MIRAGE: A Management Tool for the Analysis and Deployment of Network Security Policies

Joaquin Garcia-Alfaro Télécom Bretagne

Joint work with

Frédéric Cuppens, Nora Cuppens-Boulahia, Stere Preda, and Thierry Sans

Brief introduction

Management of configuration conflicts (or configuration anomalies in general) is a (very) complex task

Two main strategies

Outline

- Brief introduction
- Bottom-up analysis of filtering configurations
 - Intra-component analysis
 - Inter-component analysis
- Top-down refinement of general security policies
- Conclusion / Perspectives

Bottom-up analysis

Configuration of Firewalls

- When processing packages, conflicts due to rule overlaps can occur within the same policy
- We can solve this problem by ordering the rules
 - First/Last matching strategy
- ⇒It introduces, however, some other problems
 - Shadowing (i.e., rules that are never applied)
 - Redundancy (i.e., if removed, policy does not change)

Definitions

Format of rules

Condition → accept or Condition → deny

Where *condition* is a conjunctive set of attributes in the form:

@source ^ @destination ^ port-source ^ port-destination ^ protocol

Example of Shadowing

 R_1 : $s \in 1.0.0.0/24 \land d \in any \land sport \in any \land dport = 80 \land p = tcp <math>\rightarrow accept$ R_2 : $s \in 1.0.0.0/24 \land d \in 2.0.0.0/16 \land sport \in any \land dport = 80 \land p = tcp <math>\rightarrow deny$

Example of Redundancy

 R_1 : $s \in 1.0.0.0/24 \land d \in 2.0.0.0/16 \land sport \in any \land dport = 80 \land p = tcp <math>\rightarrow$ accept R_2 : $s \in 1.0.0.0/24 \land d \in any \land sport \in any \land dport = 80 \land p = tcp <math>\rightarrow$ accept

- Detection & removal of configuration anomalies
- Based on rewritting of rules:
 - Detection: existence of relationships between attributes
 - Removal: transformation from an initial set of rules to an equivalent one which rules free of dependencies

Example:

 $R_1: s \in 1.0.0.[10,50] \land d \in 2.0.0.[10,40] \rightarrow accept$ $R_2: s \in 1.0.0.[10,60] \land d \in 2.0.0.[10,70] \rightarrow deny$

- Detection & removal of configuration anomalies
- Based on rewritting of rules:
 - Detection: existence of relationships between attributes
 - Removal: transformation from an initial set of rules to an equivalent one which rules free of dependencies

Example:

```
\begin{split} R_1: s \in 1.0.0.[10,\!50] \ \land \ d \in 2.0.0.[10,\!40] \rightarrow \text{accept} \\ R_{2,1}: s \in 1.0.0.[51,\!60] \ \land \ d \in 2.0.0.[10,\!70] \rightarrow \text{deny} \\ R_{2,2}: s \in 1.0.0.[10,\!50] \ \land \ d \in 2.0.0.[41,\!70] \rightarrow \text{deny} \end{split}
```


- Detection & removal of configuration anomalies
- Based on rewritting of rules:
 - Detection: existence of relationships between attributes
 - Removal: transformation from an initial set of rules to an equivalent one which rules free of dependencies

Example:

 R_1 : s ∈ 1.0.0.[10,60] \land d ∈ 2.0.0.[10,70] \rightarrow accept R_2 : s ∈ 1.0.0.[10,50] \land d ∈ 2.0.0.[10,40] \rightarrow deny

- Detection & removal of configuration anomalies
- Based on rewritting of rules:
 - Detection: existence of relationships between attributes
 - Removal: transformation from an initial set of rules to an equivalent one which rules free of dependencies

Example:

 $R_1: s \in 1.0.0.[10,60] \land d \in 2.0.0.[10,70] \rightarrow accept$

 $R_2: \emptyset \rightarrow deny$

Intra-component Analysis (1/2)

- Deterministic analysis of standalone configurations
- Taxonomy on anomalies:
 - Intra-component Shadowing
 - Intra-component Redundancy
- Example:


```
\begin{split} &C_1\{R_1\} \colon \{\text{tcp}, 1.0.2.[1,30] \colon \text{any}, \ 1.0.3.[20,45] \colon \text{any}\} \to \text{true} \\ &C_1\{R_2\} \colon \{\text{tcp}, 1.0.2.[20,60] \colon \text{any}, \ 1.0.3.[25,35] \colon \text{any}\} \to \text{false} \\ &C_1\{R_3\} \colon \{\text{tcp}, 1.0.2.[30,70] \colon \text{any}, \ 1.0.3.[20,45] \colon \text{any}\} \to \text{false} \\ &C_1\{R_4\} \colon \{\text{tcp}, 1.0.2.[15,45] \colon \text{any}, \ 1.0.3.[25,30] \colon \text{any}\} \to \text{true} \end{split}
```

.. ..

