
MIRAGE: A Management Tool for the Analysis
and Deployment of Network Security Policies

Joaquin Garcia-Alfaro, Frédéric Cuppens,
Nora Cuppens-Boulahia, and Stere Preda

Institut Télécom, Télécom Bretagne,
CS 17607, 35576 Cesson-Sévigné, France
joaquin.garcia-alfaro@acm.org,

forename.surname@telecom-bretagne.eu

Abstract. We present the core functionality of MIRAGE, a management tool
for the analysis and deployment of configuration policies over network security
components, such as firewalls, intrusion detection systems, and VPN routers. We
review the two main functionalities embedded in our current prototype: (1) a
bottom-up analysis of already deployed network security configurations and (2)
a top-down refinement of global policies into network security component con-
figurations. In both cases, MIRAGE provides intra-component analysis to detect
inconsistencies in single component deployments; and inter-component analysis,
to detect multi-component deployments which are not consistent. MIRAGE also
manages the description of the security architecture topology, to guarantee the
proper execution of all the processes.

Keywords: Network security, Access control, Analysis of configurations, Or-
BAC, Policy refinement.

1 Introduction

Despite the advances in the field of network security technologies, such as filtering
of traffic, use of encrypted communications, and deployment of authentication mecha-
nisms, there may always be errors or flaws that can be exploited by unauthorized parties.
The use of firewalls, NIDSs (network intrusion detection systems), and VPN (Virtual
Private Network) routers, is still the dominant method to survey and guarantee the se-
curity policy in current corporate networks. The configuration of these components is
based on the distribution of security rules that state what is permitted and what is pro-
hibited in a system during normal operations. This configuration must be consistent,
addressing the same decisions under equivalent conditions, and not repeating the same
actions more than once. Otherwise, the existence of anomalies in their configuration
rules may lead to weak security policies (potentially easy to be evaded by unauthorized
parties). The update of the component configurations can also introduce new anomalies.
There is, therefore, a clear need of support tools to guide the operators when performing
such tasks.

Our research work has studied the combination of two main strategies in order to
manage this problem. The first strategy is the use of an audit mechanism that analyzes

already deployed configurations, signals inconsistencies, and yields consistent config-
urations. Through this mechanism, moreover, we can fold existing policies and create
a consistent and global set of rules — easy to maintain and manage by using a single
syntax [13, 14]. The second strategy is the use of a refinement mechanism that guaran-
tees the proper deployment of such rules into new systems, yet free of inconsistencies.
These two research strategies have been implemented into a software prototype called
MIRAGE (which stands for MIsconfiguRAtion manaGEr).

Developed as a web service, MIRAGE can autonomously be executed under the
control of several operators in order to offer the system with the following functions:
(1) an intra-component analysis which detects inconsistencies between rules within sin-
gle security component policies [12, 10]; (2) an inter-component analysis of rules to de-
tect inconsistencies between configurations of different devices [15]; (3) an aggregation
mechanism to fold all the existing policies into a single, and consistent, global set of
rules [14]; and (4) a refinement process to properly deploy the global set of rules over
new security components [17, 18]. In all four cases, MIRAGE utilizes a description of
the topology of the whole security architecture.

The use of MIRAGE can highly benefit the maintenance of multihomed autonomous
systems. It might remain connected to the network and provide assistance to the com-
plete set of component in the event of configuration maintenance or redeployment of
configuration to face events such as detection of malicious activity or failures. In this
sense, the refinement mechanism offered by MIRAGE guarantees that the set of rules
deployed over the different components of a system is always consistent, not redundant,
and optimal [19].

Paper Organization — Section 2 reviews recent results implemented in the MIRAGE
prototype for guaranteeing correctness and consistency on single and distributed net-
work security policies. Section 3 compares these approaches implemented in MIRAGE
with other solutions proposed in both the science and the industry community. Section 4
closes the paper.

2 MIRAGE Prototype

MIRAGE is a management tool for guaranteeing the correctness and the consistency of
configuration rules on single and distributed network security policies. It implements
an analysis of components’ configurations (i.e., configurations of firewalls, NIDSs, and
VPN routers) to detect anomalies on their deployment. To do so, MIRAGE implements
four main functions: intra-component analysis for the detection of inconsistencies be-
tween configuration rules within single security component policies; inter-component
analysis of rules to detect inconsistencies between configurations of different devices;
aggregation of policies for the creation of a consistent and global set of rules; and refine-
ment mechanism for the deployment of global policies over the different components of
new systems. We address in the sequel the key aspects of some of these functionalities
implemented in the current version of our prototype.

