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he tern1 “software engineering” was 
coined in 1968 as a statement of aspi- T ration - a sort of rallying cry. That 

year, the North Atlantic Treaty Organiza- 
tion convened aworkshop by that name to 
assess the state and prospects of software 
production. Capturing the iinagination of 
software developers, the NATO phrase 
“software engineering” achieved popular- 
ity during the 1970s. It now refers to acol- 
lection of management processes, soft- 
ware tooling, and design activities for 
software development. The resulting prac- 
tice, however, differs significantly from the 
practice of older forms of engineering. 

What is engineering? 
“Software engineering” is a label 

applied to a set of current practices for de- 
velopment. But using the word “engineer- 
ing” to describe this activity takes consid- 
erable libertywith the common use of that 
term. The more customary usage refers to 
the disciplined application of scientific 
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knowledge to resolve conflicting con- 
straints and requirements for problems of 
immediate, practical significance. 

Definitions of “engineering” abound. 
Although details differ, they share some 
common clauses: 

Creating co.Tt-effective solutions . . . Engi- 
neering is not just about solving prob 
lems; it is about solving problems with 
economical use of all resources, including 
money. 

. . . to practical problems . . . Engineering 
deals with practical problems whose solu- 
tions matter to people outside the engi- 
neering domain - the customers. 

. , . 4y applying scimtzfic knowledge.. . En- 
gineering solves problems in a particular 
way: by applying science, mathematics, 
and design analysis. 

. . . to building things . . . Engineering 
emphasizes the solutions, which are usu- 
ally tangible artifacts. 

. . . in the service of mankind. Engineer- 
ing not  only serves the immediate 
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customer, but it also develops technology 
and expertise that will support the society. 

Engineering relies on codifying scien- 
tific knowledge about a technological 
problem domain in a form that is directly 
useful to the practitioner, thereby provid- 
ing answers for questions that commonly 
occur in practice. Engineers of ordinary 
talent can then apply this knowledge to 
solve problems far faster than they other- 
wise could. In this way, engineering shares 
prior solutions rather than relying always 
on virtuoso problem solving. 

Engineering practice enables ordinary 
practitioners so they can create sophisti- 
cated systems that work - unspectac- 
ularly, perhaps, but reliably. The history of 
development is marked by both successes 
and failures. The successes have often 
been virtuoso performances or the result 
of diligence and hard work. The failures 
have often reflected poor understanding 
of the problem to be solved, mismatch of 
solution to problem, or inadequate fol- 
low-through from design to implementa- 
tion. Some failed by never working, others 
by overrunning cost and schedule budgets. 

In current software practice, knowledge 
about techniques that work is not shared 
effectively with later projects, nor is there 
a large body of development knowledge 
organized for ready reference. Computer 
science has contributed some relevant 
theory, but practice proceeds largely inde- 
pendently of this organized knowledge. 
Given this track record, there are funda- 
mental problems with the use of the term 
“software engineer.” 

Routine and innovative design. Engi- 
neering design tasks are of several kinds. 
One of the most significant distinctions 
separates routine from innovative design. 
Routine design involves solving familiar 
problems, reusing large portions of prior 
solutions. Innovative design, on the other 
hand, involves finding novel solutions to 
unfamiliar problems. Original designs are 
much more rarely needed than routine 
designs, so the latter is the bread and but- 
ter of engineering. 

Most engineering disciplines capture, 
organize, and share design knowledge to 
make routine design simpler. Handbooks 
and manuals are often the carriers of this 
organized information. But current nota- 
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tions for software designs are not ade- 
quate for the task of both recording and 
communicating designs, so they fail to 
provide a suitable representation for such 
handbooks. 

Software in most application domains is 
treated more often as original than rou- 
tine - certainly more so than would be 
necessary if we captured and organized 
what we already know. One path to in- 
creased productivity is identifying applica- 
tions that could be routine and develop 
ing appropriate support. 

The current focus on reuse emphasizes 
capturing and organizing existing knowl- 
edge of a particular kind: knowledge ex- 
pressed in the form of code. Indeed, sub  
routine libraries - especially of system 
calls and general-purpose mathematical 

Given our track record, 
there are mndamental 

problems with the 
use ofthe term 

“software englneefi” 

routines - have been a staple of program- 
mingfor decades. But this knowledge can- 
not be useful if programmers do not know 
about it or are not encouraged to use it. 
Furthermore, library components require 
more care in design, implementation, and 
documentation than similar components 
that are simply embedded in systems. 

Practitioners recognize the need for 
mechanisms to share experience with 
good designs. This cry from the wilder- 
ness appeared on the Software Engineer- 
ing News Group, a moderated electronic 
mailing list: 

“In Chem E, when I needed to design a 
heat exchanger, I used a set of references 
that told me what the constants were ... 
and the standard design equations. . . . 

“In general, unless I, or someone else in 
my [software-] engineering group, has 
read or remembers and makes known a 
solution to a past problem, I’m doomed to 
recreate the solution. . . . I guess.. . the crit- 
ical difference is the ability to put together 
little pieces of the problem that are rela- 
tively well known, without having to gen- 

erate a custom solution for every applica- 
tion. ... 

“I want to make it clear that I am aware 
of algorithm and code libraries, but they 
are incomplete solutions to what I am de- 
scribing. (There is no Perry’s Handbook for 
Software Engineering.) ” 

This former chemical engineer is com- 
plaining that software lacks the institu- 
tionalized mechanisms of a mature engi- 
neering discipline for recording and 
disseminating demonstrably good de- 
signs and ways to choose among design 
alternatives. (Perry’s Chemical Enginm’ng 
Handbook published by McGraw-Hill, is 
the standard design handbook for chemi- 
cal engineering; it is about four inches 
thick and printed in tiny type on 8.5” x 11” 
tissue paper.) 

