
Prospects for an
Engineering Discipline

of Software

Software engineering
is not yet a true

englneering discipline,
but it has the potential

to become one.
Older engineering

fields suggest
the character

soft ware engineering
m i m have.

November 1990

Mary Shaw, Carnegie Melon University

he tern1 “software engineering” was
coined in 1968 as a statement of aspi- T ration - a sort of rallying cry. That

year, the North Atlantic Treaty Organiza-
tion convened aworkshop by that name to
assess the state and prospects of software
production. Capturing the iinagination of
software developers, the NATO phrase
“software engineering” achieved popular-
ity during the 1970s. It now refers to acol-
lection of management processes, soft-
ware tooling, and design activities for
software development. The resulting prac-
tice, however, differs significantly from the
practice of older forms of engineering.

What is engineering?
“Software engineering” is a label

applied to a set of current practices for de-
velopment. But using the word “engineer-
ing” to describe this activity takes consid-
erable libertywith the common use of that
term. The more customary usage refers to
the disciplined application of scientific

0740-7459/90/1100/0015/$01.00 0 19901EEE

knowledge to resolve conflicting con-
straints and requirements for problems of
immediate, practical significance.

Definitions of “engineering” abound.
Although details differ, they share some
common clauses:

Creating co.Tt-effective solutions . . . Engi-
neering is not just about solving prob
lems; it is about solving problems with
economical use of all resources, including
money.

. . . to practical problems . . . Engineering
deals with practical problems whose solu-
tions matter to people outside the engi-
neering domain - the customers.

. , . 4y applying scimtzfic knowledge.. . En-
gineering solves problems in a particular
way: by applying science, mathematics,
and design analysis.

. . . to building things . . . Engineering
emphasizes the solutions, which are usu-
ally tangible artifacts.

. . . in the service of mankind. Engineer-
ing not only serves the immediate

15

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

customer, but it also develops technology
and expertise that will support the society.

Engineering relies on codifying scien-
tific knowledge about a technological
problem domain in a form that is directly
useful to the practitioner, thereby provid-
ing answers for questions that commonly
occur in practice. Engineers of ordinary
talent can then apply this knowledge to
solve problems far faster than they other-
wise could. In this way, engineering shares
prior solutions rather than relying always
on virtuoso problem solving.

Engineering practice enables ordinary
practitioners so they can create sophisti-
cated systems that work - unspectac-
ularly, perhaps, but reliably. The history of
development is marked by both successes
and failures. The successes have often
been virtuoso performances or the result
of diligence and hard work. The failures
have often reflected poor understanding
of the problem to be solved, mismatch of
solution to problem, or inadequate fol-
low-through from design to implementa-
tion. Some failed by never working, others
by overrunning cost and schedule budgets.

In current software practice, knowledge
about techniques that work is not shared
effectively with later projects, nor is there
a large body of development knowledge
organized for ready reference. Computer
science has contributed some relevant
theory, but practice proceeds largely inde-
pendently of this organized knowledge.
Given this track record, there are funda-
mental problems with the use of the term
“software engineer.”

Routine and innovative design. Engi-
neering design tasks are of several kinds.
One of the most significant distinctions
separates routine from innovative design.
Routine design involves solving familiar
problems, reusing large portions of prior
solutions. Innovative design, on the other
hand, involves finding novel solutions to
unfamiliar problems. Original designs are
much more rarely needed than routine
designs, so the latter is the bread and but-
ter of engineering.

Most engineering disciplines capture,
organize, and share design knowledge to
make routine design simpler. Handbooks
and manuals are often the carriers of this
organized information. But current nota-

16

tions for software designs are not ade-
quate for the task of both recording and
communicating designs, so they fail to
provide a suitable representation for such
handbooks.

Software in most application domains is
treated more often as original than rou-
tine - certainly more so than would be
necessary if we captured and organized
what we already know. One path to in-
creased productivity is identifying applica-
tions that could be routine and develop
ing appropriate support.

The current focus on reuse emphasizes
capturing and organizing existing knowl-
edge of a particular kind: knowledge ex-
pressed in the form of code. Indeed, sub
routine libraries - especially of system
calls and general-purpose mathematical

Given our track record,
there are mndamental

problems with the
use ofthe term

“software englneefi”

routines - have been a staple of program-
mingfor decades. But this knowledge can-
not be useful if programmers do not know
about it or are not encouraged to use it.
Furthermore, library components require
more care in design, implementation, and
documentation than similar components
that are simply embedded in systems.

Practitioners recognize the need for
mechanisms to share experience with
good designs. This cry from the wilder-
ness appeared on the Software Engineer-
ing News Group, a moderated electronic
mailing list:

“In Chem E, when I needed to design a
heat exchanger, I used a set of references
that told me what the constants were ...
and the standard design equations. . . .

“In general, unless I, or someone else in
my [software-] engineering group, has
read or remembers and makes known a
solution to a past problem, I’m doomed to
recreate the solution. . . . I guess.. . the crit-
ical difference is the ability to put together
little pieces of the problem that are rela-
tively well known, without having to gen-

erate a custom solution for every applica-
tion. ...

“I want to make it clear that I am aware
of algorithm and code libraries, but they
are incomplete solutions to what I am de-
scribing. (There is no Perry’s Handbook for
Software Engineering.) ”

This former chemical engineer is com-
plaining that software lacks the institu-
tionalized mechanisms of a mature engi-
neering discipline for recording and
disseminating demonstrably good de-
signs and ways to choose among design
alternatives. (Perry’s Chemical Enginm’ng
Handbook published by McGraw-Hill, is
the standard design handbook for chemi-
cal engineering; it is about four inches
thick and printed in tiny type on 8.5” x 11”
tissue paper.)

