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Joint Channel Estimation and Decoding for
Trellis-Coded MIMO Two-Way Relay Networks

Frederic Lehmann

Abstract—We present a method for joint decode-and-forward
physical layer network coding in two-way relay networks. The
two source nodes send their packets simultaneously over time-
varying channels to a relay node, then the relay broadcasts
the received superimposed packets to the source nodes using
network coding. The nodes use trellis coding for the sake of error
correction and multi-antenna equipments to combat multipath
fading. A challenging multiple access problem occurs at the relay
node, which performs joint channel estimation and decoding
for the individual source packets. We design message passing
algorithms based on factor-graphs to solve this problem. The
relay has two separate modules that perform channel estimation
and decoding for the packets received from each source node.
The interference generated by the other source node is taken
into account by exchanging messages between the two modules.

Index Terms—Two-way relay network, physical layer network
coding, time-varying MIMO channel, trellis coding, joint channel
estimation and decoding, message passing.

I. INTRODUCTION

THE use of network coding in wireless networks has
attracted considerable interest during the last decade [1].

The number of timeslots required for packet exchange is re-
duced by exploiting the broadcast nature of wireless channels.
The basic idea is that the achievable throughput in a network
can be increased, if intermediate nodes are allowed to perform
operations on the incoming data, such as linear combination
and coding. Compared with conventional routing protocols,
the transmission rate, delay and reliability is improved.

We consider the two-way relay channel [2] with half-duplex
constraint (i.e. a node cannot transmit and receive at the same
time). Two source nodes nodes n1 and n2 exchange their
packets through a relay node r. In multiple access broadcast
protocols, during the first phase (or multiple access phase) n1

and n2 send their packets simultaneously to r and during the
second phase (or broadcast phase) node r sends a function
of the received packets to n1 and n2. Such protocols are
particularly efficient, since they require only two time slots to
convey the packets, instead of four for the routing protocol. We
will focus on the recently proposed Physical-layer Network
Coding (PNC) scheme [3]-[8], where the relay r directly
processes the superposed baseband signals received from n1

and n2. The superposition of the signals at the relay node is
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due to the wireless channel additivity.

Several modes of operation have emerged for the relay
node. In the amplify-and-forward PNC scheme [7], also known
as analog network coding (ANC), the relay amplifies and
broadcasts the received signal. The relay processing is simple
to implement and only coarse synchronization at the packet
level is needed. However, the relay also amplifies the noise and
the cascaded source-relay-source channels must be known to
n1 and n2 during the broadcast phase, which leads to non-
trivial estimation problems. The relay node in the denoise-
and-forward PNC scheme [3]-[6] decodes the received signal
to a suitable function of the packets sent by n1 and n2,
without recovering the packets sent by n1 and n2 individ-
ually. This method avoids the noise amplification of ANC,
provided that synchronization among the source nodes can
be achieved. However, these methods are sensitive to the
channel conditions [9]. In the joint decode-and-forward PNC
scheme [8], the relay decodes both packets from n1 and n2

and then re-encodes their modulo-2 sum for broadcasting. This
method removes the adverse effect of fading and noise in the
source-relay channels, provided that synchronization among
the source nodes can be achieved. However, these advantages
come at the cost of higher computational complexity at the
relay node, which must jointly estimate the source-relay
channels and jointly decode the superposed packets.

Several issues regarding the practical design of PNC-
based communications still need to be addressed. Firstly, the
aforementioned PNC schemes have been evaluated under the
simplifying assumptions of quasi-static channels and of perfect
channel knowledge at the source and/or relay nodes. However,
in practical applications, the channels are unknown to the
receivers and must be estimated. Moreover, mobile source
and/or relay nodes are subject to time-selective fading chan-
nels [10]. Recent efforts have extended maximum-likelihood
and least-square channel estimation from traditional point-
to-point to two-way relay networks. Training-based channel
estimation techniques suitable for PNC have appeared in [11]-
[12] for static channels, in [13] for time-varying channels
and in [14] for frequency-selective channels in OFDM-based
transmissions. Secondly, channel coding must be considered
in order to protect the transmitted packets against errors due
to fading and packet superposition. We will consider trellis
codes, which have desirable properties for practical wireless
networks, such as low encoding/decoding complexity at each
node and low end-to-end decoding latency. This is particu-
larly important if power consumption at the relay node is a
concern. Coding techniques suitable for pseudo amplify-and-
forward, denoise-and-forward and joint decode-and-forward
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PNC exist [15]-[16], but all of them assume perfect channel
knowledge. Thirdly, it has been recognized that multiple-input
multiple-output (MIMO) transmissions increase the channel
capacity and provide spatial diversity, resulting in robustness
against multipath fading and noise [17]. In point-to-point
communications, trellis codes for MIMO systems exist in two
forms. A space-time trellis code (STTC) [18]-[19] generates a
complex symbol for each transmit antenna, by choosing a trel-
lis code which maximizes the diversity and/or the coding gain.
MIMO bit interleaved coded modulation (MIMO-BICM) [20]
uses a binary convolutional code with maximal free distance,
where the coded bits are interleaved and demultiplexed over
the transmit antennas. In the recent literature, the use of
MIMO technology for two-way relay networks has also been
advocated [9],[12].

In this paper, we consider a PNC scheme with multi-
antenna equipments, where n1 uses MIMO-BICM and n2

either MIMO-BICM or a STTC. A joint decode-and-forward
strategy is used at the relay node r to recover the individual
packets sent by n1 and n2 during the multiple access phase.
During the broadcast phase, the relay combines the received
packets through Galois field [1], complex field [21] or soft [22]
network coding. Packet decoding at node n1 and n2 is out
of the scope of the present paper, since the broadcast phase
is analog to a traditional point-to-point transmission problem
between the relay and the source nodes. We will therefore
focus on joint channel estimation and decoding at the relay
node. We consider time-varying source-relay MIMO channels,
modeled as auto-regressive (AR) processes. Using a factor
graph approach [23]-[24], we design soft-output message
passing algorithms performing joint MIMO channel estimation
and decoding of the packets sent by the source nodes during
the multiple access phase. The proposed algorithm performs
iteratively joint channel estimation and decoding for the packet
sent by n1 and the packet sent by n2, by taking into account
the interference from the other node.

The main technical contributions of this paper are
• A state-space model of superimposed signals suitable for

trellis coded PNC on a time-varying MIMO two-way
relay channel.

• A joint channel estimation and decoding method for the
superimposed signals, based on belief propagation in a
factor graph representation of the proposed state-space
model.

• Exact belief propagation involves messages in the form
of Gaussian mixtures, which leads to an exponential
complexity increase as a function of the time index
and iterations. As a remedy, a Gaussian approximation
is introduced to collapse Gaussian mixture messages to
a single Gaussian. This makes belief propagation not
only tractable, by preserving a constant complexity per
time recursion and per iteration, but also preserves near-
optimal performances for trellis coding with sufficient
time interleaving.

Throughout the paper, bold letters indicate vectors and
matrices, while Im denotes the m × m identity matrix and
0m the m × m all-zero matrix. NC(x : m,P) denotes a
complex Gaussian distribution of the variable x, with mean
m and covariance matrix P. The operator det(.) will denote
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Fig. 1. Data format at the source nodes: pilot symbols (P), zero values (0)
and coded data symbols (data) are assigned to the K time slots.
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Fig. 2. Multiple access phase of a PNC-based two-way relay system: source
node n1 and n2 use BICM.

the determinant of a matrix. Let cj ∈ Cm, for j = 1, . . . , n
denote the columns of C ∈ Cm×n, so that C = [c1, . . . , cn].
Then vec(C) denotes the mn-dimensional vector formed
by stacking the columns of C on top of one another, i.e.
vec(C) = [cT

1 , . . . , cT
n ]T . The symbol ⊗ denotes the Kro-

necker product.

This paper is organized as follows. First, Section II de-
scribes the system model adopted for the multiple access phase
of PNC on a time-varying MIMO channel. In Section III
and IV, we introduce message passing algorithms for joint
decode-and-forward at the relay node. Finally, in Section V,
the performances of the proposed algorithms are assessed
through numerical simulations and compared with existing
methods.
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Fig. 3. Multiple access phase of a PNC-based two-way relay system: source
node n1 uses BICM while n2 uses a STTC.