Model for the evolution of an engineer- 
ing discipline. Historically, engineering 
has emerged from ad hoc practice in two 
stages: First, management and produc- 
tion techniques enable routine produc- 
tion. Later, the problems of routine p r e  
duction stimulate the development of a 
supporting science; the mature science 
eventually merges with established prac- 
tice to yield professional engineering 
practice. Figure 1 shows this model. 

The exploitation of a technology begins 
with craftsmanship: A set of problems 
must be solved, and they get solved any 
which way. They are solved by talented 
amateurs and byvirtuosos, but no distinct 
professional class is dedicated to prob 
lems of this kind. Intuition and brute 
force are the primary movers in design 
and construction. Progress is haphazard, 
particularly before the advent of good 
communication; thus, solutions are in- 
vented and reinvented. The transmission 
of knowledge between craftsmen is slow, 
in part because of underdeveloped com- 
munications, but also because the tal- 
ented amateurs often do not recognize 
any special need to communicate. 

Nevertheless, ad hoc practice eventually 
moves into the folklore. This craft stage of 
development sees extravagant use of avail- 
able materials. Construction or manufac- 
ture is often for personal or local use or 
for barter, but there is little or no large- 
scale production in anticipation of resale. 
Community barn raisings are an example 
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of this stage; so is software written by appli- 
cation experts for their own ends. 

At some point, the product of the tech- 
nology becomes widely accepted and de- 
mand exceeds supply. At that point, at- 
tempts are made to define the resources 
necessary for systematic commercial mm- 
ufacture and to marshal the expertise for 
exploiting these resources. Capital is 
needed in advance to buy raw materials, 
so financial skills become important, and 
the operating scale increases over time. 

As commercial practice flourishes, 
skilled practitioners are required for con- 
tinuity and for consistency of effort. They 
are trained pragmatically in established 
procedures. Management may not know 
why these procedureswork, but they know 
the procedures do work and how to teach 
people to execute them. 

The procedures are refined, but the re- 
finement is driven pragmatically: A modi- 
fication is tried to see if it works, then in- 
corporated in standard procedure if it 
does. Economic considerations lead to 
concerns over the efficiency of proce- 
dures and the use of materials. People 
begin to explore ways for production facil- 
ities to exploit the technology base; eco- 
nomic issues often point out problems in 
commercial practice. Management strate- 
gies for controlling development fit at this 
point of the model. 

The problems of current practice often 
stimulate the development of a corre- 
sponding science. There is frequently a 
strong, productive interaction between 
commercial practice and the emerging 
science. At some point, the science 
becomes sufficiently mature to be a signif- 
icant contributor to the commercial prac- 
tice. This marks the emergence of engi- 
neering practice in the sense thatwe know 
it today - sufficient scientific basis to en- 
able a core of educated professionals so 
they can apply the theory to analysis of 
problems and synthesis of solutions. 

For most disciplines, this emergence oc- 
curred in the 18th and early 19th centu- 
ries as the common interests in basic phys 
ical understandings of natural science 
and engineering gradually drew together. 
The reduction of many empirical engi- 
neering techniques to a more scientific 
basis was essential to further engineering 
progress. And this liaison stimulated fur- 

Science 

Production Professional engineering -+- Commercial 

Virtuosos and talented 

Intuition and brute force 
Haphazard progress 
Casual transmission 
Extravagant use of 
available materials 
Manufacture for use 
rather than sale 

amateurs 
Skilled craftsmen 
Established procedure 
Pragmatic refinement 
Training in mechanics 
Economic concern for cost 

Manufacture for sale 

Educated professionals 
Analysis and theory 
Progress relies on science 
Educated professional class 
Enabling new applications 

Market segmentation by 
and supply of materials through analysis 

product variety 

Figure 1. Evolution of an engineering discipline. The lower lines track the technology, 
and the upper lines show h o w  the entry of production skills and scientific knowledge con- 
tribute new capability to  the engineering practice. 

ther advances in natural science. “An im- 
portant and mutually stimulating tie-up 
between natural and engineering science, 
a development [that] had been discour- 
aged for centuries by the long-dominant 
influence of early Greek thought, was at 
long last consummated,” wrote historian 
James Kip Finch.’ 

The emergence of an engineering disci- 
pline lets technological development pass 
limits previously imposed by relying on in- 
tuition; progress frequently becomes de- 
pendent on science as a forcing function. 
A scientific basis is needed to drive analy- 
sis, which enables new applications and 
even market segmentation via product va- 
riety. Attempts are made to gain enough 
control over design to target specific prod- 
ucts on demand. 

Thus, engineering emerges from the 
commercial exploitation that supplants 
craft. Modern engineering relies critically 
on adding scientific foundations to craft 
and commercialization. Exploiting tech- 
nology depends not only on scientific en- 
gineering but also on management and 
the marshaling of resources. Engineering 
and science support each other: Engineer- 
ing generates good problems for science, 
and science, after finding good problems 
in the needs of practice, returns workable 
solutions. Science is often not driven by 
the immediate needs of engineering; how- 
ever, good scientific problems often fol- 
low from an understanding of the prob 
lems that the engineering side of the field 
is coping with. 