Model for the evolution of an engineer-
ing discipline. Historically, engineering
has emerged from ad hoc practice in two
stages: First, management and produc-
tion techniques enable routine produc-
tion. Later, the problems of routine p r e
duction stimulate the development of a
supporting science; the mature science
eventually merges with established prac-
tice to yield professional engineering
practice. Figure 1 shows this model.

The exploitation of a technology begins
with craftsmanship: A set of problems
must be solved, and they get solved any
which way. They are solved by talented
amateurs and byvirtuosos, but no distinct
professional class is dedicated to prob
lems of this kind. Intuition and brute
force are the primary movers in design
and construction. Progress is haphazard,
particularly before the advent of good
communication; thus, solutions are in-
vented and reinvented. The transmission
of knowledge between craftsmen is slow,
in part because of underdeveloped com-
munications, but also because the tal-
ented amateurs often do not recognize
any special need to communicate.

Nevertheless, ad hoc practice eventually
moves into the folklore. This craft stage of
development sees extravagant use of avail-
able materials. Construction or manufac-
ture is often for personal or local use or
for barter, but there is little or no large-
scale production in anticipation of resale.
Community barn raisings are an example

IEEE Software

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

of this stage; so is software written by appli-
cation experts for their own ends.

At some point, the product of the tech-
nology becomes widely accepted and de-
mand exceeds supply. At that point, at-
tempts are made to define the resources
necessary for systematic commercial mm-
ufacture and to marshal the expertise for
exploiting these resources. Capital is
needed in advance to buy raw materials,
so financial skills become important, and
the operating scale increases over time.

As commercial practice flourishes,
skilled practitioners are required for con-
tinuity and for consistency of effort. They
are trained pragmatically in established
procedures. Management may not know
why these procedureswork, but they know
the procedures do work and how to teach
people to execute them.

The procedures are refined, but the re-
finement is driven pragmatically: A modi-
fication is tried to see if it works, then in-
corporated in standard procedure if it
does. Economic considerations lead to
concerns over the efficiency of proce-
dures and the use of materials. People
begin to explore ways for production facil-
ities to exploit the technology base; eco-
nomic issues often point out problems in
commercial practice. Management strate-
gies for controlling development fit at this
point of the model.

The problems of current practice often
stimulate the development of a corre-
sponding science. There is frequently a
strong, productive interaction between
commercial practice and the emerging
science. At some point, the science
becomes sufficiently mature to be a signif-
icant contributor to the commercial prac-
tice. This marks the emergence of engi-
neering practice in the sense thatwe know
it today - sufficient scientific basis to en-
able a core of educated professionals so
they can apply the theory to analysis of
problems and synthesis of solutions.

For most disciplines, this emergence oc-
curred in the 18th and early 19th centu-
ries as the common interests in basic phys
ical understandings of natural science
and engineering gradually drew together.
The reduction of many empirical engi-
neering techniques to a more scientific
basis was essential to further engineering
progress. And this liaison stimulated fur-

Science

Production Professional engineering -+- Commercial

Virtuosos and talented

Intuition and brute force
Haphazard progress
Casual transmission
Extravagant use of
available materials
Manufacture for use
rather than sale

amateurs
Skilled craftsmen
Established procedure
Pragmatic refinement
Training in mechanics
Economic concern for cost

Manufacture for sale

Educated professionals
Analysis and theory
Progress relies on science
Educated professional class
Enabling new applications

Market segmentation by
and supply of materials through analysis

product variety

Figure 1. Evolution of an engineering discipline. The lower lines track the technology,
and the upper lines show h o w the entry of production skills and scientific knowledge con-
tribute new capability to the engineering practice.

ther advances in natural science. “An im-
portant and mutually stimulating tie-up
between natural and engineering science,
a development [that] had been discour-
aged for centuries by the long-dominant
influence of early Greek thought, was at
long last consummated,” wrote historian
James Kip Finch.’

The emergence of an engineering disci-
pline lets technological development pass
limits previously imposed by relying on in-
tuition; progress frequently becomes de-
pendent on science as a forcing function.
A scientific basis is needed to drive analy-
sis, which enables new applications and
even market segmentation via product va-
riety. Attempts are made to gain enough
control over design to target specific prod-
ucts on demand.

Thus, engineering emerges from the
commercial exploitation that supplants
craft. Modern engineering relies critically
on adding scientific foundations to craft
and commercialization. Exploiting tech-
nology depends not only on scientific en-
gineering but also on management and
the marshaling of resources. Engineering
and science support each other: Engineer-
ing generates good problems for science,
and science, after finding good problems
in the needs of practice, returns workable
solutions. Science is often not driven by
the immediate needs of engineering; how-
ever, good scientific problems often fol-
low from an understanding of the prob
lems that the engineering side of the field
is coping with.

The engineering practice of software
has recently come under criticism for
lacking a scientific basis. The usual curric-
ulum has been attacked for neglecting
mathematics’ and engineering ~cience.~
Although current software practice does
not match the usual expectations of an en-
gineering discipline, the model described
here suggests that vigorous pursuit of a p
plicable science and the reduction of that
science to practice can lead to a sound en-
gineering discipline of software.

Examples from traditional engineering.
Two examples make this model concrete:
the evolution of engineering disciplines
as demonstrated by civil and chemical en-
gineering. The comparison of the two is
also illuminating, because they have very
different basic organizations.