2.1 Bottom-Up Analysis of Network Configurations

We assume here that a security policy has been empirically deployed into the network
based on security administrator expertise and flair. It is then advisable to analyze the se-
curity rules deployed to detect and correct policy inconsistencies. These inconsistencies
are often the origin of security holes exploited by dishonest parties. MIRAGE addresses
this process and provides a discovery of inconsistencies and redundancies from com-
ponent configurations. This process is presented based on two different schemes: (1)
single- and (2) multi-component analysis.

Single-component Analysis

MIRAGE provides a deterministic process to detect inconsistencies in the configuration
of security components. It considers that these devices are configured in a standalone
manner, using a set of configuration rules (e.g., filtering rules in the case of a firewall;
and alerting rules in the case of a NIDS). A general configuration rule is defined as
follows:

Ri : {conditioni} → decisioni (1)

Regarding the previous expression, i is the relative position of a rule in the set,
{conditioni} is a conjunctive set of condition attributes such that {conditioni} equals
A1∧A2∧...∧Ap – being p the number of attributes of the given rule – and decision is a
boolean value in {true, false}. For example, the decision of a filtering rule is positive
(true) when it applies to a specific value related to deny the traffic it matches; and
negative (false) when it points to accept the traffic it matches. Similarly, the decision
field of an alerting rule is positive (true) when it applies to a specific value related
to alert about the traffic it matches; and negative (false) when it applies to a specific
value related to ignore the traffic it matches. Based on the sample scenario depicted
by Figure 1, and its associated set of rules, we define the following set of anomalies
detected by the intra-component audit process.

– Intra-component Shadowing — A configuration rule Ri is shadowed in a set of
configuration rules R when such a rule never applies because all the packets that
Ri may match, are previously matched by another rule, or combination of rules,
with higher priority. E.g., rule R6 is shadowed by the overlapping of rules R3∪R5.

R1: {tcp,1.0.1.[10,20]:any, 1.0.1.[50,60]:any} → false
R2: {tcp,1.0.2.[10,255]:any, 1.0.3.[0,255]:any} → false
R3: {tcp,1.0.2.[1,30]:any, 1.0.1.[20,45]:any} → true
R4: {tcp,1.0.2.[20,60]:any, 1.0.1.[25,35]:any} → false
R5: {tcp,1.0.2.[30,70]:any, 1.0.1.[20,45]:any} → false
R6: {tcp,1.0.2.[15,45]:any, 1.0.1.[25,30]:any} → true

1.0.1.0/24 1.0.2.0/24 1.0.3.0/24

Fig. 1. Single filtering policy scenario.

– Intra-component Redundancy — A configuration rule Ri is redundant in a set of
configuration rules R when the following conditions hold: (1) Ri is not shadowed
by any other rule or set of rules; (2) when removing Ri from R, the security policy
does not change. E.g., rule R4 is redundant to R3 ∪R5.

– Intra-component Irrelevance — A configuration rule Ri is irrelevant when (1)
source and destination addresses are within the same zone or (2) the component
does not appear in the minimal route that connects the source zone (i.e., the rule
matches traffic that never reaches the component). E.g., rule R1 is irrelevant since
both source and destination are in network 1.0.1.0/24. Rule R2 is also irrele-
vant since the filtering device is not part of the minimal route between networks
1.0.2.0/24 and 1.0.3.0/24.

The reader can find in [10, 15] the algorithms that enable MIRAGE the detection of the
inconsistencies presented in this section, as well as correctness and computational com-
plexity of the algorithms. Although we show that the theoretical complexity of the algo-
rithms is very high, we show with a series of experimentations (cf. [15], Section 6) that
we are always very far from the worst case. Indeed, only few attributes, such as source
and destination addresses, may significantly overlap and exercice a bad influence on the
algorithms complexity. Other attributes, such as the protocol or the port numbers, are
generally equal or completely different when combining configuration rules. Moreover,
when anomalies are discovered, some rules are removed – which significantly reduces
the algorithms complexity.

Multi-component analysis

MIRAGE provides a second audit process to analyze multi-component setups (e.g.,
distributed architectures with firewalls and NIDSs in charge of multiple network se-
curity policies). In this sense, it can assume, for instance, that the role for detecting
and preventing network attacks is assigned to several components. It will, then, look
for inconsistencies hidden in their configurations. The detection process is based on
the similarity between the parameters of configuration rules such as filtering an alert-
ing rules. It checks, indeed, if there are errors in the configurations by comparing the
policy deployment over each component that matches the same traffic. Based on the
sample scenario depicted by Figure 2, we show in the sequel an example of the kind of
inconsistencies detected by the inter-component audit process of MIRAGE.