The engineering practice of software 
has recently come under criticism for 
lacking a scientific basis. The usual curric- 
ulum has been attacked for neglecting 
mathematics’ and engineering ~cience.~ 
Although current software practice does 
not match the usual expectations of an en- 
gineering discipline, the model described 
here suggests that vigorous pursuit of a p  
plicable science and the reduction of that 
science to practice can lead to a sound en- 
gineering discipline of software. 

Examples from traditional engineering. 
Two examples make this model concrete: 
the evolution of engineering disciplines 
as demonstrated by civil and chemical en- 
gineering. The comparison of the two is 
also illuminating, because they have very 
different basic organizations. 

Civil enpnem’ng: a basis in themy. Origi- 
nally sc-called to distinguish it from mili- 
tary engineering, civil engineering in- 
cluded all of civilian engineering until the 
middle of the 19th century. A divergence 
of interests led engineers specializing in 
other technologies to break away, and 
today civil engineers are the technical ex- 
perts of the construction industry. They 
are concerned primarily with large-scale, 
capital-intensive construction efforts, like 
buildings, bridges, dams, tunnels, canals, 
highways, railroads, public water supplies, 
and sanitation. As a rule, civil-engineering 
efforts involve well-defined task groups 
that use appropriate tools and technole 
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Figure 2. Evolution of civil engineering. 

gies to execute well-laid plans. 
Although large civil structures have 

been built since before recorded history, 
only in the last few centuries has their de- 
sign and construction been based on the- 
oretical understanding rather than on in- 
tuition and accumulated experience. 
Neither the artisans of the Middle Ages 
nor of the ancient world showed any signs 
of the deliberate quantitative application 
of mathematics to determine the dimen- 
sions and shapes that characterizes mod- 
ern civil engineering. But even without 
formal understanding, they documented 
pragmatic rules for recurring elements. 
Practical builders had highly developed 
intuitions about statics and relied on a few 
empirical rules. 

The scientific revolution of the Renais 
sance led to serious attempts by Galileo 
Galilei, Filippo Brunelleschi, and others 
to explain structures and why they worked. 
Over a period of about 200 years, there 
were attempts to explain the composition 
of forces and bending of a beam. How- 
ever, progress was slowed for a long time 
by problems in formulating basic notions 
like force, particularly the idea that gravity 
could be treated as just another force like 
all the others. Until the basic concepts 
were sorted out, it was not possible to do a 
proper analysis of the problem of combin- 
ing forces (using vector addition) that we 
now teach to freshmen, nor was it possible 
to deal with strengths of materials. 

Around 1700, PierreVarignon and Isaac 
Newton developed the theory of statics to 
explain the composition of forces and 
Charles Augustin de Coulomb and Louis 
Marie Henri Navier explained bending 
with the theory of strength of materials. 
These now provide the basis for civil engi- 
neering. By the middle of the 18th century, 
civil engineers were tabulating properties 
of materials. 

The mid-18th century also saw the first 
attempts to apply exact science to pmcti- 
cal building. Pope Benedict ordered an 
analysis of St. Peter’s dome in 1742 and 
1743 to determine the cause of cracks and 
propose repairs; the analysis was based on 
the principle of virtual displacement and 
was carried out precisely (although the 
model is now known to fail to account 
properly for elasticity). By 1850, it was pos 
sible for Robert Stephenson’s Britannia 
Tubular Bridge over the Menai Strait be- 
tween Wales and England to be subjected 
to a formal structural analysis. 

Thus, even after the basic theories were 
in hand, it took another 150 years before 
the theory w a s  rich enough and mature 
enough to have directutilityat the scale of 
a bridge design. 

Civil engineering is thus rooted in two 
scientific theories, corresponding to two 
classical problems. One problem is the 
composition of forces: finding the resul- 
tant force when multiple forces are com- 
bined. The other is the problem of bend- 
ing: determining the forces within a beam 
supported at one end and weighted at the 
other. Two theories, statics and strength of 
materials, solve these problems; both were 
developed around 1700. Modern civil en- 
gineering is the application of these thee  
ries to the problem of constructing build- 
ings. 

Tor  nearly two centuries, civil engineer- 
ing has undergone an irresistible transi- 
tion from a traditional craft, concerned 
with tangible fashioning, towards an a b  
stract science, based on mathematical cal- 
culation. Every new result of research in 
structural analysis and technology of ma- 
terials signified a more rational design, 
more economic dimensions, or entirely 
new structural possibilities. There were no 
apparent limitations to the possibilities of 
analytical approach; there were no appar- 

ent problems in building construction 
[that] could not be solved by calculation,” 
wrote Hans Straub in his history of civil 
engineering! 

You can date the transition from craft to 
commercial practice to the Romans’ ex- 
tensive transportation system of the first 
century. The underlying science emerged 
about 1700, and it matured to successful 
application to practice sometime between 
the mid-18th century and the mid-19th 
century. Figure 2 places civil engineer- 
ing’s significant events on my model of en- 
gineering evolution. 

Chemical engineering: a basis in practice. 
Chemical engineering is a very different 
kind of engineering than civil engineer- 
ing. This discipline is rooted in empirical 
observations rather than in a scientific 
theory. It is concerned with practical 
problems of chemical manufacture; its 
scope covers the industrial-scale produc- 
tion of chemical goods: solvents, pharma- 
ceuticals, synthetic fibers, rubber, paper, 
dyes, fertilizers, petroleum products, 
cooking oils, and so on. Although chemis 
try provides the specification and design 
of the basic reactions, the chemical engi- 
neer is responsible for scaling the reac- 
tions up from laboratory scale to factory 
scale. As a result, chemical engineering 
depends as heavily on mechanical engi- 
neering as on chemistry. 