Civil enpnem’ng: a basis in themy. Origi-
nally sc-called to distinguish it from mili-
tary engineering, civil engineering in-
cluded all of civilian engineering until the
middle of the 19th century. A divergence
of interests led engineers specializing in
other technologies to break away, and
today civil engineers are the technical ex-
perts of the construction industry. They
are concerned primarily with large-scale,
capital-intensive construction efforts, like
buildings, bridges, dams, tunnels, canals,
highways, railroads, public water supplies,
and sanitation. As a rule, civil-engineering
efforts involve well-defined task groups
that use appropriate tools and technole

17 November 1990

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

1700: statics
17W: strength of materials

\

Figure 2. Evolution of civil engineering.

gies to execute well-laid plans.
Although large civil structures have

been built since before recorded history,
only in the last few centuries has their de-
sign and construction been based on the-
oretical understanding rather than on in-
tuition and accumulated experience.
Neither the artisans of the Middle Ages
nor of the ancient world showed any signs
of the deliberate quantitative application
of mathematics to determine the dimen-
sions and shapes that characterizes mod-
ern civil engineering. But even without
formal understanding, they documented
pragmatic rules for recurring elements.
Practical builders had highly developed
intuitions about statics and relied on a few
empirical rules.

The scientific revolution of the Renais
sance led to serious attempts by Galileo
Galilei, Filippo Brunelleschi, and others
to explain structures and why they worked.
Over a period of about 200 years, there
were attempts to explain the composition
of forces and bending of a beam. How-
ever, progress was slowed for a long time
by problems in formulating basic notions
like force, particularly the idea that gravity
could be treated as just another force like
all the others. Until the basic concepts
were sorted out, it was not possible to do a
proper analysis of the problem of combin-
ing forces (using vector addition) that we
now teach to freshmen, nor was it possible
to deal with strengths of materials.

Around 1700, PierreVarignon and Isaac
Newton developed the theory of statics to
explain the composition of forces and
Charles Augustin de Coulomb and Louis
Marie Henri Navier explained bending
with the theory of strength of materials.
These now provide the basis for civil engi-
neering. By the middle of the 18th century,
civil engineers were tabulating properties
of materials.

The mid-18th century also saw the first
attempts to apply exact science to pmcti-
cal building. Pope Benedict ordered an
analysis of St. Peter’s dome in 1742 and
1743 to determine the cause of cracks and
propose repairs; the analysis was based on
the principle of virtual displacement and
was carried out precisely (although the
model is now known to fail to account
properly for elasticity). By 1850, it was pos
sible for Robert Stephenson’s Britannia
Tubular Bridge over the Menai Strait be-
tween Wales and England to be subjected
to a formal structural analysis.

Thus, even after the basic theories were
in hand, it took another 150 years before
the theory w a s rich enough and mature
enough to have directutilityat the scale of
a bridge design.

Civil engineering is thus rooted in two
scientific theories, corresponding to two
classical problems. One problem is the
composition of forces: finding the resul-
tant force when multiple forces are com-
bined. The other is the problem of bend-
ing: determining the forces within a beam
supported at one end and weighted at the
other. Two theories, statics and strength of
materials, solve these problems; both were
developed around 1700. Modern civil en-
gineering is the application of these thee
ries to the problem of constructing build-
ings.

Tor nearly two centuries, civil engineer-
ing has undergone an irresistible transi-
tion from a traditional craft, concerned
with tangible fashioning, towards an a b
stract science, based on mathematical cal-
culation. Every new result of research in
structural analysis and technology of ma-
terials signified a more rational design,
more economic dimensions, or entirely
new structural possibilities. There were no
apparent limitations to the possibilities of
analytical approach; there were no appar-

ent problems in building construction
[that] could not be solved by calculation,”
wrote Hans Straub in his history of civil
engineering!

You can date the transition from craft to
commercial practice to the Romans’ ex-
tensive transportation system of the first
century. The underlying science emerged
about 1700, and it matured to successful
application to practice sometime between
the mid-18th century and the mid-19th
century. Figure 2 places civil engineer-
ing’s significant events on my model of en-
gineering evolution.

Chemical engineering: a basis in practice.
Chemical engineering is a very different
kind of engineering than civil engineer-
ing. This discipline is rooted in empirical
observations rather than in a scientific
theory. It is concerned with practical
problems of chemical manufacture; its
scope covers the industrial-scale produc-
tion of chemical goods: solvents, pharma-
ceuticals, synthetic fibers, rubber, paper,
dyes, fertilizers, petroleum products,
cooking oils, and so on. Although chemis
try provides the specification and design
of the basic reactions, the chemical engi-
neer is responsible for scaling the reac-
tions up from laboratory scale to factory
scale. As a result, chemical engineering
depends as heavily on mechanical engi-
neering as on chemistry.

Until the late 18th century, chemical
production was largely a cottage industry.
The first chemical produced at industrial
scale was alkali, which was required for the
manufacture of glass, soap, and textiles.
The first economical industrial process
for alkali emerged in 1789, well before the
atomic theory of chemistry explained the
underlying chemistry. By the mid-19th
century, industrial production of dozens
of chemicals had turned the British Mid-
lands into a chemical-manufacturing d is
trict. Laws were passed to control the re-
sulting pollution, and pollution-control
inspectors, called alkali inspectors, moni-
tored plant compliance.

One of these alkali inspectors, G.E.
Davis, worked in the Manchester area in
the late 1880s. He realized that, although
the plants he was inspecting manufac-
tured dozens of different kinds of chemi-
cals, there were not dozens of different

18 IEEE Software

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

procedures involved. He identified a col-
lection of functional operations that took
place in those processing plants and were
used in the manufacture of different
chemicals. He gave a series of lectures in
1887 at the Manchester Technical School.
The ideas in those lectures were imported
to the US by the MassachusettsInstitute of
Technology in the latter part of the cen-
tury and form the basis of chemical engi-
neering as it is practiced today. This struc-
ture is called unit Operations; the term was
coined in 1915 by Arthur D. Little.

The fundamental problems of chemical
engineering are the quantitative control
of large masses of material in reaction and
the design of cost-effective industrial-scale
processes for chemical reactions.

