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Abstract. A security policy consists of a set of rules designed to protect an information
system. To ensure this protection, the rules must be deployed on security components
in a consistent and non-redundant manner. Unfortunately, an empirical approach is often
adopted by network administrators, to the detriment of theoretical validation. While the
literature on the analysis of configurations of first generation (stateless) firewalls is now
rich, this is not the case for second and third generation firewalls, also known as stateful
firewalls. In this paper, we address this limitation, and provide solutions to analyze and
handle stateful firewall anomalies and misconfiguration.

1 Introduction

Firewalls aim at optimizing the degree of security deployed over an information system. Their
configuration is, however, very complex and error-prone. It is based on the distribution of sev-
eral packages of security rules that define properties such as acceptance and rejection of traffic.
The assembly of all these properties must be consistent, addressing always the same decisions
under equivalent conditions, and avoiding conflicts or redundancies. Otherwise, the existence
of anomalies and misconfiguration will lead to weak security architectures, potentially easy
to be evaded by unauthorized parties. Approaches based on formal refinement techniques, e.g.,
using abstract machines grounded on the use of set theory and first order logic, ensures, by con-
struction, cohesion, completeness and optimal deployment [1]. Unfortunately, these approaches
have not always a wide follow. Network policies are often empirically deployed over firewalls
based on security administrator expertise and flair. It is then relevant to analyze these deployed
configurations in order to detect and correct errors, known in the literature as configuration
anomaly discovery. Several research works exist to directly manage the discovery and correc-
tion of stateless firewall configuration anomalies [2–5]. By stateless firewall configurations we
refer to the security policies of first generation firewalls, mostly packet filtering devices work-
ing only on the lower layers of the OSI reference model. However, little work has been done to
address the case of second and third generation firewalls peeking into the transport and upper
layers. In this paper, we are particularly interested in addressing such a problem.

The main goal of a firewall is to control network traffic flowing across different areas of
a given local network. It must provide either hardware or software means to block unwanted
traffic, or to re-route packets towards other components for further analysis. First generation
firewalls only allow a stateless filtering of network traffic. The filtering actions, such as accept-
ing or rejecting packet flows, are taken according to a set of static configuration rules that only
pay attention to information contained in the packet itself, such as packet’s addresses (source
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and destination), ports and protocol. Their main advantage is the speed of filtering operations.
However, since they do not keep track of state connection data, they fail at handling some vul-
nerabilities that benefit from the position of a packet within existing streams of traffic. Stateful
firewalls solve this problem and improve packet filtering by keeping track of connection status.
Indeed, they can block those packages that are not meeting the state machine of a protocol over
the transport layer. As with stateless packet filtering, stateful filtering intercepts the packets at
the network layer and verifies if they match previously defined security rules. Moreover, state-
ful firewalls keep track of each connection in an internal state table. Although the entries in this
table varies according to the manufacturer of every product, they typically include source and
destination IP addresses, port numbers and information about the connection status.

Most methods that have been proposed to detect anomalies in the configuration of fire-
walls, such as [2–5], are limited to the stateless case. The detection of anomalies in stateful
firewalls is still an unexplored research problem. Existing literature is still very limited. Some
approaches aim at describing stateful firewall models [7], while others simply provide straight-
forward adaptations of management processes previously designed for stateless firewalls [8].
In this paper, we propose to extend the algorithms defined in [2] to include the management of
stateful firewall anomalies as well. The principle of our approach is based on the specification
of general automata. Such automata describe the different states that traffic packages can take
throughout the filtering process. We then extend the taxonomy of anomalies defined in [2] in
order to uncover new configuration anomalies for the case of stateful firewalls. Some anoma-
lies occur on rule sets which only contain stateful rules, denoted hereinafter as intra-state rule
anomalies. Other anomalies may affect those rule sets holding both stateful and stateless rules,
denoted in our work as inter-state rule anomalies. We define algorithmic solutions to automat-
ically detect and correct these new types of anomalies. The algorithms that we present also
provide an extension of MIRAGE [9], a firewall audit tool implemented in the Java language,
that allows the automatic detection and correction of stateless firewall configuration anomalies.
The extension aims at covering the management of stateful firewalls as well.

