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The use of firewalls is the dominant method to guarantee network access control, leading to distributed access control
scenarios where the access control role is assigned to more than one component. Firewalls are network security com-
ponents which provide means to filter traffic within corporate networks, as well as to police incoming and outcoming
interaction with the Internet. For this purpose, it is necessary to configure firewalls with a set of filtering rules. Never-
theless, the existence of anomalies between rules, particularly in distributed access control scenarios, is very likely to
degrade the network security policy. The discovering and removal of these anomalies is a serious and complex problem
to solve. In this paper, we present a set of algorithms for such a management. Our approach is based on the analysis of
relationships between filtering rules, in order to detect anomalies, as well as propose policy changes within both single
or multi-firewall scenarios.
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1 Introduction
Many companies use firewalls to filter traffic betweentrustedanduntrustedzones of corporate networks,
as well as to police their incoming and outcoming interaction with the Internet. Firewalls are security
components, with several interfaces associated with the different zones of the network. A company may
partition, for instance, its network into three different zones: a demilitarized zone, a private network and
a zone for security administration. In this case, one may usea single firewall setup, with three interfaces
associated with these three zones, as well as a multi firewallsetup, with a firewall protecting each zone.

To apply the filtering policy, it is necessary to configure each firewall with a set of filtering rules. Each fil-
tering rule typically specifies adecision(e.g.,acceptor deny) that applies over a set ofconditionattributes,
such as protocol, source, destination, and so on. For our work, we define a filtering rule as follows:

Ri : {conditioni}→ decisioni (1)

wherei is the relative position of the rule within the set of rules,decisioni is a boolean expression in
{accept,deny}, and{conditioni} is a conjunctive set of condition attributes such that{conditioni} equals
A1∧A2∧ ...∧Ap, andp is the number of condition attributes of the given filtering rules.

In a single firewall scenario (cf. Figure 1(a)), conflicts dueto rule overlaps, i.e., the same rule matching
more than one filtering rule, can occur. To solve these conflicts, most firewall implementations use afirst
matchingstrategy through the ordering of rules. This way, each packet processed by the firewall is mapped
to the decision of the rule with highest priority. This strategy introduces, however, new configuration errors,
often referred in the literature asintra-firewall anomalies. In multi-firewall setups (cf. Figure 1(b)), on the
other hand, different firewalls within the same path may perform different decision to the same network
traffic. This problem is often referred in the literature asinter-firewall anomalies.

The discovering and removal of both intra and inter-firewallanomalies is a serious problem which must
be solved since, a misconfigured policy, if not handled correctly, is very likely to cause packets to be subject
to the wrong actions, and to lead to a weak security policy.
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In [6], we presented an audit process to manage intra-firewall policy anomalies, in order to detect and
remove anomalies within the set of rules of a given firewall. This audit process is based on the existence
of relationships between the condition attributes of the filtering rules, such as coincidence, disjunction, and
inclusion, and proposes a transformation process which derives from an initial set of rules – with potential
policy anomalies – to an equivalent one which is completely free of errors. Furthermore, the resulting
rules are completely disjoint, i.e., the ordering of rules is no longer relevant. In this paper, we extend our
proposal of detecting and removing intra-firewall policy anomalies [6], to a distributed firewall setup. Our
extended approach is based on the hypothesis that not only one firewall ensures the network access control.
We assume that this role is assigned to more than one network security component, i.e., a distributed access
control. Our main objective is the following. Given a specific distributed access control setup, we want
to analyze the existing firewall configurations to check whether there are errors in such a configuration
regarding the policy set up of the rest of firewalls which match the same traffic.

The advantages of our proposal are twofold. First, when performing our proposed intra-firewall discovery
of anomalies, and after rewriting the rules, one can verify that the resulting configuration of each firewall
in the network is free of errors. Each anomalous rule – considered as useless during the audit process –
will be removed from the set of filtering rules of each given firewall. Second, when applying our proposed
inter-firewall discovery of anomalies, as well as when performing the intra-firewall proposal, the discover-
ing process will provide an evidence of error to the administration console. This way, the security officer in
charge of the network can check the network policy, in order to verify the correctness of the whole process,
and perform the proper policy modifications to avoid such anomalies.