– Inter-component Shadowing — A shadowing anomaly occurs between two compo-
nents when the following conditions hold: (1) The component that is located closest
to the origin of the traffic is a filtering device (e.g., a firewall); (2) The component
where the anomaly is detected does not block or report (completely or partially)
traffic that is blocked (explicitly, by means of positive rules; or implicitly, by means
of its default policy), by the first component in the path (closest to the source). The
following table shows some examples.

– Inter-component Redundancy — A redundancy anomaly occurs between two com-
ponents when the following conditions hold: (1) The component that is located

Rules Anomaly
C6{R7} ∪ C6{R8} shadows C3{R1} full shadowing
C6{R8} partially shadows C3{R2} explicit partial shadowing
Close policy of C2 shadows C1{R5} implicit full shadowing

closest to the origin of the traffic is a filtering device (e.g., a firewall); (2) The com-
ponent where the anomaly is detected, blocks or reports (completely or partially)
traffic that is already blocked by the first component. This kind of redundancy is
often introduced by network officers expressly. It is important, however to alert
about it, to warn the administrator that the rule has a special meaning (e.g., a mes-
sage warning that if the rule applies, the upstream filtering devices are not working
properly). The following table shows some examples.

Rules Anomaly
C6{R1} is redundant to C5{R3} full redundancy
C6{R5} is redundant to C4{R3} full redundancy
C6{R2} is redundant to C5{R4} partial redundancy
C6{R6} is redundant to C4{R4} partial redundancy

C1

C3

C6

C4

C2 C5

C1{R1}: {1.0.1.[0,255]:any, 2.0.12.[0,255]:any} → false
C1{R2}: {1.0.2.[0,255]:any, 2.0.12.[0,255]:any} → false
C1{R3}: {1.0.3.[20,33]:any, 1.0.1.[20,30]:any} → false
C1{R4}: {1.0.3.[60,80]:any, 1.0.1.[20,30]:any} → false
C1{R5}: {2.0.11.[0,30]:any, 1.0.2.[10,30]:any} → false
C1{R6}: {2.0.9.[10,20]:any, 1.0.1.[0,255]:any} → true
C1{R7}: {2.0.11.[0,255]:any, 1.0.1.[10,12]:any} → true

C3{R1}: {1.0.3.[20,33]:any, 2.0.1.[20,30]:any} → false
C3{R2}: {1.0.3.[60,80]:any, 2.0.1.[20,30]:any} → false

C6{R1}: {1.0.4.[0,255]:any, 2.0.6.[0,255]:any} → true
C6{R2}: {1.0.5.[18,20]:any, 2.0.6.[0,255]:any} → true
C6{R3}: {1.0.3.[10,20]:any, 1.0.1.[0,255]:any} → true
C6{R4}: {1.0.3.[21,70]:any, 1.0.1.[0,255]:any} → true
C6{R5}: {1.0.4.[0,255]:any, 2.0.3.[0,255]:any} → true
C6{R6}: {1.0.5.[18,20]:any, 2.0.3.[0,255]:any} → true
C6{R7}: {1.0.3.[10,23]:any, 2.0.1.[0,255]:any} → true
C6{R8}: {1.0.3.[24,60]:any, 2.0.1.[0,255]:any} → true

C2{R1}: {2.0.8.[15,17]:any, 1.0.1.[0,255]:any} → false
C2{R2}: {2.0.10.[0,70]:any, 2.0.7.[0,255]:any} → false
C2{R3}: {2.0.10.[0,70]:any, 1.0.2.[0,255]:any} → false
C2{R4}: {2.0.11.[0,255]:any, 1.0.1.[0,255]:any} → false
C2{R5}: {2.0.10.[0,70]:any, 2.0.4.[0,255]:any} → false
C2{R6}: {1.0.[1.0,2.255]:any, 2.0.12.[0,255]:any} → false

C4{R1}: {2.0.10.10:any, 2.0.4.[0,255]:any} → true
C4{R2}: {2.0.10.[60,80]:any, 2.0.4.[0,255]:any} → true
C4{R3}: {1.0.4.[15,30]:any, 2.0.3.[0,255]:any} → true
C4{R4}: {1.0.5.[0,255]:any, 2.0.3.[0,255]:any} → true
C4{R5}: {1.0.3.[18,20]:any, 2.0.5.[0,255]:any} → true

C5{R1}: {2.0.10.10:any, 2.0.7.[0,255]:any} → true
C5{R2}: {2.0.10.[60,80]:any, 2.0.7.[0,255]:any} → true
C5{R3}: {1.0.4.[15,30]:any, 2.0.6.[0,255]:any} → true
C5{R4}: {1.0.5.[0,255]:any, 2.0.6.[0,255]:any} → true
C5{R5}: {1.0.3.[18,20]:any, 2.0.8.[0,255]:any} → true

2.0.12.0/24

1.0.[1,2].0/24

2.0.[9,11].0/24
2.0.[6,8].0/24

2.0.[1,2].0/24 2.0.[3,5].0/24

1.0.[3,5].0/24

Fig. 2. Example of an inter-component setup.