The remainder of the paper is organized as follows. Section 2 presents in more detail our
motivation and problem domain. Section 3 surveys related work. Section 4 presents a classi-
fication of stateful firewall intra-state rule anomalies, and defines an algorithmic solution to
handle them. Section 5 extends the approach to the case of inter-state rule anomalies. Section
6 concludes the paper.

2 Motivation

Nowadays, packet filtering requires more than a passive solution to stop malicious traffic. Fil-
tering is evolving into a dynamic process that depends on the protocol states. Consequently,
new policies tend to use more and more the stateful features of next generation firewalls. State-
less inspection consists only on a static verification of the five first flag attributes of the IP
(internet protocol) layer with an existing ACL (Access Control List) table. Stateful inspection
goes further, and provides the firewall with the means to analyze packets not only by using the
matching attribute correspondence, but also by linking each packet to the related connection.
Finally, stateful firewalls provide better fine-grained filtering capabilities, and protect against
more complex attacks, such as denial of service (DOS) and IP Spoofing. The main disadvan-
tages of stateful filtering are a more complex implementation and greater use of memory to
keep the trace of the previous sessions.
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In our work, we consider stateful filtering for connection-oriented protocols, such as TCP,
DCCP, ATM, Frame Relay, TIPC, SCTP, and IPX/SPX. All these protocols are based on a
common principle: sending a tagged stream belonging to a particular session. In the case of
TCP and SCTP, this is respectively called a session connection and an association. A stateful
inspection can be performed on any of these protocols by defining a protocol automaton. In
the literature, there is no formal model that describes a general behavior of firewalls in states
with all specifications required and coverage of all protocols. Gouda and Liu [7] proposed in
their work a modeling of a state inspection. This inspection integrates a combination of the
state phase detection then the free state one. They proposed the addition of the attribute state
depending on the protocol used for storing packets belonging to the connection initialization,
and one tag to check the membership of new packets for this connection. In this paper the
attribute state is for a state protocol itself, which does not necessarily imply the initialization
of a connection-oriented session (e.g., the ICMP protocol can be modeled by the states result-
ing from the exchange of messages echo-request and echo-reply, even if the protocol is not
connection-oriented). This approach corresponds to the model proposed for stateful firewalls,
except that we can give other models satisfying the same functionality as the simultaneous
approach explained above, based on stateful and stateless rules at the same time. Specifically,
instead of proposing a filtering series through state, then the attributes presented in the state-
less model, we consider a model of the filter including rules for states and stateless in parallel.
Regardless of the model, the purpose of firewalls is to filter states packets according to the
membership to a given session. Thus, according to the definition of session, modeling and rep-
resentation of rules in the tables, the specification and identification of anomalies is different.
In this paper, we focus, initially, on detecting anomalies on those configurations that contain
only stateful rules. Specifically, we define and analyze new types of anomalies depending on
the protocol transitions. The protocol chosen to illustrate the approach is TCP as a connection-
oriented protocol reference. Then, we extend the approach in order to address the case in which
stateful and stateless rules coexist in a given configuration rule set.

3 Related Work

Traditional research work on the design of firewalls, essentially stateless firewalls, mainly ad-
dress the construction of high level languages for the specification of firewall configurations.
This includes functional languages [10], rule-based languages [11] and higher abstract mod-
els that allow capturing some further aspects such as network topologies [12]. Such languages
allow security administrators to free themselves from the technical complexity and specificity
of proprietary firewalls languages. Some of them allow, moreover, the automatic derivation of
concrete access control rules to configure specific firewalls through a translation process. At the
same time, research and development work in this context may allow the verification of consis-
tency (i.e., absence of conflicts), completeness (all the expected requirements are covered), and
compactness (none of the rules are redundant or unnecessary) [1]. Refinement approaches may
also take into account the functionality offered by every firewall manufacturer (stateless, state-
ful, management of virtual private networking, etc.) [13] to ensure the effective distribution of
tasks between a decision module and the eventual filtering (enforcement) components.