The unit-operations model asserts that
industrial chemical-manufacturing pro-
cesses can be resolved into a relatively few
units, each of which has a definite func-
tion and each of which is used repeatedly
in different kinds of processes. The unit
operations are steps like filtration and
clarification, heat exchange, distillation,
screening, magnetic separation, and flota-
tion. The basis of chemical engineering is
thus a pragmatically determined collec-
tion of very high-level functions that ade-
quately and appropriately describe the
processes to be carried out.

“Chemical engineering as a science . . . is
not a composite of chemistry and me-
chanical and civil engineering, but a sci-
ence of itself, the basis of which is those
unit operations [that] in their proper se-
quence and coordination constitute a
chemical process as conducted on the in-
dustrial scale. These operations . . . are not
the subject matterofchemistryas suchnor
of mechanical engineering. Their treat-
ment is in the quantitative way, with
proper exposition of the laws controlling
them and of the materials and equipment
concerned in them,” the American Insti-
tute of Chemical Engineers Committee
on Education wrote in 1922.5

This is a very different kind of structure
from that of civil engineering. It is a prag-
matic, empirical structure - not a theo-
retical one.

You can date the transition from craft to
commercial practice to the introduction
of the LeBlanc process for alkali in 1789.
The science emerged with the British

1

I Production

Figure 3. Evolution of chemical engineering.

chemist John Dalton’s atomic theory in
the early 19th century, and it matured to
successful merger with large-scale me-
chanical processes in the 1890s. Figure 3
places chemical engineering’s significant
events on my model.

Softwaretechnology
Where does software stand as an engi-

neering discipline? For software, the
problem is appropriately an engineering
problem: creating cost-effective solutions
to practical problems, building things in
the service of mankind.

Information processing as an economic
force. The US computer business - in-
cluding computers, peripherals, pack-
aged software, and communications -
was about $150 billion in 1989 and is pro-
jected to be more than $230 billion by
1992. The packaged-software component
is projected to grow from $23.7 billion to
$37.5 billion in this period, according to
the Data Analysis Group’s fourth-quarter
1989 forecasts. Services, including systems
integration and in-house development,
are not included in these figures.

Worldwide, software sales amounted to
about $65 billion in 1989. This does not
include the value of in-house develop
ment, which is a much larger activity.
World figures are hard to estimate, but the
cost of in-house software in the US alone
may be in the range of $150 billion to $200
billion: It is not clear how much modifica-
tion after release (so-called “mainte-
nance”) is included in this figure. Thus,
software is coming to dominate the cost of
information processing.

The economic presence of information
processing also makes itself known
through the actual and opportunity costs
of systems that do not work. Examples of
costly system failures abound. Less obvi-

ous are the costs of computing that is not
even tried: development backlogs so large
that they discourage new requests,
gigabytes of unprocessed raw data from
satellites and space probes, and so on. De-
spite very real (and substantial) successes,
the litany of mismatches ofcost, schedule,
and expectations is a familiar one.

Growing role of software in critical a p
plications. The US National Academy of
Engineering recently selected the 10 great-
est engineering achievements of the last
25 years? Of the 10, three are informatics
achievements: communications and in-
formationgathering satellites, the micro-
processor, and fiber-optic communica-
tion. Two more are direct applications of
computers: computer-aided design and
manufacturing and the computerized
axial tomography scan. And most of the
rest are computer-intensive: the Moon
landing, advanced composite materials,
the jumbo jet, lasers, and the application
of genetic engineering to produce new
pharmaceuticals and crops.

The conduct of science is increasingly
driven by computational paradigms
standing on equal footing with theoretical
and experimental paradigms. Both scien-
tific and engineering disciplines require
very sophisticated computing. The de-
mands are often stated in terms of raw
processing power - “an exdop (10’’)
processor with teraword memory,” “a
petabyte (of storage,” as one article
put it’ - but the supercomputing com-
munity is increasingly recognizing devel-
opment, not mere raw processing, as a
critical bottleneck.

Because of software’s pervasive pres
ence, the appropriate objective for its de-
velopers should be the effective delivery
of computational capability to real users
in forms that match their needs. The die

November 1990 19

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

Table 1.
Significant shifts in research attention.

1960 f 5 years: 1970 f 5 years: 1980 + 5 years:
Attribute programming any-which-way programming-in-the small programming-in-the-large

Characteristic problems Small programs Algorithms and programming Interfaces, management

Data issues Representing structure and Data structures and types Long-lived databases, symbolic

Control issues Elementary understanding of Programs execute once and Program assemblies execute

Specification issues Mnemonics, precise use of Simple input/output Systemswith complex

State space State not well understood Small, simple state space Large, structured state space

Management focus None Individual effort Team efforts, system lifetime

Tools, methods Assemblers, core dumps Programming language, Environments, integrated

system structures

as well as numeric symbolic information

control flows terminate con tinually

prose specifications specifications

apart from control

maintenance

compilers, linkers, loaders tools, documents

tinction between a system’s computa-
tional component and the application it
serves is often very soft - the develop
ment of effective software now often re-
quires substantial application expertise.

Maturity of development techniques.
Our development abilities have certainly
improved over the 40 or so years of pro-
gramming experience. Progress has been
both qualitative and quantitative. More-
over, it has taken different forms in the
worlds of research and practice.

One of the most familiar characteriza-
tions of this progress has been the shift
from programming-in-the-small to pro-
gramming-in-the-large. It is also useful to
look at a shift that took place 10 years be-
fore that, from programming-any-which-
way to programming-in-the-small. Table 1
summarizes these shifts, both of which de-
scribe the focus of attention of the soft-
ware research community.

Before the mid-l960s, programming
was substantially ad hoc; itwas a significant
accomplishment to get a program to run
at all. Complex software systems were cre-
ated - some performed very well - but
their construction was either highly em-
pirical or a virtuoso activity. To make pro-
grams intelligible, we used mnemonics,
we tried to be precise about writing com-
ments, and we wrote prose specifications.
Our emphasis was on small programs,
which was all we could handle predictably.