– Inter-component Misconnection — A misconnection anomaly occurs between two
components when the first one, located closest to the source, is a firewall that per-
mits (explicitly, by means of negative rules; or implicitly, through its default policy)
all the traffic, or just a part of it, that is then denied by the component where the
anomaly is detected. The following table shows some examples.

Rules Anomaly
C5{R1} and C2{R2} are misconnected full explicit misconnection
C5{R2} and C2{R2} are misconnected partial explicit misconnection

C1{R5} and policy of C2 are misconnected full implicit misconnection
C1{R6}, C2{R1}, and policy of C2 partial implicit misconnection

The reader can find in [15] the algorithms that enable MIRAGE the detection of the
inconsistencies presented in this section, as well as correctness profs, computational
complexity, and experimental results. The complete set of analyzed configuration can
be aggregated into a single, and consistent, global set of rules by using the aggregation
mechanism presented in [14]. This global policy is, in fact, the main source of informa-
tion used by the refinement mechanism presented in the sequel.

2.2 Top-Down Refinement of Global Policies

A second approach to address the management of consistency and correctness of net-
work policies is the use of refinement mechanisms. In this way, we can perform a down-
ward deployment of rules by unfolding a global set of security policies into the config-
urations of several components and guaranteeing that the deployed configurations are
free of anomalies. In [9], for example, we presented a refinement mechanism that uses
a formal model for the generation of filtering rules by transforming general rules into
specific configuration rules. We address in this section some functionalities addressed
by MIRAGE in this sense.

Model-driven Policy Deployment If manually carried out, the process of deploying
network security policies is often errorprone. In fact, without the right structural knowl-
edge of the policy, the deployment of conflicting security requirements becomes very
likely. This highlights the necessity of a more structured policy expression, i.e., only a
formalized expression of the security policy may guarantee an error-free security pol-
icy to be deployed, with no ambiguities, no inconsistencies, no redundancies and no
unnecessary details. Thus MIRAGE considers that an access control model and a for-
malized security policy is the first step toward enforcing by refinement the security of
the system.

MIRAGE takes full advantage of the OrBAC model (Organization Based Access
Control) [1] which is an extension of RBAC [20]. OrBAC presents a high abstraction
level and covers a large panel of security policies since it natively provides means to

express both static requirements (i.e., they are enforced once and for all) and contex-
tual requirements (i.e., dynamic requirements). The OrBAC notions of role, activity,
and view and also context prove very useful: the complexity of both the system (tens of
firewalls, NIDSs, and VPN routers) and the policy (static and dynamic security require-
ments) is no longer an issue. The role regroups subjects (concrete network entities), the
activity – actions (network services), the view – objects (e.g., IP packets, network enti-
ties) on which the same rules apply respectively. The notion of context confers the pos-
sibility to address a larger variety and also a finer granularity of security requirements, it
captures the conditions (e.g., environmental factors) in which the security requirements
are enforced and met. The OrBAC context allows the specification of these conditions
directly at an abstract policy level.

The policy refinement mechanism of MIRAGE is in fact a set of deployment algo-
rithms which constitutes the downward process: an OrBAC error-free security policy
is refined into packages of rules for each security device in the given network. The
aim is the correct deployment of a security policy, and this is achievable if some spe-
cific security properties are verified at the end. Such properties guarantee that no intra-
nor inter- component anomalies are introduced (cf. Section 2.1). The formal frame to
design the refinement mechanism of MIRAGE is presented in [18]. The policy deploy-
ment algorithms are developed using the B Method [2], a theorem proving method.
The B Method offers the means to cope with the issue of stating the interesting secu-
rity properties: besides an appropriate modeling language for both the OrBAC policy
and the system/network specifications, it allows a formal expression of the properties
related to the management of the intra- and inter- configuration anomalies during the
downward process. This is ensured by some B invariants. Thus, from the early stage of
their B development (i.e., abstract B specification), the policy deployment algorithms
of MIRAGE target the interesting security properties. Examples of security properties
we took into account, and expressed as B invariants, in [18] are:

– Completeness — This property states that if the network path from a subject to an
object is correctly computed (i.e., it exists and the security components belonging
to this path have the right functionalities with respect to the current contexti) the
security OrBAC rule Is_permitted(subject, action, object, contexti) may and will
be deployed. Clearly, this property is closely related to the network’s architecture
and the assumption of connectedness in the network architecture is required.