For the already deployed firewall configurations, the aforementioned approaches do not
solve redundancy or configuration conflicts that might have been introduced due to periodic,
often manual, updates. Several studies have been conducted toward audit mechanisms that an-
alyze already deployed configurations, with the goal of signaling inconsistencies and fixing the
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discovered anomalies. We can classify them into three categories: (I) those that are oriented
towards directly querying the firewall itself [14–16], (II) those targeting conflict management
[17, 18] and (III) those focusing on the detection of anomalies [19, 4, 2, 20, 21]. In category I,
the analysis problem is relayed towards a process of information retrieval by directly querying
the firewall. This requires having highly structured configurations and specific query languages
for processing them, as well as for generating complete and effective data queries. The results
are, moreover, prone to both false negatives and false positives, since no track from previous
filtering matches are taken into account during the audit process. Category II is concerned with
packet classification algorithms, mostly for packet filtering routers, and that rely on optimized
data structures to speed up the matching process between incoming flows of packets and fil-
tering rules. Then, the goal is to verify that there are no conflicting situations in which several
rules with different actions (e.g., accept or reject the traffic) apply to the same traffic. Examples
in this category include the use of techniques such as grid-of-tries classification [22] and bit
vector aggregation [17]. Class III improves the detection offered by solutions in class II, by:
(1) characterizing in more detail the set of anomalies, e.g., redundancy is also addressed; (2)
transforming the rule sets in such a way that the ordering of rules is no longer relevant; (3)
considering combinations of rules instead of simply comparing rules two by two as proposed
by Al-Shaer et al. [19], which enables the detection of a combination of rules that conflict with
another rule [2]; and (4) extending the process to distributed setups with multi-firewall scenar-
ios, in order to detect situations in which different firewalls within interconnected paths may
perform different actions to the same network traffic.

None of the above surveyed techniques consider the case of stateful firewalls. So far, little
work in the stateful case has been conducted. Buttyán et al. proposed in [8] an early approach
that heads towards this research line. Nevertheless, their solution is limited to the adaptation of
existing anomaly detection techniques for stateless firewalls to those that are stateful. There-
fore, their work does not take into account anomalies that may impact, for instance, the track-
ing of connections or the management of the internal firewall state memory table. In a different
vein, Fitzgerald et al. propose in [23] an approach based on semantic web technologies to model
both stateless and stateful firewalls. Although the generality of their proposed representation
is interesting enough, the work fails at characterizing the precise types of errors that would be
necessary to handle by the detection process in the stateful case. The approach only represents
those good practices that must be followed when configuring a given firewall.

4 Handling Anomalies on Stateful Firewall Intra-state Rules

Like in the case of stateless firewalls, stateful firewall configurations may be affected by the fol-
lowing basic anomalies (cf. algorithmic solutions in [2] and citations thereof, for the discovery
and correction of these two anomalies):

– Shadowing: Let R be a set of filtering rules. Then, rule Ri is shadowed iff it never applies
because all the packets that Ri may match, are previously matched by another rule, or
combination of rules, with higher priority in order;

– Redundancy: Let R be a set of filtering rules. Then, rule Ri is redundant iff (1) Ri is not
shadowed by any other rule (or combination of rules); and (2) when removing Ri from R,
the filtering result does not change.

In the stateful case, we can also identify a third type of anomalies, hereinafter denoted as
intra-state protocol anomalies, in the sense of misconfiguration that may put in risk the inner
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logic of transport layer protocol states. For instance, in protocols like TCP, we may distinguish
the following operations for the establishment of a connection between a server and a client:

– the client sends a SYN packet to a server (i.e., a packet with the SYN flag set);
– the server replies with a SYN+ACK;
– the client sends an ACK back to the server.

Then, it comes a phase of data transfer. Finally, the connection ends with a termination
phase. When the client leads the termination phase, the following handshake takes place (still,
assuming the case of TCP):

– the client sends a FIN packet to a server (i.e., a packet with the FIN flag set);
– the server replies with an ACK, then with a FIN;
– the client sends an ACK back to the server.