Intra-component Analysis (2/2)

- Deterministic analysis of standalone configurations
- Taxonomy on anomalies:
 - Intra-component Shadowing
 - Intra-component Redundancy

 $C_1\{R_1\}: \{tcp, 1.0.2.[1,30]: any, 1.0.3.[20,45]: any\} \rightarrow true$ $C_1\{R_2\}: \{tcp, 1.0.2.[20,60]: any, 1.0.3.[25,35]: any\} \rightarrow false$ $C_1\{R_3\}: \{tcp, 1.0.2.[30,70]: any, 1.0.3.[20,45]: any\} \rightarrow false$ $C_1\{R_4\}: \{tcp, 1.0.2.[15,45]: any, 1.0.3.[25,30]: any\} \rightarrow true$

Topology of the System

 MIRAGE also manages the description of the security architecture topology, to guarantee the proper execution of the audit processes

Topology of the System

Topology of the System

$$\begin{split} &C_1\{R_1\}: \{tcp, 1.0.2.[1,30]: any, \ 1.0.3.[20,45]: any\} \to true \\ &C_1\{R_2\}: \{tcp, 1.0.2.[20,60]: any, \ 1.0.3.[25,35]: any\} \to false \\ &C_1\{R_3\}: \{tcp, 1.0.2.[30,70]: any, \ 1.0.3.[20,45]: any\} \to false \\ &C_1\{R_4\}: \{tcp, 1.0.2.[15,45]: any, \ 1.0.3.[25,30]: any\} \to true \end{split}$$

.

Outline

- Brief Introduction
- Bottom-up analysis of filtering configurations
 - Intra-component analysis
 - Inter-component analysis
- Top-down refinement of general security policies
- Conclusion / Perspectives

Top-down Approach

Address same taxonomy of Anomalies

Security Policy

- Definition of a global security policy for the whole information system
- Then, perform a transformation process in order to configure a specific instance of the security policy for every component within the information system

 Definition of a global security policy for the whole information system

 Definition of a global security policy for the whole information system

 Definition of a global security policy for the whole information system

 Definition of a global security policy for the whole information system

 Definition of a global security policy for the whole information system

 Definition of a global security policy for the whole information system

 Definition of a global security policy for the whole information system

Specifying network security policies with OrBAC

- Objective of a network security policy
 - Specify rules to control interaction between hosts that use network services to send messages.

- Define concrete entities in network domain
 - SUBJECT: a host, a group of hosts, a (sub)network, etc. (all identified by their IP addresses)
 - **ACTION:** a network service (e.g., tcp, udp, HTTP, ...)
 - OBJECT: a message sent to destination hosts (i.e., subjects)

Examples based on the previous network

- Roles: abstraction of subjects (i.e., hosts):
 - Web_servers, DNS_Servers, Admin_server, Internet, Intranet.
- Activities: abstraction of actions (i.e., network services):
 - Web_http, DNS_resolution, Administration, Mail_SMTP.

- Views: abstraction of objects (i.e., network messages):
 - to_Web_servers, to_DNS_Servers, to_Admin_server, to_Internet, to_Intranet.

Sample network

How to specify permissions

• Example:

In the Corporate network, Intranet hosts can send web requests to Internet hosts

How to specify permissions

Example:

In the Corporate network, Intranet hosts can send web requests to Internet hosts

Refinement (MIRAGE example)

PEP (Policy Enforcement Points)

Conclusion

Bottom-up approach

- Ad hoc analysis of network configurations
- Analysis of other security components (e.g., VPN routers)

Top-down approach

- Global approach
- Dynamic reconfiguration

Combining & improving both approaches