– All traffic are regulated by filtering components — This property is verified if there
is, at least, exactly one firewall or one IPS on the path between the current subject
and object.

– Integrity and confidentiality — These two properties are related to the establishment
of VPN tunnels. The verification starts at higher levels: the current OrBAC security
rule should be defined with a protected context — meaning that the trafic filtered
by the associated rules must be protected by the VPN tunnels. Then, if a path is
computed between the subject and the object and a VPN tunnel can be established
on this path, the integrity and confidentiality properties are verified.

The work in [18] presents a complete analysis of security properties. Some may
be specified at higher levels [8] and some may be identified from specific security re-

quirements. The MIRAGE deployment algorithms were formally proved with the as-
sumption of a conflict-free OrBAC policy and of a correct system architecture, i.e., no
lack of security functionalities in the security components placed on the shortest-paths.
Hence, as long as the system embeds all necessary security functionalities, there are no
concerns in deploying the policies. The refinement provided by MIRAGE is a certified
algorithm for a reliable and automatic security policy deployment. It is, however, realis-
tic to consider that sometimes the system lacks some necessary security functionalities.
Our proposed solutions to this problem are presented in the sequel.

Context Aware Policy Deployment The security policies become more and more con-
textual. (Re)deploying a contextual security policy depends on the security device func-
tionalities: either (1) the devices include all functionalities necessary to handle a context
and the policy is consequently deployed to ensure its automatic changes or (2) the de-
vices do not have the right functionalities to interpret a contextual requirement in its
entirety. MIRAGE proposes two solutions to cope with the issue of the (re)deployment
of access control policies in a system that lacks the necessary functionalities to deal
with contexts:

1. Dynamic deployment: MIRAGE considers a central entity (hereafter called PDP –
Policy Decision Point) which (partially) manages some contexts.

2. Optimization deployment: if the previous solution does not stand.

Obviously, the OrBAC formalism is maintained. These two solutions presented in
[17] and [19] respectively can then be jointly used whenever the security devices (here-
after called PEPs – Policy Enforcement Points) are not rich enough in functionalities
so as to manage all contexts by themselves. In this way, a complete deployment of the
(contextual) policy may be achieved.

The Methodology Let SR = (Decision, Role, Activity, View, Ctx) be a security rule of
the OrBAC policy P (SR ∈ P) and SR′ = (Decision, Role, Activity, View, Ctx′) with
Decision ∈ {Permission, Prohibition}. We call SR′ the SR contextual version over the
context Ctx′. Let PEPi be an enforcement point able to manage only the context Ctx′

and SR be the security rule PEPi must enforce. We investigate how SR′ can be deployed
and thus enforced by PEPi even if Ctx′ is not equal to the context Ctx of the initial rule
SR to be deployed. The final aim is to deploy the SR rule and one of the following
situations appears:

– Case 1 — The PEPi manages the entire Ctx context. The rule SR is directly de-
ployed over PEPi and the PDP does not manage SR anymore. Otherwise, the PDP
has to manage a part of the Ctx context.

– Case 2 — The PEPi manages only Ctx2, a part of the Ctx context. We note this
case as Ctx1 = Ctx - Ctx2. The deployment is dynamic and the PDP manages Ctx1:
the PDP must deploy SR′, the SR contextual version over Ctx2 on the PEPi when
Ctx1 becomes active. Once Ctx1 is deactivated, the PDP must be able to retrieve the
deployed SR′ from PEPi. For example and as suggested in [17], Ctx1 may represent
a threat context activated by the detection of some intrusion. Thus, Case 2 provides

means to dynamically redeploy the policy to face this intrusion. This represents the
dynamic deployment solution.

– Case 3 — Neither the PEPi, nor the PEPi and the PDP working together manage
the Ctx context. Then, two solutions are possible: (I) there may be a context closely
related with Ctx which is still managed by the system as described in Case 2 (in fact,
we refer to the OrBAC context hierarchies); or (II) if the system does not provide
hierarchies, the last option is to find a security functionality closely-equivalent to
the one necessary to handle the Ctx context. Both (I) and (II) represent the best
deployed policy solution.