FW1 FW2

111.222.1.[0,255]111.222.0.[0,255]

FW1{R1} : p = tcp s  any  d  111.222.1.0/24  dport = 80  deny

FW2{R1} : p = tcp s  111.222.1.0/24  d  111.222.1.0/24  dport = 80  deny

external

network DMZ private

(a) Single-firewall setup
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(b) Multi-firewall setup

Fig. 1: Example of some firewall setups

The rest of this paper is organized as follows. Section 2 starts with an analysis of some related work.
Sections 3 and 4 present, respectively, our intra and inter-firewall algorithms. Section 5 overviews the
performance of our proposed algorithms, and Section 6 closes the paper.

2 Related Work
A first approach to get an access control policy free of errorsis by applying a formal security model to
express the network policy. In [5], for example, we presented a formal model with this purpose. This way,
a set of filtering rules, whose syntax is specific to a given firewall, may be generated using a transformation
language.

Some other proposals, such as [1, 7, 8, 3], provide means to directly manage the discovery of anomalies
from the components’ configuration. For instance, the authors in [1] consider that, in a configuration set,
two rules are in conflict when the first rule in order matches some packets that match the second rule, and the
second rule also matches some of the packets that match the first rule. This approach is very limited since it
just detects a particular case of wrongly defined rules in a single firewall configuration, i.e., just ambiguity
within a intra-firewall configurations could be detected. Itdoes not provide, furthermore, detection on
more complex scenarios, i.e., inter-firewall configurations, where more than one component is intended to
perform network access control.

In [7], two new cases of anomalies are considered. First, a rule Rj is defined as backward redundant iff
there exists another ruleRi with higher priority in order such that all the packets that match ruleRj also



Detection of Network Security Component Misconfiguration by Rewriting and Correlation

match ruleRi . Second, a ruleRi is defined as forward redundant iff there exists another ruleRj with the
same decision and less priority in order such that the following conditions hold: (1) all the packets that
matchRi also matchRj ; (2) for each ruleRk betweenRi andRj , and that matches all the packets that also
match ruleRi , Rk has the same decision asRi . Although this approach seems to head in the right direction,
we consider it as incomplete, since it does not detect all thepossible cases of anomalies (as we define in
sections 3 and 4). For instance, given the set of rules shown in Figure 2(a), sinceR2 comes afterR1, rule
R2 only applies over the interval[51,70] – i.e.,R2 is not necessary, since, if we remove this rule from the
configuration, the filtering policy does not change. The detection proposal, as defined in [7], cannot detect
the redundancy of ruleR2 within the configuration of such a given firewall.

R1 : s∈ [10,50]→ deny
R2 : s∈ [40,70]→ accept
R3 : s∈ [50,80]→ accept

(a) Set of rules A

R1 : s∈ [10,50]→ accept
R2 : s∈ [40,90]→ accept
R3 : s∈ [30,80]→ deny

(b) Set of rules B

Fig. 2: Example of some firewall configurations

To our best knowledge, thefirewall policy advisor[3] propose the most efficient set of techniques and
algorithms to detect policy anomalies in both single and multi-firewall configuration setups. In addition to
the discovery process, their approach also attempts an optimal insertion of arbitrary rules into an existing
configuration, through a tree based representation of the filtering criteria. Nonetheless, and even though the
efficiency of their proposed discovering algorithms and techniques is very promising, we also consider this
approach as incomplete.

First, their intra-firewall discovery approach is too weak since, given a misconfigured firewall, their de-
tection algorithms could not detect all the possible errors. For example, given the set of rules shown in
Figure 2(b) the approach defined in [3] cannot detect that rule R3 will be never applied due to the union
of rulesR1 andR2. Second, the authors do not cover an automatic rewriting of rules, as our intra-firewall
approach does, to correct the discovered errors. This way, they intentionally point this work to be performed
by the security officer, once the discovery process will finish. Third, their inter-firewall discovery approach
considers anomalies some situations that, from our point ofview, must be suited to avoid inconsistent de-
cisions between firewalls used in the same policy to control the access to different zones. For instance,
given the scenario shown in Figure 1(a), their algorithms will wrongly report a redundancy anomaly be-
tween filtering rulesFW1{R1} andFW2{R1}. This is because ruleFW1{R1} matches every packet that
alsoFW2{R1} does. As a consequence, [3] considers ruleFW2{R1} as redundant since packets denied by
this rule are already denied by ruleFW1{R1}. However, this conclusion is wrong because ruleFW1{R1}
applies to packets from the external zone to the private zonewhereas ruleFW2{R1} applies to packets from
the DMZ zone to the private zone. So, ruleFW2{R1} is useful and cannot be removed. Summing up, [3] is
unable to draw this right conclusion because it does not properly model, as we do (cf. Section 4.1), which
traffic flows through a given firewall.