Until the late 18th century, chemical 
production was largely a cottage industry. 
The first chemical produced at industrial 
scale was alkali, which was required for the 
manufacture of glass, soap, and textiles. 
The first economical industrial process 
for alkali emerged in 1789, well before the 
atomic theory of chemistry explained the 
underlying chemistry. By the mid-19th 
century, industrial production of dozens 
of chemicals had turned the British Mid- 
lands into a chemical-manufacturing d is  
trict. Laws were passed to control the re- 
sulting pollution, and pollution-control 
inspectors, called alkali inspectors, moni- 
tored plant compliance. 

One of these alkali inspectors, G.E. 
Davis, worked in the Manchester area in 
the late 1880s. He realized that, although 
the plants he was inspecting manufac- 
tured dozens of different kinds of chemi- 
cals, there were not dozens of different 
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procedures involved. He identified a col- 
lection of functional operations that took 
place in those processing plants and were 
used in the manufacture of different 
chemicals. He gave a series of lectures in 
1887 at the Manchester Technical School. 
The ideas in those lectures were imported 
to the US by the MassachusettsInstitute of 
Technology in the latter part of the cen- 
tury and form the basis of chemical engi- 
neering as it is practiced today. This struc- 
ture is called unit Operations; the term was 
coined in 1915 by Arthur D. Little. 

The fundamental problems of chemical 
engineering are the quantitative control 
of large masses of material in reaction and 
the design of cost-effective industrial-scale 
processes for chemical reactions. 

The unit-operations model asserts that 
industrial chemical-manufacturing pro- 
cesses can be resolved into a relatively few 
units, each of which has a definite func- 
tion and each of which is used repeatedly 
in different kinds of processes. The unit 
operations are steps like filtration and 
clarification, heat exchange, distillation, 
screening, magnetic separation, and flota- 
tion. The basis of chemical engineering is 
thus a pragmatically determined collec- 
tion of very high-level functions that ade- 
quately and appropriately describe the 
processes to be carried out. 

“Chemical engineering as a science . . . is 
not a composite of chemistry and me- 
chanical and civil engineering, but a sci- 
ence of itself, the basis of which is those 
unit operations [that] in their proper se- 
quence and coordination constitute a 
chemical process as conducted on the in- 
dustrial scale. These operations . . . are not 
the subject matterofchemistryas suchnor 
of mechanical engineering. Their treat- 
ment is in the quantitative way, with 
proper exposition of the laws controlling 
them and of the materials and equipment 
concerned in them,” the American Insti- 
tute of Chemical Engineers Committee 
on Education wrote in 1922.5 

This is a very different kind of structure 
from that of civil engineering. It is a prag- 
matic, empirical structure - not a theo- 
retical one. 

You can date the transition from craft to 
commercial practice to the introduction 
of the LeBlanc process for alkali in 1789. 
The science emerged with the British 

1 

I Production 

Figure 3. Evolution of chemical engineering. 

chemist John Dalton’s atomic theory in 
the early 19th century, and it matured to 
successful merger with large-scale me- 
chanical processes in the 1890s. Figure 3 
places chemical engineering’s significant 
events on my model. 

Softwaretechnology 
Where does software stand as an engi- 

neering discipline? For software, the 
problem is appropriately an engineering 
problem: creating cost-effective solutions 
to practical problems, building things in 
the service of mankind. 

Information processing as an economic 
force. The US computer business - in- 
cluding computers, peripherals, pack- 
aged software, and communications - 
was about $150 billion in 1989 and is pro- 
jected to be more than $230 billion by 
1992. The packaged-software component 
is projected to grow from $23.7 billion to 
$37.5 billion in this period, according to 
the Data Analysis Group’s fourth-quarter 
1989 forecasts. Services, including systems 
integration and in-house development, 
are not included in these figures. 

Worldwide, software sales amounted to 
about $65 billion in 1989. This does not 
include the value of in-house develop 
ment, which is a much larger activity. 
World figures are hard to estimate, but the 
cost of in-house software in the US alone 
may be in the range of $150 billion to $200 
billion: It is not clear how much modifica- 
tion after release (so-called “mainte- 
nance”) is included in this figure. Thus, 
software is coming to dominate the cost of 
information processing. 

The economic presence of information 
processing also makes itself known 
through the actual and opportunity costs 
of systems that do not work. Examples of 
costly system failures abound. Less obvi- 

ous are the costs of computing that is not 
even tried: development backlogs so large 
that they discourage new requests, 
gigabytes of unprocessed raw data from 
satellites and space probes, and so on. De- 
spite very real (and substantial) successes, 
the litany of mismatches ofcost, schedule, 
and expectations is a familiar one. 

Growing role of software in critical a p  
plications. The US National Academy of 
Engineering recently selected the 10 great- 
est engineering achievements of the last 
25 years? Of the 10, three are informatics 
achievements: communications and in- 
formationgathering satellites, the micro- 
processor, and fiber-optic communica- 
tion. Two more are direct applications of 
computers: computer-aided design and 
manufacturing and the computerized 
axial tomography scan. And most of the 
rest are computer-intensive: the Moon 
landing, advanced composite materials, 
the jumbo jet, lasers, and the application 
of genetic engineering to produce new 
pharmaceuticals and crops. 