Given such a rationale, the following two anomaly scenarios arise:

1. the client succeeds to start the three-way handshake connection establishment with a server,
while the firewall is configured in a way that either the second or third steps of the estab-
lishment operations are rejected;

2. the client starts the connection termination, but the firewall rejects, at least, one of the
remainder termination operations;

In the sequel, we present an algorithmic solution to handle and correct this third type of anoma-
lies that affects the establishment and termination of transport layer connections.

4.1 Discovery and Elimination of Intra-state Protocol Anomalies

Definitions: The communication between two nodes with a transport layer protocol consists of
(1) establishment phase and (2) termination phase. We model such a protocol as two determinis-
tic finite-state automata that correspond, respectively, to the establishment (A1) and termination
phase (A2). We characterize these two automata by giving some examples for TCP:

– Σ is the alphabet of the automaton, which contains the series of state flags of a protocol.
For instance, for TCP, Σ = {SY N, SY N + ACK,ACK,FIN,FIN + ACK};

– Q contains the series of states of the protocols, such as the CLOSED, LISTEN, and SYN
SENT states in the case of TCP;

– δ defines the transition function, such that δ : Q×Σ → Q;
– q0 defines the initial state. For TCP, this includes LISTEN for A1 and ESTABLISHED for

A2.
– qf defines the final state. For TCP, A1 equals ESTABLISHED; and A2 equals CLOSED.

Figure 1 depicts the state automaton of TCP. It includes both A1 and A2, which share the ES-
TABLISHED state.

The following functions are used for the construction of our algorithms:

– Adjacent(A, Statei, Statej): boolean function that holds true iff there exists within au-
tomaton A a transition from Statei to Statej . Equivalently, the expression is true iff there
exists a ∈ Σ such that δ(Statei, a) = Statej
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Fig. 1. TCP state automaton.

– Next(A, State, Symbol): if δ(State, Symbol) = State′ exists, the function returns State′.
Otherwise, it returns the empty set.

Finally, we consider a rule set R of size n containing Ri rules (i ≤ n). Each rule Ri typically
specifies an Action (e.g., ACCEPT or DENY) that applies to a set of condition attributes, such
as SourceAddr, DestAddr, SrcPort, DestPort, Protocol, Flag, State.

Algorithms: We assume a rule subset R whose protocol (Ri[protocol] attribute) stands for a
given protocol. Our algorithm uses the establishment (A1) and termination (A2) automata of
the protocol.

If an ordered pair of rules stands for two adjacent states of the automaton, we check if
the related flags can be used in order to switch from the first state to the second. If so, and if
the actions of the two rules are different, then we raise an anomaly. First, we apply the algo-
rithm for anomaly corrections on the rules which are related to the establishment of transport
layer connection; secondly we do it for the termination. In order to correct the anomalies of
establishment connection, we change the action of the rules to DENY. Therefore we avoid con-
nection failures. Regarding the anomalies of termination connection, we set the action of the
rules to ACCEPT in order to avoid termination failure. Algorithm 1 sums up the corrections;
it uses Algorithm 2 which analyzes the rules, detects the anomalies and then carries out the
corrections.

Figure 2 gives an example of a correction on a subset of stateful rules by using Algorithm 1.
In the initial configuration of the example, a first rule allows packets with the SYN flag and the
LISTEN state. In accordance with the automaton of TCP on 1, the rule actually allows the first

Algorithm 1: HandleAnomalies(R, A1, A2)
/*Handle, first, the connection
establishment automaton */

R ← HandleRules(R, A1, DENY)
/*Then, handle the connection
termination automaton */

R ← HandleRules(R, A2, ACCEPT)
return R

Algorithm 2: HandleRules(R,A, Action)
n← size(R);
for i← 1 to n− 1 do

for j ← i + 1 to n do
if Ri[Src] = Rj [Dst]
∧ Ri[SrcP ] = Rj [DstP ]
∧ Ri[action] 6= Rj [action] then

if Adjacent (A, Ri[state], Rj [state]) then
if (Rj [state] ∈ Next (A, Ri[state],
Ri[flag]) ∧ Next (A, Rj [state], Rj [flag])
6= ∅) ∨ (Ri[state] ∈ Next (A, Rj [state],
Rj [flag]) ∧ Next (A, Ri[state], Ri[flag])
6= ∅) then