3 Intra-Firewall Analysis
The main objective of the intra-firewall algorithms we proposed in [6] is the discovering and removal of both
redundancy and shadowing anomalies inside an initial set offiltering rulesR. These two main intra-firewall
anomalies are defined as follows.

Intra-Firewall Redundancy Let R be a set of filtering rules. ThenR has redundancy if and only if there
exists at least one filtering rule,Ri in R, such that when removingRi from R, the filtering result, i.e., the
security policy, does not change.

Intra-Firewall Shadowing Let R be a set of filtering rules. ThenR has shadowing if and only if there
exists at least one filtering rule,Ri in R, which never applies because all the packets thatRi may match, are
previously matched by another rule, or combination of rules, with higher priority in order.
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Algorithm 1 : exclusion(B,A)

begin1

C[condition]← ∅;2

C[decision]← B[decision];3

C[shadowing]← false;4

C[redundancy]← false;5

forall A[condition] and B[condition] do6

if ((A1 ∩B1) 6= ∅ and (A2 ∩B2) 6= ∅ and ...7

and (Ap ∩Bp) 6= ∅) then
C[condition]← C[condition] ∪8

{(B1 − A1) ∧ B2 ∧ ... ∧ Bp,9
(A1 ∩ B1) ∧ (B2 − A2) ∧ ... ∧ Bp,10
(A1 ∩ B1) ∧ (A2 ∩ B2) ∧ (B3 − A3) ∧ ... ∧ Bp,11
...12
(A1 ∩ B1) ∧ ...∧ (Ap−1 ∩ Bp−1)∧ (Bp − Ap)};13

else14

C[condition]←15

(C[condition] ∪B[condition]);16

return C;17

end18

Algorithm 2 : testRedundancy(R,r)

begin1

test← false;2

i← 1;3

temp← r;4

while ¬test and (i ≤ count(R)) do5

temp← exclusion(temp, Ri);6

if temp[condition] =∅ then7

test← true;8

i← (i + 1);9

return test;10

end11

Algorithm 3 : intra-firewall-audit(R)

begin1

n← count(R);2

/*Phase 1*/3

for i← 1 to (n− 1) do4

for j ← (i + 1) to n do5

if Ri[decision] 6= Rj [decision] then6

Rj ← exclusion (Rj ,Ri);7

if Rj [condition] = ∅ then8

Rj [shadowing]← true;9

/*Phase 2*/10

for i← 1 to (n− 1) do11

Ra ← {rk ∈ R | n ≥ k > i and12

rk[decision] = ri[decision]};13

if testRedundancy (Ra,Ri) then14

Ri[condition]← ∅;15

Ri[redundancy]← true;
else16

for j ← (i + 1) to n do17

if Ri[decision]=Rj[decision] then18

Rj ←exclusion (Rj,Ri);19

if (¬Rj [redundancy] and20

Rj [condition] = ∅) then21

Rj [shadowing]← true;22

end23

Our proposed audit process is a way to alert the security officer in charge of the network about these
configuration errors, as well as to remove all the useless rules in the initial firewall configuration. The data
to be used for the detection process is the following. A set ofrulesRas a list of initial sizen, wheren equals
count(R), and where each element is an associative array with the stringscondition, decision, shadowing,
andredundancyas keys to access each necessary value.

To simplify the algorithms, we assume one can access a linked-list through the operatorRi , wherei is the
relative position regarding the initial list size –count(R). We also assume one can add new values to the list
as any other normal variable does (element← value), as well as to remove elements through the addition
of an empty set (element← /0). The internal order of elements from the linked-listRkeeps with the relative
ordering of rules. In turn, each elementRi [condition] is an indexed array of sizep containing the set of
conditions of each rule; each elementRi [decision] is a boolean variable whose values are in{accept,deny};
each elementRi [shadowing] is a boolean variable in{true, f alse}; each elementRi [redundancy] is another
boolean variable in{true, f alse}. These variables are initialized tof alseby default.