The conduct of science is increasingly 
driven by computational paradigms 
standing on equal footing with theoretical 
and experimental paradigms. Both scien- 
tific and engineering disciplines require 
very sophisticated computing. The de- 
mands are often stated in terms of raw 
processing power - “an exdop  (10’’) 
processor with teraword memory,” “a 
petabyte ( of storage,” as one article 
put it’ - but the supercomputing com- 
munity is increasingly recognizing devel- 
opment, not mere raw processing, as a 
critical bottleneck. 

Because of software’s pervasive pres 
ence, the appropriate objective for its de- 
velopers should be the effective delivery 
of computational capability to real users 
in forms that match their needs. The die 
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Table 1. 
Significant shifts in research attention. 

1960 f 5 years: 1970 f 5 years: 1980 + 5 years: 
Attribute programming any-which-way programming-in-the small programming-in-the-large 

Characteristic problems Small programs Algorithms and programming Interfaces, management 

Data issues Representing structure and Data structures and types Long-lived databases, symbolic 

Control issues Elementary understanding of Programs execute once and Program assemblies execute 

Specification issues Mnemonics, precise use of Simple input/output Systemswith complex 

State space State not well understood Small, simple state space Large, structured state space 

Management focus None Individual effort Team efforts, system lifetime 

Tools, methods Assemblers, core dumps Programming language, Environments, integrated 

system structures 

as well as numeric symbolic information 

control flows terminate con tinually 

prose specifications specifications 

apart from control 

maintenance 

compilers, linkers, loaders tools, documents 

tinction between a system’s computa- 
tional component and the application it 
serves is often very soft - the develop 
ment of effective software now often re- 
quires substantial application expertise. 

Maturity of development techniques. 
Our development abilities have certainly 
improved over the 40 or so years of pro- 
gramming experience. Progress has been 
both qualitative and quantitative. More- 
over, it has taken different forms in the 
worlds of research and practice. 

One of the most familiar characteriza- 
tions of this progress has been the shift 
from programming-in-the-small to pro- 
gramming-in-the-large. It is also useful to 
look at a shift that took place 10 years be- 
fore that, from programming-any-which- 
way to programming-in-the-small. Table 1 
summarizes these shifts, both of which de- 
scribe the focus of attention of the soft- 
ware research community. 

Before the mid-l960s, programming 
was substantially ad hoc; itwas a significant 
accomplishment to get a program to run 
at all. Complex software systems were cre- 
ated - some performed very well - but 
their construction was either highly em- 
pirical or a virtuoso activity. To make pro- 
grams intelligible, we used mnemonics, 
we tried to be precise about writing com- 
ments, and we wrote prose specifications. 
Our emphasis was on small programs, 
which was all we could handle predictably. 

We did come to understand that com- 
puters are symbolic information proces 
SOTS, not just number crunchers - a sig- 
nificant insight. But the abstractions of 

algorithms and data structures did not 
emerge until 1967, when Donald Knuth 
showed the utility of thinking about them 
in isolation from the particular programs 
that happened to implement them. 

A similar shift in attitudes about specifi- 
cations took place at about the same time, 
when Robert Floyd showed how attaching 
logical formulas to programs allows for- 
mal reasoning about the programs. Thus, 
the late 1960s saw a shift from crafting 
monolithic programs to an emphasis on 
algorithms and data structures. But the 
programs in question were still simple 
programs that execute once and then ter- 
minate. 

You can view the shift that took place in 
the mid-1 970s from programming-in-the- 
small to programming-in-the-large in 
much the same terms. Research attention 
turned to complex systems whose specifi- 
cations were concerned not only with the 
functional relations of the inputs and out- 
puts, but also with performance, reliabil- 
ity, and the states through which the sys 
tem passed. This led to a shift in emphasis 
to interfaces and managing the program- 
ming process. 

In addition, the data of complex systems 
often outlives the programs and may be 
more valuable, so we learned that we now 
have to worry about integrity and consis 
tency of databases. Many of our programs 
(for example, the telephone switching sys 
tem or a computer operating system) 
should not terminate; these systems re- 
quire a different sort of reasoning than do 
programs that take input, compute, pro- 
duce output, and terminate. In systems 

that run indefinitely, the sequence of sys 
tem states is often much more important 
than the (possibly undesirable) termina- 
tion condition. 

The tools and techniques that accompa- 
nied the shift from programming-any- 
which-way to programming-in-the-small 
provided first steps toward systematic, 
routine development of small programs; 
they also seeded the development of a xi- 
ence that has matured only in the last de- 
cade. The tools and techniques that ac- 
companied the shift from program- 
ming-in-the-small to programming-in-the- 
large were largely geared to supporting 
groups of programmers working together 
in orderlyways and to giving management 
a view into production processes. This di- 
rectly supports the commercial practice of 
development. 

Practical development proceeded to 
large complex systems much faster than 
the research community did. For exam- 
ple, the Sage missiledefense system of the 
1950s and the Sabre airline-reservation 
system of the 1960s were successful inter- 
active systems on a scale that far exceeded 
the maturity of the science. They appear 
to have been developed by excellent engi- 
neers who understood the requirements 
well and applied design and development 
methods from other (like electrical) engi- 
neering disciplines. Modern develop 
ment methodologies are management 
procedures intended to guide large num- 
bers of developers through similar disci- 
plines. 

The term “software engineering”was in- 
troduced in 1968 to name a conference 
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convened by NATO to discuss problems 
of software production.’ Despite the label, 
most of the discussion dealt with the chal- 
lenge of progressing from the craft stage 
to the commercial stage of practice. In 
1976, Barry Boehm proposed the defini- 
tion of the term as “the practical applica- 
tion of scientific knowledge in the design 
and construction of computer programs 
and the associated documentation re- 
quired to develop, operate, and maintain 
them.”1° This definition is consistent with 
traditional definitions of engineering, al- 
though Boehm noted the shortage of sci- 
entific knowledge to apply. 