Ri[action]← Action
Rj [action]← Action

end
end

end
end

end
return R
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Algorithm 1: HandleAnomalies(R, A1, A2)
/*Handle, first, the connection
establishment automaton */

R ← HandleRules(R, A1, DENY)
/*Then, handle the connection
termination automaton */

R ← HandleRules(R, A2, ACCEPT)
return R

Algorithm 2: HandleRules(R,A, Action)
n← size(R);
for i← 1 to n− 1 do

for j ← i + 1 to n do
if Ri[SourceAddr] = Rj [DestAddr]
∧ Ri[SrcPort] = Rj [DestPort]
∧ Ri[Action] 6= Rj [Action] then

if Adjacent(A, Ri[State], Rj [State]) then
if (Rj [State] ∈ Next(A, Ri[State],
Ri[Flag]) ∧ Next(A, Rj [State], Rj [Flag])
6= ∅) ∨ (Ri[State] ∈ Next(A, Rj [State],
Rj [Flag]) ∧ Next(A, Ri[State], Ri[Flag])
6= ∅) then

Ri[Action]← Action
Rj [Action]← Action

end
end

end
end

end
return R

step of a TCP connection establishment (i.e. the shift from LISTEN state to the SYN Received
state). However the second rule forbids the acknowledgment. Then the connection cannot be
established. In that case, the algorithm corrects the first rule in order to deny the connection.

SourceAddr DestAddr SrcPort DestPort Protocol F lag State Action

41.1.1.1 193.1.1.2 8080 2011 TCP SYN LISTEN ACCEPT DENY
193.1.1.2 41.1.1.1 2011 8080 TCP SYN+ACK SYN RCVD DENY

Fig. 2. Example of an intra-state protocol anomaly in the rule set of a stateful firewall.

5 Handling Inter-state Rule Anomalies

We have previously addressed the case of intra-state rule anomalies, in which a set of stateful
rules, at the transport layer, contains anomalies that may put in risk the inner logic of transport
layer protocol states. The use of both stateful and stateless rules may be also found in a firewall
configuration. For instance, a network administrator may add a rule in order to handle TCP
connections which are used to transferring data in a FTP session. For instance, for a Netfilter
firewall, we can manage this situation by adding a rule with the RELATED state parameter.
This rule will be inserted in the other stateless rules which have been previously defined by
the administrator. We then search for anomalies between stateful and stateless rules based on
the specification of a transport layer protocol. Some application layer protocols use several
TCP connections (or other transport layer protocol) during a session between two nodes. This
applies for FTP, IRC or VoIP protocols which use related connections if needed. Let us further
analyze the case of FTP. A typical FTP session consists in two steps:
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1. The client begins the session with the FTP server on port 21; a TCP connection – the
control connection – is established;

2. When the client wants to transfer data (file transfer, directory listing, etc.), two cases may
occur:

– After a control connection negotiation, the server initiates a new TCP connection for
the transfer, from the port 20 to a client’s given port. This is the active mode.

– Or the transfer connection is initiated by the client to a FTP server’s given port. This
is the passive mode.

The FTP server’s firewall configuration may contain:

– A stateless rule for allowing TCP packets with the destination port 21;
– A stateful rule for allowing packets whose associated TCP connection is marked with a

related connection in a FTP session. The destination port will be either 20 (active mode)
or greater than 1024 (passive mode).

In this example, one issue consists in correctly handling the related TCP connections be-
tween two nodes which use an application layer protocol. We note the firewall shall understand
the given application layer protocol which is concerned by the rules in order to identify re-
lated connection packets. Netfilter especially has a module which allows FTP sessions track-
ing. Therefore a packet which belongs to a TCP transfer connection (according to the FTP
terminology) has the RELATED status. This tracking of the application layer context allows
the administrator to define stateful rules.

To automatically identify such anomalies for a given protocol, we assume knowing a full
specification of possible scenarios of TCP connection used between two nodes during a session
for the protocol. This specification explains how to initiate the connection and how it deals with
the related connections during the session (order, number, ports, etc.).