For reasons of clarity, we split the whole process in three different algorithms. The first algorithm is an
auxiliary function whose input is two rules,A andB. Once executed, this auxiliary function returns a further
rule,C, whose set of condition attributes is the exclusion of the set of conditions fromA overB. In order to
simplify the representation of this algorithm (cf. Algorithm 1), we use the notationAi as an abbreviation of
the variableA[condition][i], and the notationBi as an abbreviation of the variableB[condition][i] – wherei
in [1, p]. The second algorithm is a boolean function in{true, f alse} which, in turn, applies the transfor-
mationexclusionover a set of filtering rules to check whether the rule obtained as a parameter is potentially
redundant.
The third algorithm performs the whole process of detectingand removing both redundancy and shadowing,
and is also split in two different phases. During the first phase, a set of shadowing rules are detected and
removed, by iteratively applying Algorithm 1 – when the decision field of the two rules is different. Let us
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notice that this stage of detecting and removing shadowed rules is applied before the detection and removal
of proper redundant rules. The resulting set of rules is thenused when applying the second phase. This
stage is performed to detect and remove proper redundant rules, as well as to detect and remove all the
further shadowed rules resulting during the latter process.

3.1 Correctness of the Intra-Firewall Algorithms
Theorem 3.1 Let R be a set of filtering rules and let Tr(R) be the resulting filtering rules obtained by ap-
plying Algorithm 3 to R. Then the following statements hold:(1) R and Tr(R) are equivalent; (2) Ordering
the rules in Tr(R) is no longer relevant; (3) Tr(R) is free from both shadowing and redundancy†.

3.2 Default policies
Each firewall implements an open or closed default policy. Inthe open policy, the default policy is to accept
a packet when no filtering rule applies. By contrast, the closed policy will reject a packet when no rule
applies. After rewriting the rules with the intra-firewall-audit algorithm (cf. Algorithm 3), we can actually
remove every rule whose decision is accept if the default policy of this firewall is open (else this rule is
redundant with the default policy) and similarly we can remove every rule whose decision is deny if the
default policy is closed. Thus, we can consider that our intra-firewall algorithm generates a configuration
that only contains accept rules if the firewall default policy is closed and deny rules if the default policy is
open.

4 Inter-Firewall Analysis
The objective of the inter-firewall audit algorithms is the complete discovering of policy anomalies that
could exist in a multi-firewall scenario, i.e., to discover and warn the security officer about potential anoma-
lies between policies of different firewalls.

The main hypotheses to deploy our algorithms hold the following: (1) An upstream network traffic flows
away from the closest firewall to the origin of this traffic (i.e., the most-upstream firewall) towards the
closest firewall to the remote destination (i.e., the most-downstream firewall); (2) Every firewall policy in
the network has been rewritten through the algorithms defined in Section 3, i.e., it does not contain intra-
firewall anomalies and the rules within such a policy are completely independent between them.

4.1 Network Model
The purpose of our network model is to determine which firewalls are crossed by a given packet knowing its
source and destination. It is defined as follows. First, and concerning the traffic flowing from two different
zones of the distributed access control scenario, we may determine the set of firewalls that are crossed by this
flow. Regarding the scenario shown in Figure 1(b), for example, the set of firewalls crossed by the network
traffic flowing from zoneexternal networkto zoneprivate3 equals [FW1,FW2,FW4], and the set of firewalls
crossed by the network traffic flowing from zoneprivate3 to zoneprivate2 equals [FW4,FW2,FW3].