Unfortunately, the term is now most 
often used to refer to life-cycle models, 
routine methodologies, cost-estimation 
techniques, documentation frameworks, 
configuration-management tools, quality- 
assurance techniques, and other tech- 
niques for standardizing production activ- 
ities. These technologies are characteris- 
tic of the commercial stage of evolution - 
“software management” would be a much 
more appropriate term. 

Scientific basis for engineering p d c e .  
Engineering practice emerges from com- 
mercial practice by exploiting the results 
of a companion science. The scientific re- 
sults must be mature and rich enough to 
model practical problems. They must also 
be organized in a form that is useful to 
practitioners. Computer science has a few 
models and theories that are ready to sup  
port practice, but the packaging of these 
results for operational use is lacking. 

Maturity ofsupporting science. Despite the 
criticism sometimes made by software 
producers that computer science is irrele- 
vant to practical software, good models 
and theories huvebeen developcd in areas 
that have had enough time for the thco 
ries LO mature. 

In the early 196Os, algorithms and data 
structures were simply created as part of 
each program. Some folklore grew up 
about good ways to do certain sorts of 
things, and it was transmitted infomially. 
By the mid-l960s, good prograrrirrieIs 
shared the intuition that if you get the 
data structures right, the rest of the p r e  
gram is much simpler. In the late 1960s, 
algorithms and data structures began to 
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Figure A Cycle of how good software models develop as a result of the interaction be- 
tween science and engineering. 

be abstracted from individual programs, 
and their essential properties were de- 
scribed and analyed. 

The 1970s saw substantial progress in 
supporting theories, including perfor- 
mance analysis and correctness. Concur- 
rently, the programming implications of 
these abstractions were explored; a b  
stractdata-type research dealtwith such is- 
sues as: 

Specifications: abstract models and al- 
gebraic axioms. 

Software structure: bundling repre- 
scntation with algorithms. 

Language issues: modules, scope, and 
user-defined typcs. 

Information hiding: protecting the in- 
tegrity of information not in the specif- 
cation. 

Integrity constraints: invariants of data 
structures. 

Cornposilion rules: declarations. 
Both sound theory and language s u p  

port were available by the early 1980s, and 
routine good practice now depends on 
this support. 

Compiler construction is another good 
example. In 1960, simply writing a com- 
piler at all was a major achievement; it is 
not clear thatwe really understood what a 
higher level language was. Formal syntax 
was first used systematically for AlgoldO, 
and tools for processing it automatically 
(then called compiler compilers, but now 
called parser generators) were first devel- 
oped in the mid-1960s and made practical 

in the 1970s. Also in the 1970s, we started 
developing theories of semantics and 
types, and the 1980s have brought signifi- 
cant progress toward the automation of 
compiler construction. 

Both of these examples have roots in the 
problems of the 1960s and became genu- 
inely practical in the 1980s. It takes a good 
20 years from the time that work starts on 
a theory un til it provides serious assistance 
to routine practice. Development periods 
of comparable length have also preceded 
the widespread use of systematic methods 
and technologies like structured p r e  
gramming, Smalltalk, and Unix, as Sam 
Redwine and colleagues have shown.” 
But the whole field of computing is only 
about 40 years old, and many theories are 
emerging in the research pipeline. 

Interaction between science and engineen‘ng. 
The development of good models within 
the software domain follows this pattern: 

We engineers begin by solving problems 
anyway we can. After some time, we distin- 
guish in those ad hoc solutions things that 
usually work and things that do not usu- 
ally work. The ones that do work enter the 
folklore: People tell each other about 
them informally. As the folklore becomes 
more and more systenratic, we codify it as 
written heuristics and rules of procedure. 
Eventually, that codification becomes crisp 
enough to support models and theories, 
together with the associated mathematics. 
These can then help improve practice, 
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and experience from that practice can 
sharpen the theories. Furthermore, the 
improvement in practice let us think 
about harder problems -which we first 
solve ad hoc, then find heuristicsfor, even- 
tually develop new models and theories 
for, and so on. Figure 4 illustrates this cycle. 

The models and theories do not have to 
be fullyfleshedoutfor this process to assist 
practice: The initial codification of folk- 
lore may be useful in and of itself. 

This progression is illustrated in the use 
of machine language for control flow in 
the 1960s. In the late 1950s and the early 
1960s, we did not have crisp notions about 
what an iteration or a conditional was, so 
we laid down special-purpose code, build- 
ing each structure individually out of test 
and branch instructions. 

Eventually, a small set of patterns 
emerged as generally useful, generally 
easy to get right, and generally at least as 
good as the alternatives. Designers of 
higher level languages explicitly identi- 
fied the most useful ones and codified 
them by producing special-purpose syn- 
tax. A formal result about the complete- 
ness of the structured constructs provided 
additional reassurance. 

Now, almost nobody believes that new 
kinds of loops should be invented as a rou- 
tine practice. Afew kinds of iterations and 
a few kinds of conditionals are captured in 
the languages. They are taught as control 
concepts that go with the language; p e e  
ple use them routinely, without concern 
for the underlying machine code. 