We did come to understand that com-
puters are symbolic information proces
SOTS, not just number crunchers - a sig-
nificant insight. But the abstractions of

algorithms and data structures did not
emerge until 1967, when Donald Knuth
showed the utility of thinking about them
in isolation from the particular programs
that happened to implement them.

A similar shift in attitudes about specifi-
cations took place at about the same time,
when Robert Floyd showed how attaching
logical formulas to programs allows for-
mal reasoning about the programs. Thus,
the late 1960s saw a shift from crafting
monolithic programs to an emphasis on
algorithms and data structures. But the
programs in question were still simple
programs that execute once and then ter-
minate.

You can view the shift that took place in
the mid-1 970s from programming-in-the-
small to programming-in-the-large in
much the same terms. Research attention
turned to complex systems whose specifi-
cations were concerned not only with the
functional relations of the inputs and out-
puts, but also with performance, reliabil-
ity, and the states through which the sys
tem passed. This led to a shift in emphasis
to interfaces and managing the program-
ming process.

In addition, the data of complex systems
often outlives the programs and may be
more valuable, so we learned that we now
have to worry about integrity and consis
tency of databases. Many of our programs
(for example, the telephone switching sys
tem or a computer operating system)
should not terminate; these systems re-
quire a different sort of reasoning than do
programs that take input, compute, pro-
duce output, and terminate. In systems

that run indefinitely, the sequence of sys
tem states is often much more important
than the (possibly undesirable) termina-
tion condition.

The tools and techniques that accompa-
nied the shift from programming-any-
which-way to programming-in-the-small
provided first steps toward systematic,
routine development of small programs;
they also seeded the development of a xi-
ence that has matured only in the last de-
cade. The tools and techniques that ac-
companied the shift from program-
ming-in-the-small to programming-in-the-
large were largely geared to supporting
groups of programmers working together
in orderlyways and to giving management
a view into production processes. This di-
rectly supports the commercial practice of
development.

Practical development proceeded to
large complex systems much faster than
the research community did. For exam-
ple, the Sage missiledefense system of the
1950s and the Sabre airline-reservation
system of the 1960s were successful inter-
active systems on a scale that far exceeded
the maturity of the science. They appear
to have been developed by excellent engi-
neers who understood the requirements
well and applied design and development
methods from other (like electrical) engi-
neering disciplines. Modern develop
ment methodologies are management
procedures intended to guide large num-
bers of developers through similar disci-
plines.

The term “software engineering”was in-
troduced in 1968 to name a conference

20 IEEE Software

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

convened by NATO to discuss problems
of software production.’ Despite the label,
most of the discussion dealt with the chal-
lenge of progressing from the craft stage
to the commercial stage of practice. In
1976, Barry Boehm proposed the defini-
tion of the term as “the practical applica-
tion of scientific knowledge in the design
and construction of computer programs
and the associated documentation re-
quired to develop, operate, and maintain
them.”1° This definition is consistent with
traditional definitions of engineering, al-
though Boehm noted the shortage of sci-
entific knowledge to apply.

Unfortunately, the term is now most
often used to refer to life-cycle models,
routine methodologies, cost-estimation
techniques, documentation frameworks,
configuration-management tools, quality-
assurance techniques, and other tech-
niques for standardizing production activ-
ities. These technologies are characteris-
tic of the commercial stage of evolution -
“software management” would be a much
more appropriate term.

Scientific basis for engineering p d c e .
Engineering practice emerges from com-
mercial practice by exploiting the results
of a companion science. The scientific re-
sults must be mature and rich enough to
model practical problems. They must also
be organized in a form that is useful to
practitioners. Computer science has a few
models and theories that are ready to sup
port practice, but the packaging of these
results for operational use is lacking.

Maturity ofsupporting science. Despite the
criticism sometimes made by software
producers that computer science is irrele-
vant to practical software, good models
and theories huvebeen developcd in areas
that have had enough time for the thco
ries LO mature.

In the early 196Os, algorithms and data
structures were simply created as part of
each program. Some folklore grew up
about good ways to do certain sorts of
things, and it was transmitted infomially.
By the mid-l960s, good prograrrirrieIs
shared the intuition that if you get the
data structures right, the rest of the p r e
gram is much simpler. In the late 1960s,
algorithms and data structures began to

November 1990

(New)

(theories)
3

((;edification)

Figure A Cycle of how good software models develop as a result of the interaction be-
tween science and engineering.

be abstracted from individual programs,
and their essential properties were de-
scribed and analyed.

The 1970s saw substantial progress in
supporting theories, including perfor-
mance analysis and correctness. Concur-
rently, the programming implications of
these abstractions were explored; a b
stractdata-type research dealtwith such is-
sues as:

Specifications: abstract models and al-
gebraic axioms.

Software structure: bundling repre-
scntation with algorithms.

Language issues: modules, scope, and
user-defined typcs.

Information hiding: protecting the in-
tegrity of information not in the specif-
cation.

Integrity constraints: invariants of data
structures.

Cornposilion rules: declarations.
Both sound theory and language s u p

port were available by the early 1980s, and
routine good practice now depends on
this support.

Compiler construction is another good
example. In 1960, simply writing a com-
piler at all was a major achievement; it is
not clear thatwe really understood what a
higher level language was. Formal syntax
was first used systematically for AlgoldO,
and tools for processing it automatically
(then called compiler compilers, but now
called parser generators) were first devel-
oped in the mid-1960s and made practical

in the 1970s. Also in the 1970s, we started
developing theories of semantics and
types, and the 1980s have brought signifi-
cant progress toward the automation of
compiler construction.