The first step consists in searching the stateless rules which stand for the establishment of
the protocol connection. In the case of FTP, we search a rule which matches the TCP packets
with the destination port 21. If such rules are found, we consider the three following cases:

1. Stateful rules exist in the configuration to handle the possible related connections that may
be used by the application layer protocol;

2. Stateless rules exist to handle these connexions;
3. No rule is defined to handle the related connexions.

The case 2 is too general because it does not take into account the inner logic of the proto-
col. An attacker may be able to initiate a TCP connection on a port which will be used only for
a related connection of an application session. For example, a FTP connection on the server’s
port p will be allowed only if the server has previously initiated a FTP transfer on passive mode
with a client on the port p. In the case 3, the application session may fail because the firewall
will probably deny the related connections. The case 1 solves the encountered problem with
the other ones and complies with the protocol specification. In a Netfilter firewall, such rules
may have the RELATED state.

Definitions: Our algorithm aims at assisting the system administrator to detect and fix cases
2 and 3 of the aforementioned anomaly. We first provide the following definitions that will be
used in the algorithm definition:
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– L: set of stateless rules, such that every rule Li (where i is a natural integer) is characterized
by the following conditions Li[SourceAddr], Li[DestAddr], Li[SrcPort, Li[DestPort]
and Li[Protocol] (such as TCP, UDP, or any other transport layer protocol).

– F : set of stateful rules, such that every rule Fi is characterized by the same conditions as the
rules in L, plus the condition attribute Fi[State]. It is important to consider Fi[Protocol]
since the transport protocol of a given connection could be different from the protocol of
the main connection. For instance, in VoIP scenarios, data transfer might be carried upon
UDP, while the main connection is relayed via TCP.

– A: deterministic finite automaton that describes an application layer protocol. We rely on
the use of the alphabet Σ of A, containing the set of operations that can be exchanged
between hosts, e.g., remainder set of operations once the main connection of two FTP
entities has been established. Q is the set of states, from which we identify the subset
Q2. The elements q of Q2 represent establishment of adjacent connections (such as TCP
connections or from any other protocol type). The elements are characterized by the same
set of conditions as the one in the rules (i.e., q[SrcAddr], q[DestAddr], etc.). Let us
observe that q[State] will highly rely on the specific firewall vendor (cf. following function
definition, in which we define the way to link the specific state attribute of the automaton to
the corresponding firewall device). Notice that Ri[State] (i.e., the state defined in a given
rule Ri) corresponds to the specific state as it is represented by the underlying firewall that
contains the rule, not the state attribute of the automaton. In Netfilter, for instance, relevant
connections are identified by the state attribute RELATED. If necessary, we can rely on
extended features of Netfilter to provide a more fine-grained state management of some
application layer protocols. Q1 = Q − Q2 contains the set of states that are independent
from related connections, and for which the element q[State] is not defined. Finally, the
initial state q0 of the automaton holds the following condition attributes: q0[SrcPort],
q0[DestPort] and q0[Protocol] (corresponding to the transport layer protocol). Figure 3
depicts the example of an automaton based on our construction, for the FTP protocol.

– stateF irewall(q): function that links a given state q ∈ Q2 of the corresponding state
automaton to the firewall. For instance, in the case of the FTP protocol and a firewall based

q0: START 
SourceAddr: client’s address 
DestAddr: serverst’s address 

SrcPort: 1024:65535 
DestPort: 21 

Protocol: TCP 

   Client initiates 
session 

READY 

New TCP 
SourceAddr: server’s address 

DestAddr: client’s address 
SrcPort: 1024:65535 

DestPort: 20 
Protocol: TCP 

Open transfer 
(active mode) 

Open: OK 

Close 

New TCP 
SourceAddr: client’s address 
DestAddr: server’s address 

SrcPort: 1024:65535 
DestPort: 1024:65535 

Protocol: TCP 

Open: OK Open transfer 
(passive mode) 

CLOSED 

Q2  state 

Q1  state 

Fig. 3. Suggested automaton for the application layer protocol FTP.
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on Netfilter, this function returns RELATED for those states in which the establishment of
connections is called.