II. SYSTEM MODEL

A. Communication System

We consider the multiple access phase of a PNC-based
two-way relay system, with two source nodes n1 and n2

having n transmit antennas and a relay node r having m
receive antennas. The sequence of uniformly, independently
and identically distributed (u.i.i.d.) information bits sent by
n1 (resp. n2) is denoted by b1 = [b1

1, b
1
2, . . . , b

1
B]T (resp.

b2 = [b2
1, b

2
2, . . . , b

2
B]T ). Source node n1 (resp. n2) encodes

its information bits and delivers at instant k = 1, . . . , K the
complex modulated vector d1

k = [d1,1
k , d1,2

k , . . . , d1,n
k ]T (resp.

d2
k = [d2,1

k , d2,2
k , . . . , d2,n

k ]T ) sent over the n transmit anten-
nas. The symbol energy is normalized to 1, i.e. E[|di,j

k |2] = 1,
∀i, j, k and the symbol duration is denoted by T . The sequence
of modulated vectors delivered by n1 (resp. n2) is denoted
by d1 = {d1

k}K
k=1 (resp. d2 = {d2

k}K
k=1). The data format

at the source nodes is depicted in Fig. 1. Pilot symbols are
periodically inserted for the purpose of channel estimation at
the relay node. In order to avoid pilot interference at the relay
node [14], when a node assigns a pilot symbol to a given time
slot, the other node assigns a zero value to that time slot.

Without loss of generality, we consider the two scenarios
depicted in Fig. 2 and Fig. 3. Fig. 2 corresponds to the
homogeneous scenario, where both source nodes encode their
information bits using BICM. Source node n1 (resp. n2)
encodes its information bits with the convolutional code [26]
CC1 (resp. CC2), followed by a bit interleaving function π1

(resp. π2) and symbol mapping. The encoding function at n1

(resp. n2), which maps any sequence of information bits b1

(resp. b2) to the corresponding valid sequence of modulated
vectors d1 (resp. d2) is called m1(.) (resp. m2(.)). Fig. 3
corresponds to the heterogeneous scenario, where the source
node n1 (resp. n2) encodes its information bits using BICM

(resp. a STTC). Therefore n1 generates d1 = m1(b1) using
the same encoding function as in Fig. 2. The STTC used by
n2 is characterized by the encoder state at instant k, s2

k, which
forms a finite-state Markov process [18]-[19], i.e. s2

k depends
only on s2

k−1 and on the new information bit b2
k. Moreover,

we define the states such that s2
k determines completely the

value of the complex modulated vector d2
k at instant k.

Remark 2.1: The case where n1 uses a STTC and n2 uses
BICM will not be considered, since it is identical to the
configuration of Fig. 3 by exchanging the role of n1 and
n2. The case where both n1 and n2 use a STTC leads to
a factor graph representation with many short cycles, so that
the message passing detectors introduced latter, which handle
the decoding of the packets coming from n1 and n2 separately,
suffers from an error floor. Thus, this configuration cannot be
treated using our algorithm, but needs to be handled using
the computationally expensive joint trellis approach of [16],
extended to the MIMO case.

Let yk = [y1
k, y2

k, . . . , ym
k ]T be the complex baseband

observations received at the m antennas of the relay node
r, during the multiple access phase at instant k. Due to the
packet superposition on the source-relay MIMO channels and
assuming perfect symbol synchronization at the relay node,
yk has the form

yk =
√

E1
sX

1
kd

1
k +

√
E2

sX
2
kd

2
k + nk, (1)

where E1
s (resp. E2

s ) is the average energy per transmit antenna
for source node n1 (resp. n2). The relative proximity between
the source nodes and the relay is measured by the relative
path-loss gain defined as

G = 10 log10

(
E1

s

E2
s

)
, (2)

which means that for G ≥ 0, n1 is closer to r than n2.
X1

k (resp. X2
k) is the m × n matrix of time-varying complex

path gains for the MIMO channel between n1 (resp. n2) and
r. nk = [n1

k, n2
k, . . . , nm

k ]T is a vector of independent zero-
mean additive white Gaussian noise (AWGN) samples, with
covariance matrix equal to R = N0Im. Defining the mn-
dimensional stacked vectors of channel gains{

x1
k = vec(X1

k
T
)

x2
k = vec(X2

k
T
),

Eq. (1) can be rewritten as

yk = H1
k(d1

k)x1
k + H2

k(d2
k)x2

k + nk, (3)

where the m × nm observation matrices are given by{
H1

k(d1
k) =

√
E1

sIm ⊗ d1
k

T

H2
k(d2

k) =
√

E2
sIm ⊗ d2

k
T
.

(4)

B. MIMO Channel Model

Let f1
mT (resp. f2

mT ) be the normalized fading rate of
the MIMO channel between n1 (resp. n2) and r. Define
the corresponding coefficients ζi = 2 − cos(2πf i

mT ) −√
(2 − cos(2πf i

mT ))2 − 1, for i ∈ {1, 2}. We consider the
approximate model for a mobile Rayleigh fading channel
using an autoregressive model of order one (AR(1)) introduced
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Fig. 4. Factor graph for the relay processing: source node n1 and n2 use
BICM.

in [27] (pp. 74-75). A state-space representation of the MIMO
channel gains is obtained as

{
x1

k = F1x1
k−1 + u1

k

x2
k = F2x2

k−1 + u2
k,

(5)

where the state transition matrices are given by

{
F1 = ζ1Inm

F2 = ζ2Inm,

and the process noise vector u1
k (resp. u2

k) is zero-mean
complex Gaussian distributed with covariance matrix equal to
Q1 = [1− (ζ1)2]Inm (resp. Q2 = [1− (ζ2)2]Inm). Assuming
that n1 and n2 are sufficiently far apart, the corresponding
random channel gain vectors x1

k and x2
k are independent.

Moreover, assuming that

{
p(x1

0) = NC(x1
0 : 0mn, Imn)

p(x2
0) = NC(x2

0 : 0mn, Imn),

then at any time instant k, all the channel gains are zero-
mean Gaussian distributed random variables, normalized to
unit variance.

C. Factor Graph Representation

We first apply the factor graph framework of [24] to the
homogeneous scenario of Fig. 2, where both source nodes
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employ BICM. We obtain the following factorization

p
(
b1,d1, {x1

k}K
k=0,b

2,d2, {x2
k}K

k=0|{yk}K
k=1

)
∝ p

({yk}K
k=1|d1, {x1

k}K
k=0,d

2, {x2
k}K

k=0

)
× p({x1

k}K
k=0)p({x2

k}K
k=0)

× p(d1|b1)p(d2|b2)p(b1)p(b2)

∝
K∏

k=1

p
(
yk|d1

k,x1
k,d2

k,x2
k

)

× p(x1
0)

K∏
k=1

p(x1
k|x1

k−1) × I(d1 = m1(b1))

× p(x2
0)

K∏
k=1

p(x2
k|x2

k−1) × I(d2 = m2(b2)),

(6)

where I(d1 = m1(b1)) (resp. I(d2 = m2(b2))) is the
code indicator function, equal to one if d1 (resp. d2) is the
valid complex modulated coded sequence corresponding to
b1 (resp. b2) and equal to zero otherwise. To obtain the last
expression in (6), we have used the first order Markov assump-
tion for the channel gains in (5), the fact that the AWGN in
(3) is memoryless, and that that the information bits are u.i.i.d.
The factor graph corresponding to the above factorization is
depicted in Fig. 4. Variable nodes are represented as circles
and the local functions appearing in the factorization, denoted
by ⎧⎪⎨

⎪⎩
f1

k = p(x1
k|x1

k−1)
f2

k = p(x2
k|x2

k−1)

gk = p
(
yk|d1

k,x1
k,d2

k,x2
k

)
.