Dynamic Deployment The formalization of this solution is based on the use of ECA
(Event Condition Action) [5]. The algorithms running at the PDP level deploy (or re-
trieve) security rules over the PEPs when the contexts are activated (or deactivated). To
be effective, this solution requires a specific communication protocol between the PDP
and the PEPs. Actually our method uses the Netconf (cf. http://www.ops.ietf.org/netconf/)
protocol with the Yencap (cf. http://ensuite.sourceforge.net/) open-source implementa-
tion which we adapted accordingly. Several performance tests were realized and pre-
sented in [17]. The results proved to be satisfactory.

Best Deployed Policy There are scenarios in which the PDP and/or PEPs cannot en-
tirely handle the Ctx context related to an SR rule. Instead of skipping such rules (with
the result of, for example, a too restrictive deployed policy at the end), MIRAGE pro-
poses the following solutions of: (1) finding a closely related context to the unmanaged
one and which may be managed by the PDP and/or PEP and/or (2) finding a close
enough functionality to deal with the unmanaged context if solution (1) does not ap-
ply. OrBAC proves very effective for the first solution since OrBAC provides context
hierarchies. Thus, it is enough to find either the more specialized context than Ctx (to
deploy permissions) or less specialized ones (to deploy prohibitions).

The second solution is solved with an optimization approach. The system presents
no optimal functionality to manage the Ctx context but only closely-equivalent ones. We
declare these functionalities with the Close_Fs() predicate. A notion of cost of using
a given functionality to deploy certain rules in the Ctx context is introduced and the
deployment problem is transformed into an optimization one. The result is a bipartite
graph where the optimization solution is obtained with linear programming. Figure 3
depicts a proper example. Notice that, globally, the cost of deploying the SR rules over
the Ctx contexts is minimized. The optimal functionalities necessary to handle the Ctx
context will be substituted by closely-equivalent ones.

3 Related Works

A significant amount of work has been reported in the area of security management at
network level in order to analyze and fix existing configurations. The most significant
approach to firewall policy analysis is the one by Al-Shaer et al. (e.g., approaches pre-
sented in [3, 4]) which provides efficient solutions to detect policy anomalies in both

F2 F3 F4 F5F1

SR1 SR2 SR3 SR4 SR5 SR6 SR7

Cost5Cost4Cost3Cost2Cost1

SR rules, SRj

Functionalities, Fj

(a) The LP Problem.

1 
€

€

minimize Cost jx j ,
j=1

n

∑

subject to dijx j
j=1

n

∑ ≥1, i∈ (1...m)

 x j = 0 or 1, j∈ (1...n)
where xj =1 if j is in FS, xj = 0
otherwise; and dij =1 if SRi could
be deployed using the functionality
Fj, dij = 0 otherwise.

Case A
 Case B

€

minimize Cost jx j ,
j=1

n

∑

subject to dijx j
j=1

n

∑ =1, i∈ (1...m)

 x j = 0 or 1, j∈ (1...n)
where xj =1 if j is in FS, xj = 0
otherwise; and dij =1 if SRi could
be deployed using the functionality
Fj, dij = 0 otherwise.

(b) The LP Solutions.

Fig. 3. LP Problem and Solutions.

single- and multi-firewall configuration setups. Their detection algorithms are based on
the analysis of relationships between rules two by two. Therefore, errors due to the
union of rules are not explicitly considered (as our approach does). Some workarounds
can be provided to solve this situation. For instance, it is possible to break down the ini-
tial set of rules into an equivalent set of rules free of overlaps between rules. However,
no specific algorithms were provided in [3, 4] to manage this solution. Another related
work is the proposal presented in [21], which uses a model checking formalism for
detecting inconsistencies and redundancies in single firewall configurations. This pro-
posal handles the limitation pointed out in the works by Al-Shaer et al., by addressing
directly the way how traffic is handled by the components. The complete set is divided
in three main sets: traffic that is permitted, traffic that is prohibited, and traffic for which
no rules apply. The proposal in [21], as well as other similar approaches, such as [16],
only address intra-component analysis. Moreover, none of them have presented specific
mechanisms for verifying policies other than filtering ones.

Regarding the analysis of VPN routers’ configurations, the most significant ap-
proach compared to ours is proposed in [11]. The authors propose a technique that
simulates VPN tunneling processing and reports any violation of the security policy re-
quirements. In their approach, if an access rule concerning a protected traffic between
two points is implemented by configuring more than one VPN overlapping tunnel, the
risk is that in some network zones the IP packets circulate without any protection. The
authors present a discovery process to detect such situations and propose a high-level
language to deal with VPN policies. Although this approach can discover some viola-
tions in a certain simulation scenario, there is no guarantee that it discovers every pos-
sible violation that may exist. In addition, the proposed technique only discovers VPN
conflicts resulting from incorrect tunnel overlap, but does not address the other types
of conflicts. Another attempt to deploy VPN configurations free of anomalies is [6]
where the authors propose a central-entity approach with high level language conflict
resolution techniques also - the algorithms remained however unevaluated. However, a
significant aspect is ignored in both previous approaches: the security policy cannot be
seen as two independent sets of requirements (i.e., VPN tunnels and firewalls modeled
separately). The use of a single access control model in our approach solves this lim-

itation and allows us to deal with a global set of security requirements and to address
inter-mechanisms anomalies (e.g., firewall vs. VPN conflicts) at the same time.