– ruleExists(R, q): boolean function. R is a set of either stateless or stateful rules (but
not both), q represents a state of the automaton A which belongs to Q2 (the state corre-
sponding to the establishment of related connections). If R contains stateless rules, then
ruleExists(R, q) is true iff there exists exactly one rule Ri ∈ R, such that q[Source-
Addr] ∈ Ri[SourceAddr], q[DestAddr] ∈ Ri[DestAddr], q[SrcPort] ∈ Ri[SrcPort],
q[DestPort] ∈ Ri[DestPort], and q[protocol] = Ri[protocol]. If R contains stateful
rules, then ruleExists(R, q) is true iff the previous conditions also hold and, moreover,
stateF irewall(q[State]) = Ri[State].

– ruleExists(L, q0): boolean function. q0 contains the initial state of the protocol, and L
is a set of stateless rules. The functions is true iff there exists a rule Li ∈ L, such that
q0[SrcPort] ∈ Li[SrcPort], q0[DestPort] ∈ Li[DestPort], q0[Protocol] = Li[Pro-
tocol].

Algorithms: Algorithm 3 enables the verification of every state Q2 of an automaton associated
with a given protocol, in order to find rules that can be correlated. The algorithm specifies the
appropriate corrections in accordance to the detection of anomalies, and following the three
cases mentioned above (absence of rules, or misconfigured stateless or stateful rules). A[Q2]
points out to the Q2 set of the automaton.

Algorithm 4 allows detection and correction of anomalies between stateless and stateful
rules, provided that a library of application layer protocols is given as input. Such a library
must contain the corresponding automata for the protocols. Then, it verifies whether the firewall
handles each of them, by looking at the initial state attribute q0 of the corresponding automaton.

Algorithm 3: HandleInterRuleAnomalies(L,F,A)
/*A[Q2]: Q2 states for automaton A */
forall q ∈ A[Q2] do

if ruleExists(F, q) then
/*Move to following state */
continue;

end
if ruleExists(L, q) then

warning(”stateless rule for state q of protocol A”)
else

warning(”missing rule for state q of protocol A”)
end

end

Algorithm 4: HandleAllProtocols(L,F, Library)
/*Library: automata library, containing
the list of supported application-layer
protocols */

forall A ∈ Library do
if ruleExists(L, A[q0]) then

HandleInterRuleAnomalies(L, F, A)

end
end

Algorithm 3: HandleInterRuleAnomalies(L,F,A)
/*A[Q2]: Q2 states for automaton A */
forall q ∈ A[Q2] do

if ruleExists(F, q) then
/*Move to following state */
continue;

end
if ruleExists(L, q) then

warning(”stateless rule for state q of protocol A”)
else

warning(”missing rule for state q of protocol A”)
end

end

Algorithm 4: HandleAllProtocols(L,F, Library)
/*Library: automata library, containing
the list of supported application-layer
protocols */

forall A ∈ Library do
if ruleExists(L, A[q0]) then

HandleInterRuleAnomalies(L, F, A)

end
end
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In such a case, Algorithm 3 processes the specific anomalies associated with that protocol.
A[q0] points out the initial state q0 of every automaton.

The following example presents an extract from a Netfilter-based configuration. We can
look at three rules that aim at granting authorization to FTP services, both in active and passive
mode:
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R1: iptables –A FORWARD -s $ANY -d $SERVERS –sport 1024:65535 –dport 21 -j ACCEPT

· · ·

R2: iptables –A FORWARD -d $ANY -s $SERVERS –dport 1024:65535 –sport 20 -j ACCEPT

R3: iptables –A FORWARD -s $ANY -d $SERVERS –sport 1024:65535 –dport 1024:65535 -j ACCEPT

Fig. 4. Exemple de configuration FTP sur un pare-feu Netfilter.