Further experience led to verifiable for- 
mal specifications of these statements’ se- 
mantics and of the programs that used 
them. Experience with the formalization 
in turn refined the statements supported 
in programming languages. In this way, ad 
hoc practice entered a period of folklore 
and eventually matured to have conven- 
tional syntax and semantic theories that 

Figure 5. Evolution of software engineering. 

explain it. 

Where is software? Where, then, does 
current software practice lie on the path 
to engineering? It is still in some cases 
craft and in some cases commercial prac- 
tice. A science is beginning to contribute 
results, and, for isolated examples, you 
can argue that professional engineering is 
taking place. (Figure 5 shows where soft- 
ware practice fits on my model.) 

That is not, however, the common case. 
There are good grounds to expect that 

there will eventually be an engineering 
discipline of software. Its nature will be 
technical, and itwill be based in computer 
science. Although we have not yet ma- 
tured to that state, it is an achievable goal. 

The next tasks for the software profes 
sion are 

to pick an appropriate mix of short- 
term, pragmatic, possible purely empiri- 
cal contributions that help stabilize com- 
mercial practice and 

to invest in long-term efforts to de- 
velop and make available basic scientific 
contributions. 

he profession must take five basic 
steps on its path to becoming a true T engineering discipline: 

Understand the nature of expertise. 
Proficiency in any field requires not only 
higher order reasoning skills but also a 
large store of facts together with a certain 
amount of context about their implica- 
tions and appropriate use. Studies have 
demonstrated this across a wide range of 
problem domains, including medical di- 
agnosis, physics, chess, financial analysis, 
architecture, scientific research, policy 
decision making, and others, as Herbert 
Simon described in the paper “Human 
Experts and Knowledge-Based Systems” 
presented at the 1987 IFIP Working 
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Group 10.1 Workshop on Concepts and 
Characteristics of Knowledge-Based Sys- 
tems. 

An expert in a field must know about 
50,000 chunks of information, where a 
chunk is any cluster of knowledge suffi- 
ciently familiar that it can be remembered 
rather than derived. Furthermore, in d e  
mains where there are full-time profes- 
sionals, it takes no less than 10 years for a 
worldclass expert to achieve that level of 
proficiency.” 

Thus, fluency in a domain requires con- 
tent and context as well as skills. In the 
case of natural-language fluency, E.D. 
Hirsch has argued that abstract skills have 
driven out content; students are expected 
(unrealistically) to learn general skills 
from a few typical examples rather than by 
a “piling up of information”; and intellec- 
tual and social skills are supposed to de- 
velop naturally without regard to the spe- 
cific content.“ 

However, Hirsch wrote, specific infor- 
mation is important at all stages. Not only 
are the specific facts important in their 
own right, but they serve as carriers of 
shared culture and shared values. A soft- 
ware engineer’s expertise includes facts 
about computer science in general, soft- 
ware design elements, programming idi- 
oms, representations, and specific knowl- 
edge about the program of current 
interest. In addition, it requires skill with 
tools: the language, environment, and 
support software with which this program 
is implemented. 

Hirsch provided a list of some 5,000 
words and concepts that represent the in- 
formation actually possessed by literate 
Americans. The list goes beyond simple 
vocabulary to enumerate objects, con- 
cepts, titles, and phrases that implicitly in- 
voke cultural context beyond their dictio- 
nary definitions. Whether or not you 
agree in detail with its composition, the 
list and accompanying argument demon- 
strate the need for connotations as well as 
denotations of the vocabulary. 

Similarly, a programmer needs to know 
not only a programming language but 
also the system calls supported by the envi- 
ronment, the general-purpose libraries, 
the application-specific libraries, and how 
to combine invocations of these defini- 
tions effectively. The programmer must 
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Table 2. 
Cost distributions for the thee wavs to get a piece of information. 

be familiar with the global definitions of 
the program of current interest and the 
rules about their use. In addition, a devel- 
oper of application software must under- 
stand application-area issues. 

Simply put, the engineering of software 
would be better supported ifwe knew bet- 
ter what specific content a software engi- 
neer should know. We could organize the 
teaching of this material so useful subsets 
are learned first, followed by progressively 
more sophisticated subsets. We could also 
develop standard reference materials as 
carriers of the content. 

Recognize different ways to get infor- 
mation. Given that a large body of knowl- 
edge is important to a working profes 
sional, we as a discipline must ask how 
software engineers should acquire the 
knowledge, either as students or as work- 
ing professionals. Generally speaking, 
there are three ways to get a piece of infor- 
mation you need You can remember it, 
you can look it up, or you can derive it. 
These have different distributions of costs, 
as Table 2 shows. 

Memorization requires a relatively large 
initial investment in learning the mate- 
rial, which is then available for instant use. 

Reference materials require a large in- 
vestment by the profession for developing 
both the organization and the content; 
each student must then learn how to use 
the reference materials and then do so as 
a working professional. 