(7)

are represented as squares. The portion of the graph in
thick (resp. thin) line corresponds to the channel estimation
task (resp. demodulation and decoding tasks) at the relay
node. Also the graph is symmetric, so that the upper (resp.
lower) half of the graph corresponds to channel estimation,
demodulation and decoding of the packet sent by n1 (resp.
n2). This was expected, since both source nodes use the same
type of coding and modulation over the same kind of MIMO
channel.
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Now, applying the factor graph framework to the heteroge-
neous scenario of Fig. 3, where n1 employs BICM while n2

employs a STTC, we obtain the following factorization

p
(
b1,d1, {x1

k}K
k=0,b

2, {s2
k}K

k=0, {x2
k}K

k=0|{yk}K
k=1

)
∝ p

({yk}K
k=1|d1, {x1

k}K
k=0, {s2

k}K
k=0, {x2

k}K
k=0

)
× p({x1

k}K
k=0)p({x2

k}K
k=0)p(d1|b1)p({s2

k}K
k=0|b2)

× p(b1)p(b2)

∝
K∏

k=1

p
(
yk|d1

k,x1
k, s2

k,x2
k

)

× p(x1
0)

K∏
k=1

p(x1
k|x1

k−1) × I(d1 = m1(b1))

× p(x2
0)

K∏
k=1

p(x2
k|x2

k−1) × p(s2
0)

K∏
k=1

p(s2
k|s2

k−1),

(8)

To obtain the last expression in (8), we have used the fact that
the STTC states form a first order Markov process and that the
value of the STTC state s2

k determines completely the value
of the complex modulated vector d2

k at instant k. The factor
graph corresponding to the above factorization is depicted in
Fig. 5. The local functions appearing in the factorization are
defined as follows⎧⎪⎨

⎪⎩
f1

k = p(x1
k|x1

k−1)

h2
k = p(x2

k|x2
k−1)p(s2

k|s2
k−1)

gk = p
(
yk|d1

k,x1
k, s2

k,x2
k

)
.

(9)

The portion of the graph in thick line corresponds to the
channel estimation task for the packet sent by n1 and to
joint channel estimation and decoding for the packet sent by
n2, at the relay node. The portion of the graph in thin line
corresponds to the demodulation and decoding tasks for the
packet sent by n1. As expected, this graph is not symmetric,
since the source nodes do not use the same type of coding
and modulation.

Remark 2.2: The expression of the local function node h2
k

indicates that another factor graph representation could have
been obtained by separating the channel estimation from the
STTC decoding task for the packet sent by n2. However,
this decomposition would lead to a subgraph containing many
short cycles, instead of the proposed tree-like subgraph for
joint channel estimation and decoding. It is well-known that
the performance of message passing degrades in the presence
of too many short cycles [23].

III. MESSAGE PASSING ALGORITHM FOR JOINT

DECODE-AND-FORWARD IN THE HOMOGENEOUS

SCENARIO

In this section, we derive a Bayesian inference algorithm
to obtain a joint decode-and-forward scheme at the relay
node in the homogeneous scenario of Fig. 2. We apply the
sum-product algorithm (SPA) [23], which implements belief
propagation [28], to the factor graph of Fig. 4. This graph
has cycles, therefore belief propagation will not implement
exact Bayesian inference [28]. However, excellent SPA per-
formances have been reported also on graphs with cycles,
provided that the graph is sufficiently sparse. This property has

been used successfully in the past, notably for decoding turbo,
low-density parity-check (LDPC) and repeat-accumulate codes
(RA) [23].

As we shall see, exact belief propagation involves messages
in the form of Gaussian mixtures. Thus, an exponential com-
plexity increase as a function of the time index and iterations
results. However, in practice we need a detection algorithm
with a constant complexity per time recursion and per itera-
tion. To achieve this goal, we first introduce a Gaussian ap-
proximation for Gaussian mixture messages in Section III-A.
We then develop a belief propagation algorithm based on this
approximation in the subsequent sections. Our simulations will
show that the resulting iterative detection algorithm achieves
an excellent performance/complexity tradeoff.

Let μu→v(.) be the message sent by node u to node v in
the factor graph. Due to the symmetry in the factor graph,
we only derive the messages corresponding to the upper half
of the graph. The message schedule proceeds as follows.
Without loss of generality, assuming that E1

s ≥ E2
s , first the

upper half of the graph is treated, i.e. the packet from the
source node with the strongest received signal. First, channel
estimation is performed (see Section III-B), followed by the
demodulation step (see Section III-C) and channel decoding
(see Section III-D). Then, the same steps are peformed for
the lower half of the graph. This procedure is iterated a
number of times, until convergence is reached. For the sake
of completeness, the message initialization is detailed in
Section III-E.

A. Gaussian Approximation using the Moment-Matching
Method

Assume that a message sent by node u to node v in the
factor graph is a Gaussian mixture of the form

μu→v(.) ∝
∑

i

ωiNC(.,ai,Σi), (10)

with
∑

i ωi = 1. This message can be approximated by a
single Gaussian with the same expectation and covariance as
the original message, namely

μu→v(.) ∝ NC(., â, Σ̂), (11)

where

â =
∑

i

ωiai

Σ̂ =
∑

i

ωi

[
Σi + (ai − â)(ai − â)H

]
.

The demonstration is readily available from [29] (p. 107).

B. Channel Estimation

Assume that μx2
k→gk

(x2
k) has the form

μx2
k
→gk

(x2
k) ∝ NC(x2

k : x̂2
k\k,P2

k\k). (12)

Let us first apply the sum-product rule at the function node
gk. We obtain

μgk→x1
k
(x1

k) ∝
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)

×
∫

p
(
yk|d1

k,x1
k,d2

k,x2
k

)
μx2

k→gk
(x2

k)dx2
k.
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According to (3) and (12), this expression becomes

μgk→x1
k
(x1

k)

∝
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)

×
∫

NC
(
yk : H1

k(d1
k)x1

k + H2
k(d2

k)x2
k,R

)
×NC(x2

k : x̂2
k\k,P2

k\k)dx2
k

∝
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)

×NC
(
yk : H1

k(d1
k)x1

k + H2
k(d2

k)x̂2
k\k,

H2
k(d2

k)P2
k\kH

2
k(d2

k)H + R
)
.

(13)

where the closed form expression of the integral in the last
expression has been demonstrated in [29] (p. 38). In order
to obtain a tractable expression, we collapse the obtained
Gaussian mixture to a single Gaussian using the moment-
matching method of Section III-A. According to Appendix B,
we obtain

μgk→x1
k
(x1

k) ∝ NC
(
yk : Ĥ1

kx
1
k + b2

k,S2
k

)
, (14)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ĥ1
k =

∑
d1

k

μd1
k
→gk

(d1
k)H1

k(d1
k)

Ĥ2
k =

∑
d2

k

μd2
k→gk

(d2
k)H2

k(d2
k)

b2
k = Ĥ2

kx̂
2
k\k.

and

S2
k =

∑
d1

k

μd1
k→gk

(d1
k)
(
H1

k(d1
k) − Ĥ1

k

)(
H1

k(d1
k) − Ĥ1

k

)H

+
∑
d2

k

μd2
k→gk

(d2
k)

{
H2

k(d2
k)P2

k\kH
2
k(d2

k)H+

(
H2

k(d2
k) − Ĥ2

k

)
x̂2

k\kx̂
2
k\k

H
(
H2

k(d2
k) − Ĥ2

k

)H
}

+ R.

Remark 3.1: The n1 to relay channel estimation needs
an approximation of the likelihood p(yk|x1

k), by averaging
out the variables d1

k, d2
k and x2

k. We obtain the Gaussian
distribution (14) with mean Ĥ1

kx
1
k + b2

k, where Ĥ1
k is the

observation matrix averaged over the modulated vectors d1
k

and b2
k is a bias which accounts for the superimposed n2

to relay transmission. The covariance matrix S2
k accounts

for the presence of AWGN, residual interference from the
superimposed n2 to relay transmission and channel estimation
uncertainty.

Now, the n1 channel estimation subgraph in Fig. 4 is a
tree, therefore if it were disconnected from the rest of the
factor graph, the SPA would achieve exact Bayesian inference
on this subgraph. Moreover, according to the expression of
the function node f1

k in (9) and of the message μgk→x1
k
(x1

k)
in (14), the channel estimation subgraph corresponds to a
linear Gaussian system. As shown in [23], the forward (resp.

backward) pass of the SPA computes Gaussian messages of
the form

μf1
k→x1

k
(x1

k) ∝NC(x1
k : x̂1

k|k−1,P
1
k|k−1)

μf1
k+1→x1

k
(x1

k) ∝NC(x1
k : x̂1

k|k+1:K ,P1
k|k+1:K),

(15)

whose mean and covariance time update rule is given by the
two-filter Kalman smoother [30].