Both of these examples have roots in the
problems of the 1960s and became genu-
inely practical in the 1980s. It takes a good
20 years from the time that work starts on
a theory un til it provides serious assistance
to routine practice. Development periods
of comparable length have also preceded
the widespread use of systematic methods
and technologies like structured p r e
gramming, Smalltalk, and Unix, as Sam
Redwine and colleagues have shown.”
But the whole field of computing is only
about 40 years old, and many theories are
emerging in the research pipeline.

Interaction between science and engineen‘ng.
The development of good models within
the software domain follows this pattern:

We engineers begin by solving problems
anyway we can. After some time, we distin-
guish in those ad hoc solutions things that
usually work and things that do not usu-
ally work. The ones that do work enter the
folklore: People tell each other about
them informally. As the folklore becomes
more and more systenratic, we codify it as
written heuristics and rules of procedure.
Eventually, that codification becomes crisp
enough to support models and theories,
together with the associated mathematics.
These can then help improve practice,

21

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

1965-70: algoritms, data structures

s, data structurffs,
(compiler construction)

1980s software -
development
methodologies

and experience from that practice can
sharpen the theories. Furthermore, the
improvement in practice let us think
about harder problems -which we first
solve ad hoc, then find heuristicsfor, even-
tually develop new models and theories
for, and so on. Figure 4 illustrates this cycle.

The models and theories do not have to
be fullyfleshedoutfor this process to assist
practice: The initial codification of folk-
lore may be useful in and of itself.

This progression is illustrated in the use
of machine language for control flow in
the 1960s. In the late 1950s and the early
1960s, we did not have crisp notions about
what an iteration or a conditional was, so
we laid down special-purpose code, build-
ing each structure individually out of test
and branch instructions.

Eventually, a small set of patterns
emerged as generally useful, generally
easy to get right, and generally at least as
good as the alternatives. Designers of
higher level languages explicitly identi-
fied the most useful ones and codified
them by producing special-purpose syn-
tax. A formal result about the complete-
ness of the structured constructs provided
additional reassurance.

Now, almost nobody believes that new
kinds of loops should be invented as a rou-
tine practice. Afew kinds of iterations and
a few kinds of conditionals are captured in
the languages. They are taught as control
concepts that go with the language; p e e
ple use them routinely, without concern
for the underlying machine code.

Further experience led to verifiable for-
mal specifications of these statements’ se-
mantics and of the programs that used
them. Experience with the formalization
in turn refined the statements supported
in programming languages. In this way, ad
hoc practice entered a period of folklore
and eventually matured to have conven-
tional syntax and semantic theories that

Figure 5. Evolution of software engineering.

explain it.

Where is software? Where, then, does
current software practice lie on the path
to engineering? It is still in some cases
craft and in some cases commercial prac-
tice. A science is beginning to contribute
results, and, for isolated examples, you
can argue that professional engineering is
taking place. (Figure 5 shows where soft-
ware practice fits on my model.)

That is not, however, the common case.
There are good grounds to expect that

there will eventually be an engineering
discipline of software. Its nature will be
technical, and itwill be based in computer
science. Although we have not yet ma-
tured to that state, it is an achievable goal.

The next tasks for the software profes
sion are

to pick an appropriate mix of short-
term, pragmatic, possible purely empiri-
cal contributions that help stabilize com-
mercial practice and

to invest in long-term efforts to de-
velop and make available basic scientific
contributions.

he profession must take five basic
steps on its path to becoming a true T engineering discipline:

Understand the nature of expertise.
Proficiency in any field requires not only
higher order reasoning skills but also a
large store of facts together with a certain
amount of context about their implica-
tions and appropriate use. Studies have
demonstrated this across a wide range of
problem domains, including medical di-
agnosis, physics, chess, financial analysis,
architecture, scientific research, policy
decision making, and others, as Herbert
Simon described in the paper “Human
Experts and Knowledge-Based Systems”
presented at the 1987 IFIP Working

22

Group 10.1 Workshop on Concepts and
Characteristics of Knowledge-Based Sys-
tems.

An expert in a field must know about
50,000 chunks of information, where a
chunk is any cluster of knowledge suffi-
ciently familiar that it can be remembered
rather than derived. Furthermore, in d e
mains where there are full-time profes-
sionals, it takes no less than 10 years for a
worldclass expert to achieve that level of
proficiency.”

Thus, fluency in a domain requires con-
tent and context as well as skills. In the
case of natural-language fluency, E.D.
Hirsch has argued that abstract skills have
driven out content; students are expected
(unrealistically) to learn general skills
from a few typical examples rather than by
a “piling up of information”; and intellec-
tual and social skills are supposed to de-
velop naturally without regard to the spe-
cific content.“

However, Hirsch wrote, specific infor-
mation is important at all stages. Not only
are the specific facts important in their
own right, but they serve as carriers of
shared culture and shared values. A soft-
ware engineer’s expertise includes facts
about computer science in general, soft-
ware design elements, programming idi-
oms, representations, and specific knowl-
edge about the program of current
interest. In addition, it requires skill with
tools: the language, environment, and
support software with which this program
is implemented.

Hirsch provided a list of some 5,000
words and concepts that represent the in-
formation actually possessed by literate
Americans. The list goes beyond simple
vocabulary to enumerate objects, con-
cepts, titles, and phrases that implicitly in-
voke cultural context beyond their dictio-
nary definitions. Whether or not you
agree in detail with its composition, the
list and accompanying argument demon-
strate the need for connotations as well as
denotations of the vocabulary.

Similarly, a programmer needs to know
not only a programming language but
also the system calls supported by the envi-
ronment, the general-purpose libraries,
the application-specific libraries, and how
to combine invocations of these defini-
tions effectively. The programmer must

IEEE Software

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore. Restrictions apply.

Table 2.
Cost distributions for the thee wavs to get a piece of information.

be familiar with the global definitions of
the program of current interest and the
rules about their use. In addition, a devel-
oper of application software must under-
stand application-area issues.