Let F be a set of firewalls and letZ be a set of zones. We assume that each pair of zones inZ are mutually
disjoint, i.e., ifzi ∈Z andzj ∈Z thenzi∩zj = /0. We then define the predicateconnected( f1, f2) as a symmet-
ric and anti-reflexive function which becomestrue whether there exists, at least, one interface connecting
firewall f1 to firewall f2. On the other hand, we define the predicatead jacent( f ,z) as a relation between
firewalls and zones which becomestrue whether the zonez is interfaced to firewallf . Referring to Fig-
ure 1(b), we can verify that predicatesconnected(FW1,FW2) andconnected(FW1,FW3), for example, be-
cometrue, as well as predicatesad jacent(FW1,DMZ), ad jacent(FW2, private1), ad jacent(FW3,DMZ),
and so on, also do. We then define the set of paths,P, as follows. If f ∈ F then[ f ] ∈ P is an atomic path.
Similarly, if [p. f1] ∈ P (be “.” a concatenation functor) andf2 ∈ F, such thatf2 /∈ p andconnected( f1, f2),

† A set of proofs to validate Theorem 3.1, as well as a complexity analysis for the intra-firewall algorithms, is provided in[6].
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then [p. f1. f2] ∈ P. This way, we can notice that, concerning Figure 1(b),[FW1,FW2,FW4] ∈ P and
[FW1,FW3] ∈ P.

Let us now define the functionsf irst, last, and the order functor between paths. We first define function
f irst from P in F such that ifp is a path, thenf irst(p) corresponds to the first firewall in the path. Con-
versely, we define functionlast from P in F such that ifp is a path, thenlast(p) corresponds to the last
firewall in the path. We then define the order functor between paths asp1≤ p2, such that pathp1 is shorter
thanp2, and where all the firewalls withinp1 are also withinp2.

Finally, let us conclude this section by defining the functionsrouteandminimal route. We define func-
tion routefrom Z to Z, i.e.,{route(z1,z2) : Z×Z in 2P}, such thatp∈ route(z1,z2) iff path p connects zone
z1 to zonez2. Formally, p ∈ route(z1,z2) iff ad jacent( f irst(p),z1) andad jacent(last(p),z2). Similarly,
we define the functionminimal route from Z to Z, i.e., {minimal route(z1,z2) : Z×Z in 2P}, such that
p∈minimal route(z1,z2) iff the following conditions hold: (1)p∈ route(z1,z2); (2) There does not exist
p′ ∈ route(z1,z2) such thatp′ < p. Thus, and regarding Figure 1(b), we can verify that theminimal route
from zoneprivate3 to zoneprivate2 equals[FW4,FW2,FW3], i.e., minimal route(private3, private2) =
{[FW4,FW2,FW3]}.

4.2 Inter-Firewall Anomalies Classification
We classify in this section the complete set of anomalies that can occur within a multi-firewall setup. Our
classification is based on the network model presented in Section 4.1. An example for each anomaly will
be illustrated through the distributed access control setup shown in Figure 3. Referring to this figure, we
assume that a network traffic flows from the most-upstream firewall (which is the closest firewall to the flow
source’s zone) to the most-downstream firewall (which is theclosest firewall to the flow destination’s zone).
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Fig. 3: Example of a distributed network policy setup

Inter-Firewall Reflexivity A filtering rule in a multi-firewall setup is reflexive if both source and destina-
tion address are within the same zone, and its decision is accept. Thus, the reflexive rule will never match
network traffic since it does not flow through this firewall. For instance, referring to Figure 3, ruleFW1{R1}
is reflexive since the source of this address,external network, as well as its destination, is the same.

Inter-Firewall Irrelevance An irrelevance anomaly occurs when a firewall is not within the minimal route
that connects the source zone, concerning the irrelevant rule which causes the anomaly, to the destination
zone. Hence, the rule is irrelevant since it matches traffic which does not flow through this firewall. Rule
FW1{R2}, for example, is irrelevant since firewallFW1 is not in the path which corresponds to the minimal
route between the source zoneprivate1 to the destination zoneDMZ.
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Inter-Firewall Spuriousness A spuriousness anomaly occurs if the most-upstream firewalldenies, com-
pletely or partially, network traffic that, in turn, is accepted by a downstream firewall. The first case,full
spuriousness anomaly, is when the most-upstream firewall denies all the traffic. Aswe can see in Figure 3,
rule FW4{R1} shows an example of full spuriousness anomaly with ruleFW2{R2}. The second case,par-
tial spuriousness anomaly, happens when the most-upstream firewall denies just a part of the traffic that is
accepted by the firewall where the anomaly is detected. RulesFW4{R2} andFW2{R2} show an example of
partial spuriousness anomaly.