Let us finally compute the message returned by the channel
estimation subgraph to the function node gk. The sum-product
rule, applied to variable node x1

k, yields

μx1
k→gk

(x1
k) ∝NC(x1

k : x̂1
k|k−1,P

1
k|k−1)

×NC(x1
k : x̂1

k|k+1:K ,P1
k|k+1:K).

Using the expression for a product of Gaussian densities in
Appendix A, we obtain the following simplification

μx1
k→gk

(x1
k) ∝ NC(x1

k : x̂1
k\k,P1

k\k), (16)

where⎧⎪⎨
⎪⎩

P1
k\k = P1

k|k+1:K

[
P1

k|k−1 + P1
k|k+1:K

]−1

P1
k|k−1

x̂1
k\k = P1

k\k

[
P1

k|k−1

−1
x̂1

k|k−1 + P1
k|k+1:K

−1
x̂1

k|k+1:K

]
.

We have just shown that under a Gaussian approximation on
μgk→x1

k
(.), if μx2

k→gk
(.) is Gaussian for all k, then all the

messages exchanged in the channel estimation subgraph in
the upper half of Fig. 4 are Gaussian. Note that the channel
estimation subgraph in the upper and lower halves of Fig. 4
are identical. It follows that all the messages exchanged in the
channel estimation subgraph in the lower half of Fig. 4 are also
Gaussian. Therefore, by induction, if μx2

k→gk
(.) is Gaussian

for all k at the initial iteration, then all the messages exchanged
in the channel estimation subgraphs will be Gaussian for all
subsequent iterations as well.

C. Demodulation
The demodulation consists of performing soft symbol vector

detection, by calculating μgk→d1
k
(d1

k). Applying the sum-
product rule at the function node gk,

μgk→d1
k
(d1

k) =
∑
d2

k

μd2
k
→gk

(d2
k)

×
∫ ∫

p
(
yk|d1

k,x1
k,d2

k,x2
k

)
× μx1

k
→gk

(x1
k)μx2

k
→gk

(x2
k)dx1

kdx2
k

=
∑
d2

k

μd2
k
→gk

(d2
k)

×NC
(
yk : H1

k(d1
k)x̂1

k\k + H2
k(d2

k)x̂2
k\k,

H1
k(d1

k)P1
k\kH

1
k(d1

k)H + H2
k(d2

k)P2
k\kH

2
k(d2

k)H + R
)
.

(17)

The demonstration is postponed to Appendix C. The message
from d1

k to the bit interleaver π1, corresponds to the calcula-
tion of a posteriori bit probabilities from a posteriori symbol
probabilities. This is a standard procedure in BICM, which
can be found in [31], for instance. Similarly, the message from
the bit interleaver π1 to d1

k, corresponds to the calculation of
extrinsic symbol probabilities from extrinsic bit probabilities
at the decoder output [31].
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π
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2
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Fig. 6. Iterative serial interference cancellation (SIC) receiver for the PNC
system of Fig. 2: iterative channel estimation, interference cancellation (IC)
and decoding.

D. Decoding

The SPA applied to the upper box in Fig. 4, corresponding
to the convolutional code (CC1) constraints, consists of the
well-known BCJR algorithm [32]. Therefore we omit the
details here.

E. Initialization

During the first iteration, the messages μx2
k→gk

(x2
k) (cor-

responding to the n2 to relay MIMO channel distribution),
μd1

k→gk
(d1

k) (corresponding to the n1 symbol vector distribu-
tion) and μd2

k→gk
(d2

k) (corresponding to the n2 symbol vector
distribution) must be initialized. We use the prior probability
mass function (pmf) for μd1

k→gk
(d1

k) and μd2
k→gk

(d2
k) which

is the uniform pmf, since the information packets at the source
nodes have been assumed u.i.i.d. Similarly, we use the prior
probability distribution function (pdf) for μx2

k→gk
(x2

k), which
is the Gaussian

p(x2
k) = NC(x2

k : 0mn, Imn), ∀k

according to the MIMO channel model in (5).

F. Comparison with Existing Message-Passing Methods

For the homogeneous scenario of Fig. 2, two message-
passing algorithms have been published in the literature.

Firstly, the single-user bound, which corresponds to the
performance of message passing when only the source node
of interest communicates with the relay node and the other
source node is discarded, has been studied in [33].

Secondly, iterative serial interference cancellation (SIC) [?],
originally employed for code division multiple access
(CDMA) systems, can be easily adapted to our MIMO
multiple access relay channel problem. Therefore we use
iterative SIC as a benchmark to assess the performances of
the proposed algorithm. A complete description of the iterative
SIC receiver is given by Fig. 6. At each iteration, the channel

is (re-)estimated, using the code-aided technique suitable for
time-varying MIMO interference channels, introduced in [35]
(see Section V). The n1 to relay and n2 to relay channels
are jointly estimated using this method, with a number of
Gaussian components fixed to one, in order to keep the
computational complexity of the benchmark method close to
the complexity of the proposed scheme. This procedure is
iterated until convergence is reached.

IV. MESSAGE PASSING ALGORITHM FOR JOINT

DECODE-AND-FORWARD IN THE HETEROGENEOUS

SCENARIO

In this section, we derive a Bayesian inference algorithm to
obtain a joint decode-and-forward scheme at the relay node
in the heterogeneous scenario of Fig. 3.

The message schedule proceeds as follows on the factor
graph of Fig. 5. First, channel estimation, followed by demod-
ulation and channel decoding are performed for the packet sent
by n1 to the relay node. These steps are obtained by applying
the SPA to the upper half of the graph (see Section IV-B),
with only minor modifications with respect to the message
update rules presented in Section III. Then, the SPA is applied
to the lower half of the graph (see Section IV-A), which
corresponds to joint channel estimation and decoding of the
packet sent by n2 to the relay node. This procedure is iterated
a number of times, until convergence is reached. For the
sake of completeness, the message initialization is detailed
in Section IV-C.

A. n2 Joint Channel Estimation and Decoding

We first calculate the message μgk→s2
k,x2

k
(s2

k,x2
k), which is

instrumental for the derivation of the forward and backward
pass of the SPA for the tree-like subgraph at the bottom of
Fig. 5. Let us apply the sum product rule at the function node
gk, defined in (9)

μgk→s2
k
,x2

k
(s2

k,x2
k)

=
∑
d1

k

μd1
k→gk

(d1
k)
∫

p
(
yk|d1

k,x1
k, s2

k,x2
k

)
μx1

k→gk
(x1

k)dx1
k.

Since the n1 channel estimation subgraphs in Fig. 4 and
Fig. 5 are identical, Eq. (16) is still valid. According to (3),
we obtain

μgk→s2
k,x2

k
(s2

k,x2
k)

∝
∑
d1

k

μd1
k→gk

(d1
k)
∫

NC
(
yk : H1

k(d1
k)x1

k + H2
k(s2

k)x2
k,R

)
×NC(x1

k : x̂1
k\k,P1

k\k)dx1
k

∝
∑
d1

k

μd1
k→gk

(d1
k)NC

(
yk : H1

k(d1
k)x̂1

k\k + H2
k(s2

k)x2
k,

H1
k(d1

k)P1
k\kH

1
k(d1

k)H + R
)
,

(18)

where the closed form expression of the integral in the last
expression has been demonstrated in [29] (p. 38). In order
to obtain a tractable expression, we collapse the obtained
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Gaussian mixture to a single Gaussian using the moment-
matching of Section III-A. According to Appendix D, we
obtain

μgk→s2
k,x2

k
(s2

k,x2
k) ∝ NC

(
yk : H2

k(s2
k)x2

k + b1
k,S1

k

)
. (19)

where ⎧⎪⎨
⎪⎩

Ĥ1
k =

∑
d1

k

μd1
k→gk

(d1
k)H1

k(d1
k)

b1
k = Ĥ1

kx̂
1
k\k.

and

S1
k =

∑
d1

k

μd1
k→gk

(d1
k)

{
H1

k(d1
k)P1

k\kH
1
k(d1

k)H+

(
H1

k(d1
k) − Ĥ1

k

)
x̂1

k\kx̂
1
k\k

H
(
H1

k(d1
k) − Ĥ1

k

)H
}

+ R.