Simply put, the engineering of software
would be better supported ifwe knew bet-
ter what specific content a software engi-
neer should know. We could organize the
teaching of this material so useful subsets
are learned first, followed by progressively
more sophisticated subsets. We could also
develop standard reference materials as
carriers of the content.

Recognize different ways to get infor-
mation. Given that a large body of knowl-
edge is important to a working profes
sional, we as a discipline must ask how
software engineers should acquire the
knowledge, either as students or as work-
ing professionals. Generally speaking,
there are three ways to get a piece of infor-
mation you need You can remember it,
you can look it up, or you can derive it.
These have different distributions of costs,
as Table 2 shows.

Memorization requires a relatively large
initial investment in learning the mate-
rial, which is then available for instant use.

Reference materials require a large in-
vestment by the profession for developing
both the organization and the content;
each student must then learn how to use
the reference materials and then do so as
a working professional.

Deriving information may involve ad
hoc creation from scratch, it may involve
instantiation of a formal model, or it may
involve inferring meaning from other
available information. To the extent that
formal models are available, their formu-
lation requires a substantial initial invest-
ment. Students first learn the models,
then apply them in practice. Because each
new application requires the model to be
applied anew, the cost in use may be very
high.13

Each professional’s allocation of effort
among these alternatives is driven by what
he has already learned, by habits devel-
oped during that education, and by the
reference materials available. Today, gen-
eral-purpose reference material for soft-
ware is scarce, although documentation
for specific computer systems, languages,

~~~ ~ 

Method Infrastructure cost Initial-learning cost Cost of use in practice 

Memory Low High Low 

Reference High Low Medium 

Derivation Medium-high Medium High 

and applications may be extensive. Even 
when documentation is available, how- 
ever, it may be underused because it is 
poorly indexed or because developers 
have learned to prefer fresh derivation to 
use of existing solutions. The same is true 
of subroutine libraries. 

Simply put, software engineering re- 
quires investment in the infrastructure 
cost - in creating the materials required 
to organize information, especially refer- 
ence material for practitioners. 

Encourage routine practice. Good engi- 
neering practice for routine design de- 
pends on the engineer’s command of fac- 
tual knowledge and design skills and on 
the quality of reference materials avail- 
able. It also depends on the incentives and 
values associated with innovation. 

Unfortunately, computer-science edu- 
cation has prepared developers with a 
background that emphasizes fresh cre- 
ation almost exclusively. Students learn to 
work alone and to develop programs from 
scratch. They are rarely asked to under- 
stand software systems they have not writ- 
ten. However, just as natural-language flu- 
ency requires instant recognition of a core 
vocabulary, programming fluency should 
require an extensive vocabulary of defini- 
tions that the programmer can use famil- 
iarly, without repeated recourse to docu- 
mentation. 

Fred Brooks has argued that one of the 
great hopes for software engineering is 
the cultivation of great  designer^.'^ In- 
deed, innovative designs require great de- 
signers. But great designers are rare, and 
most designs need not be innovative. Sys- 
tematic presentation of design fragments 
and techniques that are known to work 
can enable designers of ordinary talent to 
produce effective results for a wide range 
of more routine problems by using prior 
results (buying or growing, in Brooks’s 
terms) instead of always building from 
scratch. 

It is unreasonable to expect a designer 
or developer to take advantage of scien- 
tific theories or experience if the neces 
sary information is not readily available. 

Scientific results need to be recast in oper- 
ational form; the important information 
from experience must be extracted from 
examples. The content should include 
design elements, components, interfaces, 
interchange representations, and algo- 
rithms. A conceptual structure must be 
developed so the information can be 
found when it is needed. These facts must 
be augmented with analysis techniques or 
guidelines to support selection of alterna- 
tives that best match the problem at hand. 

A few examples of well-organized refer- 
ence materials already exist. For example, 
the summary flowchart of William Mar- 
tin’s sorting s~ rvey’~  captured in one page 
the information a designer needed to 
choose among the thencurrent sorting 
techniques. William Cody and William 
Waite’s manual for implementing elemen- 
tary mathematical functions’6 gives for 
each function the basic strategy and spe- 
cial considerations needed to adapt that 
strategy to various hardware architectures. 

Although engineering has traditionally 
relied on handbooks published in book 
form, a software engineers’ handbook 
must be on line and interactive. No other 
alternative allows for rapid distribution of 
updates at the rate this field changes, and 
no other alternative has the potential for 
smooth integration with on-line design 
tools. The on-line incarnation will require 
solutions to a variety of electronic-publish- 
ing problems, including distribution, vali- 
dation, organization and search, and col- 
lection and distribution of royalties. 

Simply put, software engineering would 
benefit from a shift of emphasis in which 
both reference materials and case studies 
of exemplary software designs are incor- 
porated in the curriculum. The discipline 
must find ways to reward preparation of 
material for reference use and the devel- 
opment of good case studies. 

Expect professional specializations. As 
software practice matures toward engi- 
neering, the body of substantive technical 
knowledge required of a designer or de- 
veloper continues to grow. In some areas, 
it has long since grown large enough to 

November 1990 23 

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore.  Restrictions apply. 



