verified that the thresholds obtained with our approximate models
are in good agreement with the values computed through density
evolution or Monte Carlo simulations.
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APPENDIX I

The partial derivatives of the map given by (7) admit a closed-form
expression. Namely, it is easily seen that the partial derivative with re-
spect tox can be expressed as

@f

@x
(x; �) = e

�

d

j=2

�j(j � 1) (1� 2x)(j�2)

�
d

i=2

�i
(i� 1)Q�1 (s(x))

1
�

+ (i� 1)fQ�1 (s(x))g2

� exp 1� i

2
Q
�1 (s(x))

2
(29)

and, if we take the limit atx = 0, it can be verified that

lim
x!0

@f

@x
(x; �) = e

�

�2

d

j=2

�j(j � 1) = e
�

�
0(0)�0(1):

Similarly, the partial derivative with respect to� can be expressed as

@f

@�
(x; �) =

e
�

�3
p
2�

d

i=2

�i
1

1
�

+ (i� 1)fQ�1 (s(x))g2

� exp
1

2
(1� i) Q

�1 (s(x))
2

: (30)

APPENDIX II

The partial derivative of the map given by (11) is given by

@f(x; �)

@x
=

2�2p
1+2�2

d

j=2

�j(j�1)(1�2x)j�2

�
d

i=2

�i
p
2� exp

1

2
(1+2�2)(i�1)[Q�1(s(x))]2

�Q (1+2�2)(i�1)[Q�1(s(x))]2

� (i�1)Q�1(s(x))exp 1� i

2
[Q�1(s(x))]2 :

(31)

Noting thatQ�1(s(x))! +1 for x! 0 and using the fact that

Q(
p
y)! 1p

2�

e�p
y
; for y ! +1

it follows that forx ! 0

@f(x; �)

@x
!

d

j=2

�j(j � 1)
2�2p
1 + 2�2

�
d

i=2

�i
(i� 1)Q�1(s(x))

(1 + 2�2)(i� 1)[Q�1(s(x))]2

� exp 1� i

2
[Q�1(s(x))]2

and

@f(x; �)

@x
!

d

j=2

�j(j � 1)
1

1 + 1
2�

�
d

i=2

�i
p
i� 1 exp 1� i

2
[Q�1(s(x))]2 :

Finally

lim
x!0

@f

@x
(x; �) =

1

1 + 1
2�

�2

d

j=2

�j(j � 1)

=
1

1 + 1
2�

� (0)� (1): (32)
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