Remark 4.1: The n2 to relay joint channel estimation
and decoding needs an approximation of the likelihood
p(yk|s2

k,x2
k), by averaging out the variables d1

k, and x1
k. We

obtain the Gaussian distribution (19) with mean H2
k(s2

k)x2
k +

b1
k, where b1

k is a bias which accounts for the superimposed
n1 to relay transmission. The covariance matrix S1

k accounts
for the presence of AWGN, residual interference from the
superimposed n1 to relay transmission and channel estimation
uncertainty.

1) Forward Pass: We seek a time update rule for the
message μs2

k−1,x2
k−1→h2

k
(s2

k−1,x
2
k−1) of the form

μs2
k−1,x2

k−1→h2
k
(s2

k−1,x
2
k−1) ∝ αk−1|k−1(s2

k−1)

×NC(x2
k−1 : x̂2

k−1|k−1(s
2
k−1),P

2
k−1|k−1(s

2
k−1)),

(20)

where αk−1|k−1(s2
k−1) is the belief of the STTC state s2

k−1

and NC(x2
k−1 : x̂2

k−1|k−1(s
2
k−1),P

2
k−1|k−1(s

2
k−1)) is the

belief of the MIMO channel vector x2
k−1, conditional on the

value of s2
k−1.

Applying the sum-product rule to the local function h2
k,

defined in (9), we obtain

μh2
k→s2

k,x2
k
(s2

k,x2
k) ∝

∑
s2

k−1

p(s2
k|s2

k−1)

×
∫

p(x2
k|x2

k−1)μs2
k−1,x2

k−1→h2
k
(s2

k−1,x
2
k−1)dx

2
k−1

Using (5) and (20) this expression becomes

μh2
k
→s2

k
,x2

k
(s2

k,x2
k) ∝

∑
s2

k−1

p(s2
k|s2

k−1)αk−1|k−1(s
2
k−1)

×
∫

NC
(
x2

k : F2x2
k−1,Q

2)
×NC

(
x2

k−1 : x̂2
k−1|k−1(s

2
k−1),P

2
k−1|k−1(s

2
k−1)

)
dx2

k−1.

The integral appearing in the previous equation is the well-
known prediction step of Kalman filtering [36], therefore

μh2
k→s2

k,x2
k
(s2

k,x2
k) ∝

∑
s2

k−1

p(s2
k|s2

k−1)αk−1|k−1(s2
k−1)

×NC
(
x2

k : x̂2
k|k−1(s

2
k−1),P

2
k|k−1(s

2
k−1)

)
,

(21)

where{
x̂2

k|k−1(s
2
k−1) =F2x̂2

k−1|k−1(s
2
k−1)

P2
k|k−1(s

2
k−1) =F2P2

k−1|k−1(s
2
k−1)F

2H
+ Q2.

In order to avoid an exponential complexity increase with time,
we collapse the Gaussian mixture (21) to a single Gaussian
of the form (see Section III-A)

μh2
k→s2

k,x2
k
(s2

k,x2
k) ∝ αk|k−1(s2

k)

×NC
(
x2

k : x̂2
k|k−1(s

2
k),P2

k|k−1(s
2
k)
)

,
(22)

where the predicted belief of s2
k is given by αk|k−1(s2

k) =∑
s2

k−1
p(s2

k|s2
k−1)αk−1|k−1(s2

k−1) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂2
k|k−1(s

2
k)

=
∑
s2

k−1

p(s2
k|s2

k−1)αk−1|k−1(s2
k−1)

αk|k−1(s2
k)

x̂2
k|k−1(s

2
k−1)

P2
k|k−1(s

2
k)

=
∑
s2

k−1

p(s2
k|s2

k−1)αk−1|k−1(s2
k−1)

αk|k−1(s2
k)

[
P2

k|k−1(s
2
k−1)

+
(
x̂2

k|k−1(s
2
k−1) − x̂2

k|k−1(s
2
k)
)

×
(
x̂2

k|k−1(s
2
k−1) − x̂2

k|k−1(s
2
k)
)H

]
.

Now, applying the sum-product rule at the variable node
(s2

k,x2
k), we get

μs2
k,x2

k→h2
k+1

(s2
k,x2

k) ∝ μh2
k→s2

k,x2
k
(s2

k,x2
k)μgk→s2

k,x2
k
(s2

k,x2
k).

Injecting (19) and (22) into this expression, we obtain a
product of Gaussians corresponding to the correction step of
the well-known Kalman filter [36], which can be rewritten as

μs2
k,x2

k→h2
k+1

(s2
k,x2

k) ∝ αk|k(s2
k)NC(x2

k : x̂2
k|k(s2

k),P2
k|k(s2

k)),
(23)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K2
k(s2

k) =P2
k|k−1(s

2
k)H2

k(s2
k)H

×
(
H2

k(s2
k)P2

k|k−1(s
2
k)H2

k(s2
k)H + S1

k

)−1

x̂2
k|k(s2

k) =x̂2
k|k−1(s

2
k)

+ K2
k(s2

k)
(
yk − H2

k(s2
k)x̂2

k|k−1(s
2
k) − b1

k

)
P2

k|k(s2
k) =P2

k|k−1(s
2
k) − K2

k(s2
k)H2

k(s2
k)P2

k|k−1(s
2
k)

αk|k(s2
k) =αk|k−1(s

2
k)

×NC
(
yk : H2

k(s2
k)x̂2

k|k−1(s
2
k) + b1

k,

H2
k(s2

k)P2
k|k−1(s

2
k)H2

k(s2
k)H + S1

k

)
.

2) Backward Pass: In the same way, the update rule for
the backward messages parameterized by

μh2
k+1→s2

k,x2
k
(s2

k,x2
k)

∝ βk|k+1:K(s2
k)NC

(
x2

k : x̂2
k|k+1:K(s2

k),P2
k|k+1:K (s2

k)
)

,

(24)

and

μs2
k,x2

k→h2
k
(s2

k,x2
k)

∝ βk|k:K(s2
k)NC(x2

k : x̂2
k|k:K(s2

k),P2
k|k:K(s2

k)),
(25)
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are obtained using a time-reversed application of the opera-
tions of the forward pass. The details are therefore omitted.

3) Message Sent Back to gk: Applying the sum-product
rule to the variable node (s2

k,x2
k),

μs2
k,x2

k→gk
(s2

k,x2
k) ∝ μh2

k→s2
k,x2

k
(s2

k,x2
k)μh2

k+1→s2
k,x2

k
(s2

k,x2
k)

Injecting (22) and (24) into the previous expression, we obtain

μs2
k,x2

k→gk
(s2

k,x2
k) ∝ σk\k(s2

k)NC(x2
k : x̂2

k\k(s2
k),P2

k\k(s2
k)),
(26)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P2
k\k(s2

k) = P2
k|k+1:K(s2

k)

×
[
P2

k|k−1(s
2
k) + P2

k|k+1:K (s2
k)
]−1

P2
k|k−1(s

2
k)

x̂2
k\k(s2

k) = P2
k\k(s2

k)
[
P2

k|k−1(s
2
k)

−1
x̂2

k|k−1(s
2
k)

+ P2
k|k+1:K(s2

k)
−1

x̂2
k|k+1:K(s2

k)
]

σk\k(s2
k) = αk|k−1(s2

k)βk|k+1:K(s2
k)

× 1

πnm det
(
P2

k|k−1(s
2
k) + P2

k|k+1:K(s2
k)
)

× exp
[
− (x̂2

k|k−1(s
2
k) − x̂2

k|k+1:K(s2
k))H

×
(
P2

k|k−1(s
2
k) + P2

k|k+1:K(s2
k)
)−1

× (x̂2
k|k−1(s

2
k) − x̂2

k|k+1:K(s2
k))

]
.

The demonstration proceeds from a straightforward applica-
tion of the formula in Appendix A.

B. n1 Channel Estimation and Demodulation and Decoding

The n1 channel estimation subgraphs in Fig. 4 and Fig. 5
are identical. Therefore, the n1 channel estimation in the
heterogeneous scenario is the procedure already described in
Section III-B, except that μgk→x1

k
(x1

k) must be recalculated.
Let us first apply the sum-product rule at the function node
gk. We obtain

μgk→x1
k
(x1

k) ∝
∑
d1

k

∑
s2

k

μd1
k→gk

(d1
k)

×
∫

p
(
yk|d1

k,x1
k, s2

k,x2
k

)
μs2

k,x2
k→gk

(s2
k,x2

k)dx2
k.