Inter-Firewall Redundancy A redundancy anomaly occurs if a downstream firewall completely or par-
tially blocks traffic that is already blocked by the most-upstream firewall. RulesFW4{R3} andFW3{R1}
show a proper example of full redundancy, whereas rulesFW4{R4} andFW3{R2} show an example of
partial redundancy. Sometimes, this kind of redundancy is expressly introduced by network administrators
to guarantee the forbidden traffic will not reach the destination. Nonetheless, it is important to discover
it since, if such a rule is applied, we may conclude that at least one of the redundant firewalls is wrongly
working.

Inter-Firewall Shadowing A full shadowing anomalyoccurs if the most-upstream firewall completely
blocks network traffic that, in turn, is permitted by a downstream firewall. RuleFW1{R3} shows an exam-
ple of full shadowing anomaly with ruleFW3{R3}. On the other hand, apartial shadowing anomalyoccurs
if the most-downstream firewall denies just some network traffic that, in turn, is permitted by an upstream
firewall. RuleFW1{R4} is a proper example of partial shadowing anomaly with ruleFW3{R4}.

Inter-Firewall Accessibility To guarantee the flow of network traffic may reach the destination, all up-
stream firewalls must permit, explicitly with a rule, or implicitly through the default open policy, any traffic
that is also permitted along the downstream firewalls chain.Otherwise, a completely or partially accessibil-
ity anomaly will occur if one of the following conditions holds:

(1) The traffic is permitted by a downstream firewall, but not permitted – explicitly or implicitly – by the
most-upstream firewall. RulesFW1{R5} andFW1{R6} show an example of this first case offull andpartial
accessibility anomaly, respectively, with the upstream firewallFW2.

(2) The traffic is permitted by an upstream firewall, but not permitted – explicitly or implicitly – by the
following downstream firewall. RulesFW2{R3} andFW2{R4} show an example of this second case offull
andpartial accessibility anomaly, respectively, with the downstream firewallFW1.

Inter-Firewall Misconnection A filtering rule in a distributed firewall setup is misconnected if this rule
blocks traffic which is not explicitly blocked by the most-upstream firewall and, at the same time, the default
policy of such a firewall is open. A proper example of this anomaly is ruleFW4{R5}, since it blocks traffic
which is not explicitly specified within the firewallFW3 – which, in turn, has an open default policy.

4.3 Inter-Firewall Analysis Algorithms
For reasons of clarity, we split the whole analysis process in four different algorithms. The input for the first
algorithm (cf. Algorithm 4) is the set of firewallsF , such that for allf w∈ F , we notef w[rules] as the set of
filtering rules of firewallf w, and f w[policy] ∈ {open,close} as the default policy of such a firewallf w. In
turn, each ruler ∈ f w[rules] consists of a boolean expression over the attributesszone(source zone),dzone
(destination zone),sport (source port),dport (destination port),protocol, anddecision(accept or deny).

We then define the functionssource(r) = szoneanddest(r) = dzone. Thus, we compute for each firewall
f w∈ F and for each ruler ∈ f w[rules], each one of the source zonesz1 ∈ Zs and destination zonesz2 ∈ Zd

– whose intersection with respectivelyszoneand dzoneis not empty – which become, together with a
reference to each firewallf w and each ruler, the input for the second algorithm (i.e., Algorithm 5).

The first verification Algorithm 5 does is to check whether both z1 andz2 are the same. If this case occurs,
and the decision of this rule is pointing toaccept, it warns the security officer about the occurrence of a
reflexivity anomaly(cf. Section 4.2). Otherwise, it computes the minimal routeof firewalls that connects



Fréd́eric Cuppens, Nora Cuppens-Boulahia, and Joaquı́n Garćıa-Alfaro

zonez1 to z2, i.e.,[FW1,FW2, . . . ,FWn]∈minimal route(z1,z2). Once computed the set of paths, the second
verification of Algorithm 5 is to check whether current firewall f w is not within such a path. If so, it
warns the security officer about the occurrence of anirrelevance anomaly(cf. Section 4.2). Otherwise, it
decomposes the set of firewalls inside each path in upstream path (pathu) and downstream path (pathd).
To do so, we use the implicit functionsheadandtail . Then, the first firewallf wd ∈ pathd, and the last
firewall f wu ∈ pathu are passed, respectively, as argument to the last two algorithms (i.e., Algorithm 6 and
Algorithm 7) in order to conclude the set of necessary checksthat guarantee the audit process‡.