Deriving information may involve ad 
hoc creation from scratch, it may involve 
instantiation of a formal model, or it may 
involve inferring meaning from other 
available information. To the extent that 
formal models are available, their formu- 
lation requires a substantial initial invest- 
ment. Students first learn the models, 
then apply them in practice. Because each 
new application requires the model to be 
applied anew, the cost in use may be very 
high.13 

Each professional’s allocation of effort 
among these alternatives is driven by what 
he has already learned, by habits devel- 
oped during that education, and by the 
reference materials available. Today, gen- 
eral-purpose reference material for soft- 
ware is scarce, although documentation 
for specific computer systems, languages, 

~~~ ~ 

Method Infrastructure cost Initial-learning cost Cost of use in practice 

Memory Low High Low 

Reference High Low Medium 

Derivation Medium-high Medium High 

and applications may be extensive. Even 
when documentation is available, how- 
ever, it may be underused because it is 
poorly indexed or because developers 
have learned to prefer fresh derivation to 
use of existing solutions. The same is true 
of subroutine libraries. 

Simply put, software engineering re- 
quires investment in the infrastructure 
cost - in creating the materials required 
to organize information, especially refer- 
ence material for practitioners. 

Encourage routine practice. Good engi- 
neering practice for routine design de- 
pends on the engineer’s command of fac- 
tual knowledge and design skills and on 
the quality of reference materials avail- 
able. It also depends on the incentives and 
values associated with innovation. 

Unfortunately, computer-science edu- 
cation has prepared developers with a 
background that emphasizes fresh cre- 
ation almost exclusively. Students learn to 
work alone and to develop programs from 
scratch. They are rarely asked to under- 
stand software systems they have not writ- 
ten. However, just as natural-language flu- 
ency requires instant recognition of a core 
vocabulary, programming fluency should 
require an extensive vocabulary of defini- 
tions that the programmer can use famil- 
iarly, without repeated recourse to docu- 
mentation. 

Fred Brooks has argued that one of the 
great hopes for software engineering is 
the cultivation of great  designer^.'^ In- 
deed, innovative designs require great de- 
signers. But great designers are rare, and 
most designs need not be innovative. Sys- 
tematic presentation of design fragments 
and techniques that are known to work 
can enable designers of ordinary talent to 
produce effective results for a wide range 
of more routine problems by using prior 
results (buying or growing, in Brooks’s 
terms) instead of always building from 
scratch. 

It is unreasonable to expect a designer 
or developer to take advantage of scien- 
tific theories or experience if the neces 
sary information is not readily available. 

Scientific results need to be recast in oper- 
ational form; the important information 
from experience must be extracted from 
examples. The content should include 
design elements, components, interfaces, 
interchange representations, and algo- 
rithms. A conceptual structure must be 
developed so the information can be 
found when it is needed. These facts must 
be augmented with analysis techniques or 
guidelines to support selection of alterna- 
tives that best match the problem at hand. 

A few examples of well-organized refer- 
ence materials already exist. For example, 
the summary flowchart of William Mar- 
tin’s sorting s~ rvey’~  captured in one page 
the information a designer needed to 
choose among the thencurrent sorting 
techniques. William Cody and William 
Waite’s manual for implementing elemen- 
tary mathematical functions’6 gives for 
each function the basic strategy and spe- 
cial considerations needed to adapt that 
strategy to various hardware architectures. 

Although engineering has traditionally 
relied on handbooks published in book 
form, a software engineers’ handbook 
must be on line and interactive. No other 
alternative allows for rapid distribution of 
updates at the rate this field changes, and 
no other alternative has the potential for 
smooth integration with on-line design 
tools. The on-line incarnation will require 
solutions to a variety of electronic-publish- 
ing problems, including distribution, vali- 
dation, organization and search, and col- 
lection and distribution of royalties. 

Simply put, software engineering would 
benefit from a shift of emphasis in which 
both reference materials and case studies 
of exemplary software designs are incor- 
porated in the curriculum. The discipline 
must find ways to reward preparation of 
material for reference use and the devel- 
opment of good case studies. 

Expect professional specializations. As 
software practice matures toward engi- 
neering, the body of substantive technical 
knowledge required of a designer or de- 
veloper continues to grow. In some areas, 
it has long since grown large enough to 
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require specialization - for example, 
database administration was long ago sep  
arated from the corresponding program- 
ming. But systems programming has been 
resistant to explicit recognition of profes 
sional specialties. 

In the coming decade, we can expect to 
see specialization of two kinds: 

internal specialization as the technical 
content in the core of software grows 
deeper and 

external specialization with an in- 
creased range of applications that require 
both substantive application knowledge 
and substantive computing knowledge. 

Internal specialties are already starting 
to be recognizable for communications, 
reliability, real-time programming, scien- 
tific computing, andgraphics, among oth- 
ers. Because these specialties rely critically 
on mastery of a substantial body of com- 
puter science, they may be most appropri- 
ately organized as postbaccalaureate edu- 
cation. 

External specialization is becoming 
common, but the required dual expertise 

is usually acquired informally (and often 
incompletely). Computational specializa- 
tions in various disciplines can be s u p  
ported via joint programs involving both 
computer science and the application de- 
partment; this is being done at some uni- 
versities. 

Simply put, software engineering will re- 
quire explicit recognition of specialties. 
Educational opportunities should be p r e  
vided to support them. However, this 
should not be done at the cost of a solid 
foundation in computer science and, in 
the case of external specialization, in the 
application discipline. 

Improve the coupling between science 
and commercial practice. Good science is 
often based on problems underlying the 
problems of production. This should be 
as true for computer science as for any 
other discipline. Good science depends 
on strong interactions between research- 
ers and practitioners. However, cultural 
differences, lack of access to large, com- 
plex systems, and the sheer difficulty of 

understanding those systems have inter- 
fered with the communication that s u p  
ports these interactions. 

Similarly, the adoption of results from 
the research community has been im- 
peded by poor understanding of how to 
turn a research result into a useful ele- 
ment of a production environment. Some 
companies and universities are already 
developing cooperative programs to 
bridge this gap, but the logistics are often 
daunting. 

Simply put, an engineering basis for 
software will evolve faster if constructive 
interaction between research and produc- 
tion communities can be nurtured. *3 
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