According to (3) and (26), this expression becomes

μgk→x1
k
(x1

k) ∝
∑
d1

k

∑
s2

k

μd1
k→gk

(d1
k)σk\k(s2

k)

×
∫

NC
(
yk : H1

k(d1
k)x1

k + H2
k(s2

k)x2
k,R

)
×NC(x2

k : x̂2
k\k(s2

k),P2
k\k(s2

k))dx2
k

∝
∑
d1

k

∑
s2

k

μd1
k→gk

(d1
k)σk\k(s2

k)

×NC
(
yk : H1

k(d1
k)x1

k + H2
k(s2

k)x̂2
k\k(s2

k),

H2
k(s2

k)P2
k\kH

2
k(s2

k)H + R
)
.

(27)

where the closed form expression of the integral in the last
expression has been demonstrated in [29] (p. 38). In order

to obtain a tractable expression, we collapse the obtained
Gaussian mixture to a single Gaussian using the moment-
matching method of Section III-A. We obtain

μgk→x1
k
(x1

k) ∝ NC
(
yk : Ĥ1

kx
1
k + b2

k,S2
k

)
. (28)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ĥ1
k =

∑
d1

k

μd1
k→gk

(d1
k)H1

k(d1
k)

b2
k =

∑
s2

k

σk\k(s2
k)H2

k(s2
k)x̂2

k\k(s2
k).

and

S2
k =

∑
d1

k

μd1
k→gk

(d1
k)
(
H1

k(d1
k) − Ĥ1

k

)(
H1

k(d1
k) − Ĥ1

k

)H

+
∑
s2

k

σk\k(s2
k)
{
H2

k(s2
k)P2

k\k(s2
k)H2

k(s2
k)H+

(
H2

k(s2
k)x̂2

k\k(s2
k) − b2

k

)(
H2

k(s2
k)x̂2

k\k(s2
k) − b2

k

)H }
+ R.

The proof is omitted, since it follows exactly the same steps
as in Appendix B.

Remark 4.2: The n1 to relay channel estimation needs
an approximation of the likelihood p(yk|x1

k), by averaging
out the variables d1

k, s2
k and x2

k . We obtain the Gaussian
distribution (28) with mean Ĥ1

kx
1
k + b2

k, where Ĥ1
k is the

observation matrix averaged over the modulated vectors d1
k

and b2
k is a bias which accounts for the superimposed n2

to relay transmission. The covariance matrix S2
k accounts

for the presence of AWGN, residual interference from the
superimposed n2 to relay transmission and channel estimation
uncertainty.

The demodulation of the symbol vectors sent by n1 also
needs to be modified. Applying the sum-product rule at the
function node gk,

μgk→d1
k
(d1

k)

=
∑
s2

k

∫ ∫
p
(
yk|d1

k,x1
k, s2

k,x2
k

)
× μx1

k
→gk

(x1
k)μs2

k
,x2

k
→gk

(s2
k,x2

k)dx1
kdx2

k

=
∑
s2

k

σk\k(s2
k)

×NC
(
yk : H1

k(d1
k)x̂1

k\k + H2
k(s2

k)x̂2
k\k(s2

k),

H1
k(d1

k)P1
k\kH

1
k(d1

k)H + H2
k(s2

k)P2
k\k(s2

k)H2
k(s2

k)H + R
)
.

(29)

The demonstration is similar to Appendix C.
Finally, the channel decoding method is unchanged with

respect to that of Section III-D.

C. Initialization

During the first iteration, the messages μs2
k
,x2

k
→gk

(s2
k,x2

k)
(corresponding to the joint STTC state and MIMO channel
distribution for n2) and μd1

k→gk
(d1

k) (corresponding to the
n1 symbol vector distribution) must be initialized. We use
the prior pmf for μd1

k→gk
(d1

k) which is the uniform pmf,
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Fig. 7. BER for the packets sent by n1 after 3 iterations: G = 0 dB,
f1

mT = f2
mT = 10−3 and K = 100.

since the information packets at the source node n1 have
been assumed u.i.i.d. Similarly for μs2

k,x2
k→gk

(s2
k,x2

k), we use
the prior mixed discrete-continuous distribution p(s2

k)p(x2
k),

where p(s2
k) is the uniform pmf over the STTC states and

p(x2
k) = NC(x2

k : 0mn, Imn), ∀k

according to the MIMO channel model in (5).

V. SIMULATION RESULTS

The following simulation parameters are used for all the
scenarios (homogeneous and heterogenerous) and all the relay
node processing algorithms (proposed method, iterative SIC
and single-user bound). The source nodes are equipped with
n = 2 transmit antennas and the relay node with m = 2
receive antennas. The source nodes employ the data format
of Fig. 1 and binary phase shift keying (BPSK) modulation.
The pilot insertion rate (PIR) is fixed to 1 : 10, so due to the
insertion of an additional zero symbol after each pilot symbol,
20 percent of the data rate is lost as a consequence of pilot
insertion.

Unless otherwise specified, we assume perfect timing syn-
chronization and perfect power control, i.e. G = 0 dB, at the
relay node. For simplicity, we also assume that the n1-to-relay
and n2-to-relay MIMO channels have identical normalized
fading rates, i.e. f1

mT = f2
mT . This situation corresponds

for instance to n1 and n2 being fixed and r moving at a
given constant maximal velocity. Moreover, the normalized
fading rates are known to the relay node. The time-varying
Rayleigh fading MIMO channels are simulated with Jakes
Doppler spectrum using the method described in [37]. At the
relay side, the MIMO channels are modeled as simple AR(1)
processes, introduced in Section II-B.

A. Homogeneous Scenario

In the homogeneous scenario, n1 and n2 use BICM. The
convolutional codes CC1 and CC2 are identical and chosen as
the rate-1/2 recursive systematic convolutional code (RSC)
with polynomials (1, 5/7) in octal representation. However
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Fig. 8. BER for the packets sent by n1 after 3 iterations: G = 0 dB,
f1

mT = f2
mT = 10−3 and K = 1000.
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Fig. 9. BER for the packets sent by n1 after 3 iterations: G = 0 dB,
f1

mT = f2
mT = 0.005 and K = 100.
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Fig. 10. BER for the packets sent by n1 after 3 iterations: G = 0 dB,
f1

mT = f2
mT = 0.005 and K = 1000.

π1 and π2 are different interleavers picked at random. The
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proposed message passing receiver (see Section III), iter-
ative SIC (see Section III-F) and the single user bound
(see Section III-F) perform three iterations. No performance
improvements were observed by further increasing the number
of iterations. We obtain the proposed message passing receiver,
with perfect channel state information (CSI) by removing
the variable nodes corresponding to MIMO channel gains in
the factor graph of Fig. 4, and applying message passing,
assuming that all channel gains are perfectly known to the
relay.

Fig. 7 (resp. Fig. 8) show the bit-error rate (BER) perfor-
mances for the packets sent by n1, for a block length of
K = 100 (resp. K = 1000) at a normalized fading rate of
10−3. These curves allow us to study the influence of the
interleaver length, which is proportional to the block length
K .

First, we observe that for a given signal-to-noise ratio
(SNR), the BER is much lower for K = 1000 than for
K = 100, which can be explained by additional temporal
diversity gains obtained for long interleavers. Moreover, the
proposed method reaches performances close to the single-
user bound, regardless of the SNR, when K = 1000. However,
the proposed method is between 1 and 2 dB less power
efficient than the single-user bound, when K = 100. This
reveals that the proposed receiver solves the multiple access
problem in a very efficient way, provided that the interleaver is
long enough. This phenomenon can be interpreted by the fact
that the SPA works well only if short cycle events are avoided
in the factor graph of Fig. 4 [23], i.e. when long interleavers
are used.

At high SNR, iterative SIC, due to the presence of residual
interference from user node n2, performs worse than the
proposed method. Similar BER curves (although not shown)
were obtained for the packets sent by n2.

In order to study the robustness of the channel estimation,
we choose a two-way relay channel with faster time-variations,
while keeping the same amount of pilot overhead. Fig. 9 (resp.
Fig. 10) show the BER performances for the packets sent
by n1, for a block length of K = 100 (resp. K = 1000)
at a normalized fading rate of 0.005. The proposed method
reaches an error floor for K = 100, which disappears for
K = 1000. However, the error floor of iterative SIC does
not disappear for large block lengths, due to residual multiple
access interference. Similar BER curves were also obtained
for the packets sent by n2.