Another significant approach compared to ours is the RBAC-based proposal pre-
sented in [7], called Firmato. This new solution aims at configuring filtering devices
following an approach of separation between the security policy model and the technol-
ogy specifications. It, therefore, ensures policy deployment independently of the net-
work topology. The tool is based on an Entity — Association model (abstract level)
which takes into account the network topology as a role. The instantiation of the model
is based on a specific language that allows a downward transformation of the global
policy into a set of firewall configurations. However, the use of the role concept used in
Firmato, which defines the network capabilities, becomes ambiguous in its semantics.
The authors use the notion of group to handle this situation. A group can identify, in
fact, a set of hosts but also a role or a set of roles. Its use does not ensure, indeed, a clear
separation between the network level and the security policy, making difficult the use of
this tool to model complex networks. The authors use, moreover, privilege inheritance
through group hierarchies in order to derive permissions. If permission inheritance is
related to the so-called open group, prohibitions are inherited through a close group.
The notion of group clearly introduces ambiguities and seems to be useless at this ab-
straction level.

Support tools can also be used to assist administrators in their task of configuring se-
curity devices. Proper examples are the LogLogic Security Change Manager (for more
info, cf. http://loglogic.com/products/), formerly known as Solsoft Policy Server and
Network Security Policy Server, the Firewall Builder (cf. http://fwbuilder.org/), Check-
Point SmartCenter (cf. http://checkpoint.com/products/smartcenter/), Juniper Network
and Security Manager (cf. http://www.netutils.com/), as well as the Cisco Security Man-
ager (cf. http://cisco.com/go/csmanager). In a relatively high level language, these sup-
port tools allow the configuration of different vendors’ devices and support the security
administrators in the deployment of large configurations on heterogeneous networks.
We observe the following problems when using such tools. First, they do not offer a
semantic model rich enough to express a global security policy. Although it is possible
to define variables, and thus to define access rules involving such variables, the admin-
istration tasks are not much simplified. The security officer always needs a global view
of the topology in order to correctly assign each rule to network devices; then, there
is no automatic discovery of security devices that optimally implement an access rule
involving an IP source and a destination. Furthermore, the lack of a real downward ap-
proach like ours is partially replaced by other tools (e.g., Cisco conflict discovery tools)
that need the security officer’s assistance and that unfortunately only guarantee conflict
resolution for local configurations.

4 Conclusions

We addressed the managing of network security policies free of anomalies or incon-
sistencies. Two main approaches were presented: (1) the use of bottom-up process to
detect and fix configuration errors over components already deployed; and (2) the use
of a top-down process to perform an automatic deployment of component configura-

tions free of inconsistencies. The implementation of these two approaches in a software
prototype demonstrates the practicability of our work. We finally compared the func-
tionality of MIRAGE with some other solutions proposed in both the science and the
industry community, and showed some advantages of our approaches. As future work,
it is expected to add new a feature in MIRAGE to manage the update of components’
configurations. This new feature will guide the operators to determine the impact that
the removal or the addition of new configuration rules in the system might suppose. It
is also expected to give support to determine dynamic tuning of configurations. In this
case, the new feature is expected to compare and test the equivalence between different
configurations. For example, the security operator can verify whether the new settings
of a new configuration setup will perform well enough, and in compliance with the
global security policy. Finally, it is also intended to complement the upward and the
downward approaches offered by MIRAGE with an automatic discovery of roles asso-
ciated with different security components already deployed in the system. It is planned
the use of role mining techniques, for example, to analyze existing access control roles
associated to the components (to derive, after the analysis, the appropriate rules of the
global configuration).

Acknowledgments – This work has been supported by a grant from the Brittany region of France
and by the following projects: POLUX ANR-06-SETIN-012, SEC6 Project, TSI2007-65406-
C03-03 E-AEGIS, and CONSOLIDER CSD2007-00004 “ARES”.

References

1. A. Abou el Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel and G. Trouessin. Organization Based Access Control. IEEE 4th Intl. Workshop
on Policies for Distributed Systems and Networks, pp. 120–131, Lake Come, Italy, 2003.