require specialization - for example, 
database administration was long ago sep  
arated from the corresponding program- 
ming. But systems programming has been 
resistant to explicit recognition of profes 
sional specialties. 

In the coming decade, we can expect to 
see specialization of two kinds: 

internal specialization as the technical 
content in the core of software grows 
deeper and 

external specialization with an in- 
creased range of applications that require 
both substantive application knowledge 
and substantive computing knowledge. 

Internal specialties are already starting 
to be recognizable for communications, 
reliability, real-time programming, scien- 
tific computing, andgraphics, among oth- 
ers. Because these specialties rely critically 
on mastery of a substantial body of com- 
puter science, they may be most appropri- 
ately organized as postbaccalaureate edu- 
cation. 

External specialization is becoming 
common, but the required dual expertise 

is usually acquired informally (and often 
incompletely). Computational specializa- 
tions in various disciplines can be s u p  
ported via joint programs involving both 
computer science and the application de- 
partment; this is being done at some uni- 
versities. 

Simply put, software engineering will re- 
quire explicit recognition of specialties. 
Educational opportunities should be p r e  
vided to support them. However, this 
should not be done at the cost of a solid 
foundation in computer science and, in 
the case of external specialization, in the 
application discipline. 

Improve the coupling between science 
and commercial practice. Good science is 
often based on problems underlying the 
problems of production. This should be 
as true for computer science as for any 
other discipline. Good science depends 
on strong interactions between research- 
ers and practitioners. However, cultural 
differences, lack of access to large, com- 
plex systems, and the sheer difficulty of 

understanding those systems have inter- 
fered with the communication that s u p  
ports these interactions. 

Similarly, the adoption of results from 
the research community has been im- 
peded by poor understanding of how to 
turn a research result into a useful ele- 
ment of a production environment. Some 
companies and universities are already 
developing cooperative programs to 
bridge this gap, but the logistics are often 
daunting. 

Simply put, an engineering basis for 
software will evolve faster if constructive 
interaction between research and produc- 
tion communities can be nurtured. *3 

Acknowledgments 
This article benefited from comments by 

Allen Newell, Norm Gibbs, Frank Friedman, 
Tom Lane, and the other authors of articles in 
this special issue. Most important, Eldon Shaw 
fostered my appreciation for engineering. 
Without his support, this work would not have 
been possible, so I dedicate this article to his 
memory. 

This work was supported by the US Defense 
Dept. and agrant from Mobay Corp. 

References 
1. J.K. Finch, Engineering and Western Civiliza- 

tion, McGraw-HiU, New York, 1951. 
2. E.W. Dijkstra, “On the Cruelty of Really 

Teaching Computing Science,” Comm. 
A m  Dec. 1989,pp. 1,39&1,404. 

3. D.L. Parnas, “Education for Computing 
Professionals,” cmnputo; Jan. 1990, pp. 17-22. 

4. H. Straub, A History of CiviiEngznem’ng An 
Outlinefmm Ancimt to Modern Times, MIT 
Press, Cambridge, Mass., 1964. 

5. F.J. van Antwerpen, “The Origins of 
Chemical Engineering,”in H i s t q  ofChemi- 
cal Engineering, W.F. Furter, ed., American 
Chemical Society, Washington, D.C., 1980, 
pp. 1-14. 

6. Computer Science andTechnology Board, 
National Research Council, fitping the US 
Computer Industry Competitive, National 
Academy Press, Washington, D.C., 1990. 

7. National Academy of Engineering, Engi- 
neering and the Advancement of Human We- 
fare: 10 OutstandangAchieuats 1964-1989, 
National Academy Press, Washington, 
D.C., 1989. 

8. E. Levin, “Grand Challenges to Computa- 
tional Science,” Comm. ACM, Dec. 1989, 
pp. 1,4561,457. 

9. Sofrware Engineering: Report on a Conference 

@ m m d  by the NATO Science Committee, Gar- 
misch, Genany, 1968, P. Naur and B. Ran- 
dell, eds., Scientific Affairs Div., NATO, 
Brussels, 1969. 

10. B.W. Boehm, “Software Engineering,” 
FBTmns. Computns, Dec. 1976, pp. 1,226 
1,241. 

11. S.T. Redwine et al., “DoD-Related Software 
Technology Requirements, Practices, and 
Prospects for the Future,” Tech. Report P- 
1788, Inst. Defense Analyses, Alexandria, 
Va., 1984. 

12. E.D. Hirsch,Jr., CuUuralLiterug: W h a t E v q  
Ammican Needs to Know, Houghton Mifflin, 
Boston, 1989. 

13. M. Shaw, D. Giuse, and R. Reddy, ‘ m a t  a 
Software Engineer Needs to Know I: Vo- 
cabulary,” tech. report CMU/SEI-89-TR- 
30, Carnegie Mellon Univ., Pittsburgh, 
Aug. 1989. 

14. F.P. Brooks, Jr., “No Silver Bullet: Essence 
and Accidents of Software Engineering,” 
InfmationProcessing86, pp. 1,0691,076. 

15. W.A. Martin, “Sorting,” ACM Computing 
Survqrs, Dec. 1971, pp. 147-174. 

16. W.J. Cody, Jr., and W.M. Waite, Software 
Manual for the Elementary Function$ Pren- 
tice-Hall, Englewood Cliffs, N.J., 1980. 

Mary Shaw is a professor of computer science 
at Carnegie Mellon University, where she has 
been on the faculty since 1971. From 1984 to 
1987, she was chief scientist at the Software 
Engineering Institute, with which she still hasa 
joint appointment. Her primary research in- 
terests are programming systems and software 
engineering, particularly abstraction tech- 
niques and language tools for developing and 
evaluating software. 

Shaw received a BA in mathematics from 
Rice Universityand a PhD in computer science 
from Carnegie Mellon University. She is a 
member of the IEEE Computer Society, ACM, 
New York Academy of Sciences, and Sigma Xi. 
She also serves o n  the National Research 
Council’s Computer Science and Technology 
Board, IEEE Technical Committee on Soft- 
ware Engineering, and IFIP Working Group 
2.4 (System Implementation Languages). 

Address questions about this article to the 
author at Computer Science Dept., Garnegie 
Mellon University, Pittsburgh, PA 15213-3890 
Internet shaw@cs.cmu.edu. 

24 IEEE Software 

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 16, 2009 at 14:00 from IEEE Xplore.  Restrictions apply. 

mailto:shaw@cs.cmu.edu