B. Heterogeneous Scenario

In the heterogeneous scenario, user node n1 uses the same
BICM scheme as in the homogeneous scenario. User node
n2 uses the algebraic full-diversity STTC for BPSK modu-
lation with encoding polynomials (1, 5/7) in octal represen-
tation [19]. We apply the proposed message passing receiver
described in Section IV and a genie-aided receiver with perfect
CSI (obtained by removing the variable nodes corresponding
to MIMO channel gains in the factor graph of Fig. 5, and
applying message passing, assuming that all channel gains
are perfectly known to the relay). The BER results for the
packets sent by n1 (resp. n2) are shown in Fig. 11 (resp.
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Fig. 11. BER for the packets sent by n1: G = −3 dB, f1
mT = f2

mT =
10−3 and K = 1000. Solid curve: proposed method with perfect CSI after 3
iterations - Dashed curve: single-user bound with unknown two-way MIMO
channel after 3 iterations - Dashed dotted curves: proposed method with
unknown two-way MIMO channel for the 3 first iterations.
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Fig. 12. BER for the packets sent by n2: G = −3 dB, f1
mT = f2

mT =
10−3 and K = 1000. Solid curve: proposed method with perfect CSI after 3
iterations - Dashed dotted curves: proposed method with unknown two-way
MIMO channel for the 3 first iterations.

Fig. 12), for a block length of K = 1000, a normalized
fading rate of 10−3 and a relative path-loss gain of G = −3
dB. Satisfactory results are obtained after 3 iterations and no
further improvements could be observed by augmenting the
number of iterations.

VI. CONCLUSION

In this paper, physical layer network coding using the
joint decode-and-forward scheme, was considered. Recovering
the messages sent by both source nodes during the first
phase is a challenging multiple access problem, especially in
the presence of an unknown time-varying MIMO two-way
relay channel. Based on a factor graph representation of the
problem at hand, a soft-output message passing solution to
the problem of joint channel estimation and decoding at the
relay node was introduced. The key feature of the proposed



12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 8, AUGUST 2013

approach is the approximation of Gaussian mixture messages
by single-Gaussian messages, using moment-matching. This
keeps the computational complexity at an acceptable level,
while preserving excellent performances.

It is shown through numerical simulations that the proposed
receiver significantly outperforms the conventional iterative
serial interference canceller, with a reasonable amount of pilot
symbols. Moreover, as long as the interleaver is long enough,
the performances of the proposed algorithm stay close to the
single user bound.

Future extensions of this work include the consideration
of additional channel impairments, such as phase noise and
frequency offsets, and the introduction of more powerful
coding schemes, such as graph-based codes.

APPENDIX A

The following equality holds for a vector x of size l

NC(x : x1,P1) ×NC(x : x2,P2)

=NC
(
x : P2 [P1 + P2]

−1 P1

(
P−1

1 x1 + P−1
2 x2

)
,

P2 [P1 + P2]
−1 P1

)
× 1

πl det(P1 + P2)

× exp
{
−(x1 − x2)H [P1 + P2]

−1 (x1 − x2)
}

.

APPENDIX B
GAUSSIAN MIXTURE REDUCTION FORMULA (14)

We first derive the parameters of the Gaussian density
NC

(
yk : mk(x1

k),Sk(x1
k)
)
, having the same mean and co-

variance as the Gaussian mixture (13).

According to the moment-matching method of Sec-
tion III-A, we have

mk(x1
k)

=
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)

×
[
H1

k(d1
k)x1

k + H2
k(d2

k)x̂2
k\k

]
Sk(x1

k)

=
∑
d1

k

∑
d2

k

μd1
k
→gk

(d1
k)μd2

k
→gk

(d2
k)

×
[
H2

k(d2
k)P2

k\kH
2
k(d2

k)H + R

+
(
H1

k(d1
k)x1

k + H2
k(d2

k)x̂2
k\k − mk(x1

k)
)

×
(
H1

k(d1
k)x1

k + H2
k(d2

k)x̂2
k\k − mk(x1

k)
)H ]

.

Using the distributivity of multiplication over addition,

mk(x1
k) can also be written as

mk(x1
k)

=
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)H1
k(d1

k)x1
k

+
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)H2
k(d2

k)x̂2
k\k

=

⎛
⎝∑

d1
k

μd1
k
→gk

(d1
k)H1

k(d1
k)x1

k

⎞
⎠
⎛
⎝∑

d2
k

μd2
k
→gk

(d2
k)

⎞
⎠

+

⎛
⎝∑

d2
k

μd2
k→gk

(d2
k)H2

k(d2
k)x̂2

k\k

⎞
⎠
⎛
⎝∑

d1
k

μd1
k→gk

(d1
k)

⎞
⎠ .

If the messages are properly normalized, i.e.∑
d1

k
μd1

k→gk
(d1

k) = 1 and
∑

d2
k
μd2

k→gk
(d2

k) = 1, the
desired result follows, that is

mk(x1
k) = Ĥ1

kx
1
k + Ĥ2

kx̂
2
k\k.

Injecting this result in the expression of the covariance matrix
Sk(x1

k), and using the distributivity of multiplication over
addition we obtain

Sk(x1
k)

=
∑
d1

k

∑
d2

k

μd1
k→gk

(d1
k)μd2

k→gk
(d2

k)

×
[ (

H1
k(d1

k) − Ĥ1
k

)
x1

k +
(
H2

k(d2
k) − Ĥ2

k

)
x̂2

k\k

]
×
[ (

H1
k(d1

k) − Ĥ1
k

)
x1

k +
(
H2

k(d2
k) − Ĥ2

k

)
x̂2

k\k

]H

+
∑
d2

k

μd2
k→gk

(d2
k)H2

k(d2
k)P2

k\kH
2
k(d2

k)H

+ R

The cross terms of the double summation are equal to zero,
due to the independence of d1

k and d2
k. Therefore, we obtain

the following simplification

Sk(x1
k)

=
∑
d1

k

μd1
k
→gk

(d1
k)

(
H1

k(d1
k) − Ĥ1

k

)
x1

kx
1
k

H
(
H1

k(d1
k) − Ĥ1

k

)H

+
∑
d2

k

μd2
k
→gk

(d2
k)

{
H2

k(d2
k)P2

k\kH
2
k(d2

k)H

+
(
H2

k(d2
k) − Ĥ2

k

)
x̂2

k\kx̂
2
k\k

H
(
H2

k(d2
k) − Ĥ2

k

)H

}

+ R.

We average out x1
k , whose prior density is

p(x1
k) = NC(x1

k : 0mn, Imn), ∀k

according to the MIMO channel model in (5). So the final
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expression of the covariance matrix becomes

S2
k

=E
[
Sk(x1

k)
]

=

∫
Sk(x1

k)p(x1
k)dx1

k

=
∑
d1

k

μd1
k
→gk

(d1
k)

(
H1

k(d1
k) − Ĥ1

k

)

×
(∫

x1
kx

1
k

H
p(x1

k)dx1
k

)(
H1

k(d1
k) − Ĥ1

k

)H

+
∑
d2

k

μd2
k
→gk

(d2
k)
{
H2

k(d2
k)P2

k\kH
2
k(d2

k)H

+
(
H2

k(d2
k) − Ĥ2

k

)
x̂2

k\kx̂
2
k\k

H
(
H2

k(d2
k) − Ĥ2

k

)H }
+ R.

which is the desired result since∫
x1

kx
1
k

HNC(x1
k : 0mn, Imn)dx1

k = Imn.

APPENDIX C
DEMODULATION FORMULA (17)

Eq. (17) can be rewritten as

μgk→d1
k
(d1

k)

=
∑
d2

k

μd2
k→gk

(d2
k)

×
∫ [∫

p
(
yk|d1

k,x1
k,d2

k,x2
k

)
μx2

k→gk
(x2

k)dx2
k

]
× μx1

k→gk
(x1

k)dx1
k.

The inner integral already appeared in (13), so we have

μgk→d1
k
(d1

k)

=
∑
d2

k

μd2
k→gk

(d2
k)

×
∫

NC
(
yk : H1

k(d1
k)x1

k + H2
k(d2

k)x̂2
k\k,

H2
k(d2

k)P2
k\kH

2
k(d2

k)H + R
)

× μx1
k→gk

(x1
k)dx1

k.