Algorithm 4 : inter-firewall-audit(F )

foreachfw ∈ F do1

foreach r ∈ fw[rules] do2

Zs ← {z ∈ Z | z ∩ source (r) 6= ∅};3

Zd ← {z ∈ Z | z ∩ dest (r) 6= ∅};4

foreachz1 ∈ Zs do5

foreachz2 ∈ Zd do6

audit (fw,r,z1,z2);7

Algorithm 5 : audit(fw,r,z1,z2)

if (z1 = z2) and (r[decision] =” accept”) then1

warning (“Reflexivity”);2

else ifz1 6= z2 then3

foreachp ∈ minimal route (z1,z2) do4

if fw /∈ p and r[decision] =” accept” then5

warning (“ Irrelevance”);6

else iffw ∈ p then7

pathd ← tail (p,fw);8

pathu ← header (p,fw);9

if pathd 6= ∅ and r[decision] =” accept”10

then
fwd ← first(pathd);11

downstream (r,fw,fwd);12

if pathu 6= ∅13

then14

fwu ← last(pathu);15

upstream (r,fw,fwu);16

Algorithm 6 : downstream(r,fw,fwd)

if fwd[policy] = close then1

Rda ← {rd ∈ fwd | rd v r ∧ rd[decision] = accept};2

if Rda = ∅ then warning (“Full Accessibility ”);3

else if¬ testRedundancy (Rda,r) then4

warning (“Partial Accessibility”);5

Algorithm 7 : upstream(r,fw,fwu)

Rua ← {ru ∈ fwu | ru v r ∧ ru[decision] = accept};1

Rud ← {ru ∈ fwu | ru v r ∧ ru[decision] = deny};2

if r[decision] =“ deny” then3

if testRedundancy (Rua,r) then4

warning (“Full Spurious”);5

else ifRua 6= ∅ then6

warning (“Partial Spurious”);7

else iftestRedundancy (Rud,r) then8

warning (“Full Redundancy”);9

else ifRud 6= ∅ then10

warning (“Partial Redundancy”);11

else ifRua = ∅ and Rud = ∅ and12

fwu[policy] = open then
warning (“Misconnection”);13

else14

if testRedundancy (Rud,r) then15

warning (“Full Shadowing”);16

else ifRud 6= ∅) then17

warning (“Partial Shadowing”);18

else ifRua = ∅ and fwu[policy] = close then19

warning (“Full Accessibility”);20

else if¬ testRedundancy (Rua,r) and21

fwu[policy] = close then
warning (“Partial Accessibility”);22

Algorithm 8 : deployment(r,z1,z2)

if r[decision] = accept then1

foreachfw ∈ minimal route(z1, z2) do2

if fw[policy] = close then3

fw[rules]← fw[rules] ∪ r′

else4

fw ← first(minimal route(z1, z2))5

if fw[policy] = open then6

fw[rules]← fw[rules] ∪ r′

Let us conclude this section by giving an outlook to the set ofwarnings send to the security officer after
the execution of Algorithm 4 over the scenario of Figure 3:

(Reflexivity) on FW1{R1}
(Irrelevance) on FW1{R2}
(Full Shadowing) on FW1{R3} with FW3{R3}
(Partial Shadowing) on FW1{R4} with FW3{R4}
(Full Accessibility) on FW1{R5} with FW2
(Partial Accessibility) on FW1{R6} with FW2{R1}

(Full Accessibility) on FW2{R3} with FW1
(Partial Accessibility) on FW2{R4} with FW1{R7}
(Full Spurious) on FW4{R1} with FW2{R2}
(Partial Spurious) on FW4{R2} with FW2{R2}
(Full Redundancy) on FW4{R3} with FW3{R1}
(Partial Redundancy) on FW4{R4} with FW3{R2}
(Misconnection) on FW4{R5} with FW3

v‡ The operator “∽” within algorithms 6 and 7 denotes that two rulesr i andr j are correlated if every attribute inRi has a non empty
intersection with the corresponding attribute inRj .
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4.4 Correctness of the Inter-Firewall Algorithms
To prove the correctness of the inter-firewall algorithms, we first define what is a deployment without
anomalies for a set of filtering rules. For this purpose, let us consider a setRof filtering rules to be deployed
over a setF of firewalls that partitions a network into a setZ of zones. We also assume thatF has be
rewritten by applying the intra-firewall-audit algorithm showin in Section 3.