de configurations existantes. Nous pouvons les classer dans trois catégories : (I) ceux orien-
tés interrogation du pare-feu [14, 15] ou [16], (II) ceux ciblant la gestion de conflits [17, 18]
et (III) ceux se focalisant sur la détection des anomalies [19, 4, 2, 20, 21]. Dans la catégorie I,
la problématique d’analyse a été réorientée vers un processus de recherche d’information en
interrogeant le pare-feu, ce qui déplace la difficulté vers la structuration des configurations, le
langage de requêtes, l’exhaustivité et l’efficacité de ces requêtes, le besoin de mettre en vis-à-
vis la politique souhaitée et les règles de filtrage ce qui rend l’analyse complexe, sujette aussi
bien à des faux positifs qu’à des faux négatifs puisque la dimension histoire n’est pas prise en
compte. La catégorie II s’intéresse aux algorithmes de classification de paquets plutôt dans les
routeurs, tels que Gried-of-tries [22] ou ABV [17], par la définition de structures de données
permettant de trouver rapidement les règles correspondant à un paquet entrant puis détecter si
elles ne préconisent pas des actions contraires. Enfin, la catégorie III est proche de la catégorie
II mais se veut plus précise et plus enveloppante en (1) caratérisant les erreurs de configuration
qui vont au-delà du conflit, par exemple, les règles redondantes sont aussi considérées, en (2)
s’affranchissant de l’ordre des règles, en (3) ne traitant pas les règles deux à deux comme le fait
incorrectement Al-Shaer et al. [19] ce qui permet de détecter par exemple des masquages par-
tiaux [2] et en (4) étendant la vision locale de la détection des erreurs aux liens inter pare-feux
des configurations qui peut induire d’autres anomalies comme la misconnection, c’est-à-dire
un paquet autorisé qui ne peut atteindre sa destination.

Ces travaux d’analyse de configurations déployées ne considèrent pas pour la plupart le
cas des pare-feux avec états. On constate cependant quelques études comme celles de Buttyán
et al. [8], mais l’approche est incorrecte puisqu’elle essaye de ramener la problématique de
détection des anomalies à celle utilisée dans le cas des pare-feux sans état. Par conséquent,
ces travaux ne tiennent pas compte des anomalies liées à une mauvaise gestion de l’histoire
et de la mémoire gérée par la table d’états. En utilisant une approche se fondant sur le web
sémantique, Fitzgerald et al. [23], modélisent des pare-feux aussi bien avec que sans état. Cette
représentation est intéressante puisqu’elle est générique, mais l’analyse des erreurs proposée est
imprécise parce qu’elle ne caractérise pas les types d’erreurs qui permettraient leur traitement,
et elle est incomplète car elle se fonde essentiellement sur les bonnes pratiques en termes de
définition de règles de configuration de pare-feux, ce qui augmente le taux de faux négatifs.

6 Conclusion

In this paper, we have identified new types of anomalies that may affect the security of infor-
mation systems protected by stateful firewalls. We have presented algorithms to handle and
correct such anomalies. [...]

Notice that the sample contains two inter-state anomalies. Rule R1 is a stateless authoriza-
tion to control incoming higher port TCP connections targeting a range of FTP servers listening
on port 21. Then, rules R2 are R3 expected to grant authorization access to the data connec-
tion counterpart, i.e., outcoming TCP connection from servers to clients. However, these last
two rules are stateless. They grant access to any connection targeting a TCP high port (i.e.,
the whole range 1024:65535). If we apply Algorithm 4 to the previous configuration, it will
detect such a situation and suggest the administrator to handle it (e.g., by adding the Netfilter
parameter −−state RELATED to both rules).

6 Conclusion

Stateful firewalls are the predominant solution to guarantee network security. They provide an
effective enforcement of access control rules at both network and transport layers, in order
to protect incoming and outcoming interaction with the Internet. Nevertheless, the existence of
anomalies in their configuration is very likely to degrade such a protection. While some anoma-
lies may occur in rule sets that only contain stateful rules (intra-state rule anomalies), others
affect rule sets that contain both stateful and stateless rules (inter-state rule anomalies). In this
paper, we have presented new types of anomalies for each of these two categories, and have
provided algorithmic solutions to handle them. General automata describing the stateful na-
ture of the filtering process drive the discovering and correction functionality of our solutions.
Perspectives for further work include the extension of our solutions towards multi-firewall sce-
narios, to handle distributed policy control.
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