Now injecting (16) in the previous result, we obtain

μgk→d1
k
(d1

k)

=
∑
d2

k

μd2
k
→gk

(d2
k)

×
∫

NC
(
yk : H1

k(d1
k)x1

k + H2
k(d2

k)x̂2
k\k,

H2
k(d2

k)P2
k\kH

2
k(d2

k)H + R
)

×NC(x1
k : x̂1

k\k,P1
k\k)dx1

k.

The integral in the previous expression can be expressed in
closed form (see [29] - p. 38). We obtain the desired final
expression in (17).

APPENDIX D
GAUSSIAN MIXTURE REDUCTION FORMULA (19)

We derive the parameters of the Gaussian density
NC

(
yk : mk(s2

k,x2
k),S1

k

)
, having the same mean and covari-

ance as the Gaussian mixture (18).
According to the moment-matching method of Sec-

tion III-A, we have

mk(s2
k,x2

k) =
∑
d1

k

μd1
k
→gk

(d1
k)
[
H1

k(d1
k)x̂1

k\k + H2
k(s2

k)x2
k

]

S1
k

=
∑
d1

k

μd1
k
→gk

(d1
k)

×
[
H1

k(d1
k)P1

k\kH
1
k(d1

k)H + R

+
(
H1

k(d1
k)x̂1

k\k + H2
k(s2

k)x2
k − mk(s2

k,x2
k)
)

× (
H1

k(d1
k)x̂1

k\k + H2
k(s2

k)x2
k − mk(s2

k,x2
k)
)H

]
.

If the messages are properly normalized, i.e.∑
d1

k
μd1

k→gk
(d1

k) = 1, the desired result is obtained.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[2] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 2006.

[3] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network
coding,” in Proc. ACM MOBICOM, Sep. 2006, pp. 358–365.

[4] S. Zhang and S. C. Liew, “Physical-layer network coding schemes over
finite and infinite fields,” in Proc. IEEE Globecom, Nov.–Dec 2008, pp.
1–6.

[5] P. Popovski and H. Yomo, “The anti-packets can increase the achievable
throughput of a wireless multi-hop network,” in Proc. IEEE ICC, June
2006, pp. 3885–3890.

[6] T. Koike-Akino, P. Popovski, and V. Tarokh, “Optimized constellations
for two-way wireless relaying with physical network coding,” IEEE J.
Sel. Areas Commun., vol. 27, no. 5, pp. 773–787, June 2009.

[7] P. Popovski and H. Yomo, “Bi-directional amplification of throughput
in a wireless multihop network,” in Proc. IEEE VTC, May 2006, pp.
588–593.

[8] P. Popovski and H. Yomo, “Physical network coding in two-way wireless
relay channels,” in Proc. IEEE ICC, June 2007, pp. 707–712.

[9] F. Rossetto and M. Zorzi, “Mixing network coding and cooperation for
reliable wireless communications,” IEEE Trans. Wireless Commun., pp.
15–21, Feb. 2011.

[10] B. Talha and M. Pätzold, “Channel models for mobile-to-mobile coop-
erative communication systems: A state of the art review,” IEEE Veh.
Technol. Mag., vol. 6, no. 2, pp. 33–43, June 2011.

[11] F. Gao, R. Zhang, and Y. C. Liang, “Optimal channel estimation and
training design for two-way relay networks,” IEEE Trans. Commun.,
vol. 57, no. 10, pp. 3024–3033, Oct. 2009.

[12] T.-H. Pham, Y.-C. Liang, A. Nallanathan, and H. K. Garg, “Optimal
training sequences for channel estimation in bi-directional relay net-
works with multiple antennas,” IEEE Trans. Commun., vol. 58, no. 2,
pp. 474–479, Feb. 2010.

[13] G. Wang, F. Gao, W. Chen, and C. Tellambura, “Channel estimation
and training design for two-way relay networks in time-selective fading
environments,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2681–
2691, Aug. 2011.

[14] F. Gao, R. Zhang, and Y. C. Liang, “Channel estimation for OFDM
modulated two-way relay networks,” IEEE Trans. Signal Process., vol.
57, no. 11, pp. 4443–4455, Nov. 2009.

[15] T. Koike-Akino, P. Popovski, and V. Tarokh, “Denoising strategy for
convolutionally encoded bidirectional relaying,” in Proc. IEEE ICC,
June 2009, pp. 1–5.

[16] D. To and J. Choi, “Convolutional codes in two-way relay networks
with physical-layer network coding,” IEEE Trans. Wireless Commun.,
vol. 9, no. 9, pp. 2724–2729, Sep. 2010.



14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 8, AUGUST 2013

[17] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311–335, Mar. 1998.

[18] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and code
construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar.
1998.

[19] H. El Gamal and A. R. Hammons, “On the design and performance
of algebraic space-time codes for BPSK and QPSK modulation,” IEEE
Trans. Commun., vol. 50, no. 6, pp. 907–913, June 2002.

[20] E. Biglieri, G. Taricco, and E. Viterbo, “Bit-interleaved time-space codes
for fading channels,” in Proc. CISS, Mar. 2000.

[21] T. Wang and G. B. Giannakis, “Complex field network coding for
multiuser cooperative communications,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 3, pp. 561–571, Apr. 2008.

[22] S. Yang and R. Koetter, “Network coding over a noisy relay: A belief
propagation approach,” in Proc. ISIT, June 2007, pp. 801–804.

[23] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graph and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb 2001.

[24] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[25] F. Lehmann, “A joint decode-and-forward strategy for physical network
coding based on factor graphs,” in Proc. IEEE WCNC, Apr. 2012.

[26] S. Lin and D. J. Costello, Error Control Coding. Englewood Cliffs, NJ:
Prentice Hall, 1983.

[27] G. L. Stüber, Principles of Mobile Communications. Norwell, MA:
Kluwer Academic Publishers, 1999.

[28] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Francisco:
Morgan Kaufmann, 1988.

[29] H. Tanizaki, Nonlinear Filters: Estimation and Applications. Berlin:
Springer, 1996.

[30] D. C. Fraser and J. E. Potter, “The optimum linear smoother as a
combination of two optimum linear filters,” IEEE Trans. Autom. Control,
vol. 14, pp. 387–390, Aug. 1969.

[31] X. Li, A. Chindapol, and J. A. Ritcey, “Bit-interleaved coded modulation
with iterative decoding and 8-PSK signaling,” IEEE Trans. Commun.,
vol. 50, no. 8, pp. 1250–1257, Aug. 2002.

[32] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[33] F. Simoens and M. Moeneclaey, “Code-aided estimation and detection
on time-varying correlated MIMO channels: A factor-graph approach,”
EURASIP J. Applied Signal Process., pp. 1–11, 2006.

[34] M. Kobayashi, J. Boutros, and G. Caire, “Successive interference
cancellation with SISO decoding and EM channel estimation,” IEEE
J. Sel. Areas Commun., vol. 19, no. 8, pp. 1450–1460, Aug. 2001.

[35] Y. Zhu, D. Guo, and M. L. Honig, “A message-passing approach for
joint channel estimation, interference mitigation, and decoding,” IEEE
Trans. Wireless Commun., vol. 8, no. 12, pp. 6008–6018, Dec. 2009.

[36] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, NJ: Prentice Hall, 1979.

[37] Y. Li and X. Huang, “The simulation of independent Rayleigh faders,”
IEEE Trans. Commun., vol. 50, no. 9, pp. 1503–1514, Sep. 2002.

Frederic Lehmann received the E.E. and the
M.S.E.E. degrees from ENSERG, France, in 1998.
In 2002, he received the Ph.D. in electrical engi-
neering from the National Polytechnical Institute,
Grenoble (INPG), France. He worked as a Research
Engineer with STMicroelectronics from 1999 to
2002. From 2003 to 2004, he was a Post-Doctoral
Researcher at LAAS (Laboratory for Analysis and
Architecture of Systems), CNRS, Toulouse, France.
Currently, he is an Assistant Professor at Institut
TELECOM, Telecom SudParis, Evry, France. His

main research interests are in the areas of communication theory, non-linear
signal processing, and statistical image processing.