Let us now consider a ruler ∈ R and let us assume thatr applies to a source zonez1 and a destination
zonez2, i.e., s = z1∩ source(r) 6= /0 andd = z2∩ dest(r) 6= /0. Let r ′ be a rule identical tor except that
source(r ′) = s anddest(r ′) = d. Finally, let us assume that[FW1,FW2, ...,FWk] ∈ minimal route(z1,z2).
By keeping with all these statements, and based on our deployment algorithm (cf. Algorithm 8), we can
now prove the following theorem.

Theorem 4.1 Let F be a set of firewalls. The inter-firewall algorithms presented in Section 4 do not detect
any anomaly in the configurations of F iff there is a set R of filtering rules such that configurations of F are
obtained by applying the above deployment algorithm§.

5 Performance Evaluation
In this section, we present an evaluation of the performanceof MIRAGE (which stands for MIsconfiguRA-
tion manaGEr), a software prototype that implements the intra and inter-firewall algorithms presented in
sections 3 and 4. MIRAGE has been developed using PHP language. MIRAGE can be locally or remotely
executed by using a HTTP server (e.g., Apache server over UNIX or Windows setups) and a web browser.

We evaluated our approach through the following experiments¶. We first measured the memory and time
processing needed to perform Algorithm 3 over several sets of filtering policies for a first IPv4 network,
according to the three following security officer profiles: beginner, intermediate, and expert – where the
probability to have overlaps between rules increases from 5% to 90%. The results of these measurements
are plotted in Figure 4(a) and Figure 4(b). We conducted, in asecond phase, similar experiments to measure
the performance and scalability of Algorithm 4 through a progressive increment of rules, firewalls and zones
for a second IPv4 network. The results of these measurementsare plotted in Figure 5(a) and Figure 5(b).
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§ This theorem guarantees the correctness of the anomalies detected by our inter-firewall algorithms.
¶ The whole of these experiments were carried out on an Intel-Pentium M 1.4 GHz processor with 512 MB RAM, running Debian

GNU/Linux 2.6.8, and using Apache/1.3 with PHP/4.3 configured.
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6 Conclusions
In this paper we presented an audit process to set a distributed access control policy free of anomalies. Our
audit process has been presented in two main blocks. We first presented, in Section 3, a set of algorithms for
intra-firewall analysis, according to the discovering and removal of policy anomalies over single-firewall
environments. The detection process is based on the existence of relationships between the condition at-
tributes of the filtering rules, such as coincidence, disjunction, and inclusion. Then, our proposal uses a
transformation process which derives from an initial set ofrules – potentially misconfigured – to an equiva-
lent one which is completely free of misconfiguration. We then presented, in Section 4, a set of algorithms
for inter-firewall analysis, in order to detect and warn the security officer about the complete existence of
anomalies over a multi-firewall environment.

Some advantages of our approach are the following. First, our intra-firewall transformation process
verifies that the resulting rules are completely independent between them. Otherwise, each redundant or
shadowed rule considered as useless during the process is removed from the configuration. Second, both
intra and inter-firewall discovering processes provide an evidence of error to the administration console.
This way, the security officer can check whether the securitypolicy is consistent, in order to verify the
correctness of the whole process.

We presented in Section 4.1 a network model to determine which firewalls are crossed by a given packet
knowing its source and destination. Thanks to this model, our approach better defines all the set of anoma-
lies studied in the related work, and it reports, moreover, three new anomalies (reflexivity, misconnection,
andirrelevance) not reported, as defined in this paper, in none of the other approaches. Furthermore, and as
pointed out in Section 2, the lack of this model in [3] leads towrong decisions. Finally, the implementation
of our approach in a software prototype demonstrates the practicability of our work. We shortly discussed
this implementation, and presented an evaluation of its performance. Although these results show that our
algorithms have strong requirements, we believe that theserequirements are reasonable for off-line analysis,
since it is not part of the critical performance of a firewall.
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