2. J. R. Abrial. The B-Book — Assigning Programs to Meanings. Cambridge University Press,
ISBN 052149619-5, 1996.

3. E. S. Al-Shaer and H. H. Hamed. Discovery of Policy Anomalies in Distributed Firewalls.
In IEEE INFOCOM’04, March, 2004.

4. E. S. Al-Shaer and H. H. Hamed. Taxonomy of Conflicts in Network Security Policies. In
IEEE Communications Magazine, 44(3), March, 2006.

5. C. Baral, J. Lobo, and G. Trajcevski. Formal Characterization of Active Databases. 5th
International Conf. on Deductive and Object-Oriented Databases, 1997.

6. S. Baek, M. Jeong, J. Park, T. Chung. Policy based Hybrid Management Architecture for
IP-based VPN. In Network Operations and Management Symposium, NOMS 2000.

7. Y. Bartal, A. Mayer, K. Nissim, A. Wool. Firmato: A Novel Firewall Management Toolkit.
In IEEE Symposium on Security and Privacy, pp. 17–31, Oakland, California, May, 1999.

8. N. Benaissa, D. Cansell, and D. Méry. Integration of Security Policy into System Modeling.
7th International B Conference, LNCS, vol. 4355, pp. 232–247, France, 2007.

9. F. Cuppens, N. Cuppens, T. Sans, and A. Miège. A formal approach to specify and de-
ploy a network security policy Second Workshop on Formal Aspects in Security and Trust,
Toulouse, France, August 2004, pp. 203–218.

10. F. Cuppens, N. Cuppens, and J. Garcia-Alfaro. Misconfiguration management of network
security components. 7th International Symposium on System and Information Security (SSI
2005), Sao Paulo, Brazil, November 2005, pp. 1–10.

11. Z. Fu, S. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu. IPSec/VPN Security Policy:
Correctness, Conflict Detection and Resolution. International Policy Workshop. January
2001.

12. J. Garcia-Alfaro, F. Cuppens, and N. Cuppens. Towards Filtering and Alerting Rule Rewrit-
ing on Single-Component Policies. Conference on Computer Safety, Reliability, and Secu-
rity (Safecomp 2006), Lecture Notes in Computer Science, Springer, Vol. 4166, pp. 182-194,
2006.

13. J. Garcia-Alfaro, F. Cuppens, and N. Cuppens. Analysis of policy anomalies on distributed
network security setups 11th European Symposium On Research In Computer Security (Es-
orics2006), Springer LNCS, vol. 4189, Hamburg, Germany, September 2006, pp. 496–511.

14. J. Garcia-Alfaro, F. Cuppens, and N. Cuppens. Aggregating and Deploying Network Ac-
cess Control Policies. 2nd International Conference on Availability, Reliability and Security
(ARES 2007), IEEE Computer Society, 532-539, Vienna, Austria, April 2007.

15. J. Garcia-Alfaro, F. Cuppens, and N. Cuppens. Complete Analysis of Configuration Rules
to Guarantee Reliable Network Security Policies. International Journal of Information Se-
curity, Springer, 7(2):103–122, April 2008.

16. A. X. Liu and M. G. Gouda. Complete Redundancy Detection in Firewalls. In 19th An-
nual IFIP Conference on Data and Applications Security (DBSec-05), pp. 196–209, Storrs,
Connecticut, August, 2005.

17. S. Preda, F. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro, L. Toutain, and Y. Elrakaiby.
A Semantic Context Aware Security Policy Deployment. ACM Symposium on Information,
Computer and Communications Security, pp. 251–261, Sydney, Australia, March 2009.

18. S. Preda, N. Cuppens-Boulahia, F. Cuppens, J. Garcia-Alfaro, and L. Toutain. Model-driven
Security Policy Deployment: Property Oriented Approach. International Symposium on En-
gineering Secure Software and Systems (ESSoS10), LNCS, Springer, February 2010.

19. S. Preda, N. Cuppens-Boulahia, F. Cuppens, and L. Toutain. Architecture-Aware Adaptive
Deployment of Contextual Security Policies. Fifth International Conference on Availability,
Reliability and Security (ARES 2010), IEEE Computer Society, February 2010.

20. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based Access Control Models.
IEEE Computer, 29(2):38–47, 1996.

21. L. Yuan, J. Mai, S. Su, H. Chen, C. Chuah, and P. Mohapatra. FIREMAN: a toolkit for
FIREwall Modeling and ANalysis. In IEEE Symposium on Security and Privacy, pp. 199–
213, Oakland, California, 2006.

