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Abstract: The use ofirewalls andnetwork intrusion detection systerfi¢IDSs) is
the dominant method to survey and guarantee the securityypolcurrent corpo-
rate networks. On the one hand, firewalls are traditionalréiygaccomponents which
provide means to filter traffic within corporate networksvasl as to police the
incoming and outcoming interaction with the Internet. Oa tther hand, NIDSs
are complementary security components used to enhancésthitity level of the
network, pointing to malicious or anomalous traffic. To pFdp configure both
firewalls and NIDSs, it is necessary the use of a set of cordigur rules, i.e., a set
of filtering or alerting rules. Nevertheless, the existeoanomalies within the set
of configuration rules of both firewalls and NIDSs is very likeo degrade the net-
work security policy. The discovering and removal of theseraalies is a serious
and complex problem to solve. In this paper, we present afseeohanisms for
such a management.
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1 Introduction

Many companies and organizations tisewallsto police their incoming and out-
coming flow of traffic between different zones of the netwak,well asnetwork
intrusion detection systernie monitor and survey such a traffic. A firewall is a
network security component, with several interfaces aatt with the different
zones of the network. The company may partition, for instams network into
three different zones: demilitarized zonéor DMZ), a private network and a zone
for security administration. This way, one may use a singleaall setup, with
three interfaces associated with these three zones, twepbie protection of each
zoné. Network intrusion detection systems (NIDSs for short) tiom other hand,

3 Firewalls also implement other functionalities, such asxifing and Network Address Transfer
(NAT), but it is not the purpose of this paper to cover thesefionalities.



are complementary network security components which achange of detecting
malicious or anomalous activity in the network traffic, suahdenial of service
(DoS) attacks or intrusion attempts. NIDSs can employ whfie families of de-
tection methods, beingnomaly detectiorand misuse detectiotwo of the most
frequently used methods. We refer to [9] for a good surveyherfield.

In order to apply a filtering policy, it is necessary to configthe firewall with a set
of filtering rules. Similarly, and in order to apply an alagipolicy, it is also nec-
essary to configure the NIDS with a set of alerting rules, (detection signatures
when using misuse detection methods). Both filtering andiaderules are specific
cases of a more general configuration rule, which typicadfyne:s alecision (such
as filter, alert, pass, etc.) that applies over a set @indition attributes, such as
protocol source destination classification etc.

For our work, we define a general configuration rule as follows
R; : {condition;} — decision; Q)

wherei is the relative position of the rule within the set of rulésgndition; } is the
conjunctive set of condition attributes such thedndition;} equalsCy ACa A ... A
C), — beingp the number of condition attributes of the given rule — dadision is
a boolean value iftrue, false}.

Let us notice that the decision of a filtering rule will be givs (true) whether it
applies to a specific value relateddeny(or filter) the traffic it matches, and will be
negative (alse) whether it applies to a specific value relatecdtoept(or pasg the
traffic it matches. Similarly, the decision of an alertinderwill be positive {rue)
whether it applies to a specific value relatedatarn (or alert) about the traffic it
matches, and will be negative d/se) whether it applies to a specific value related
toignorethe traffic it matches.

In the configuration policy of a component, conflicts due te rverlaps, i.e., the
same traffic matching more than one rule, can occur. To shesetconflicts, most
components implementfast matchingstrategy through the ordering of rules. This
way, each packet processed by the component is mapped tedisgod of the rule
with highest priority. This strategy introduces, howevew configuration errors,
often referred in the literature g®licy anomalies

In [5], we presented an audit process to manage firewallyalomalies, in order
to detect and remove anomalies within the set of rules of@ngivewall. This audit
process is based on the existence of relationships betweerondition attributes
of the filtering rules, such as coincidence, disjunctiord eatlusion, and proposes
a transformation process which derives from an initial $ettes — with potential
policy anomalies — to an equivalent one which is completedg bf such anomalies.



In this paper, we extend our proposal of detecting and rengofirewall policy
anomalies [5], to a more complete setup where both firewalls MIDSs are in
charge of the network security policy. Hence, assuming ttatole of both pre-
vention and detection of network attacks is assigned tcethes components, our
objective is to completely correct the anomalies withirirtkhenfiguration.

We also extend in this paper the set of anomalies studied]imvifich, in turn,
are not reported, as defined in this paper, in none of theestudilated work. For
such a purpose, we also introduce in this paper the use of alrtwdpecify some
properties of the network, e.g., vulnerabilities, as welt@determine whether the
network traffic that matches a given configuration rule, maynay not cross the
component configured by such a rule.

The advantages of our proposal are threefold. First, whefonpging our proposed
discovery and removal of anomalies, and after rewritingrtiies, one can verify
that the resulting configuration of each component in thevoit is free of miscon-
figuration. Each anomalous rule will be reported to the adtration console. This
way, the security officer in charge of the network can cheekriétwork policy, in
order to verify the correctness of the whole process, aniiperthe proper policy
modifications to avoid such anomalies.

Second, the resulting rules are totally disjoint, i.e.,dhdering of rules is no longer
relevant. Hence, one can perform a second transformatiarpositive or negative
manner, generating a configuration that only contains igesitiles if the compo-
nent default policy is negative, and negative rules if thiadlé policy is positive.

Third, the set of configuration rules enhanced through ogoraghms may signi-
ficatively help to reduce the number of false positive everamed by NIDSs (i.e.,
alerts that the NIDS reports when it is not supposed to) sirebest fit the number
and type of alerting rules to the network properties.

The rest of this paper is organized as follows. Section 2sskarintroducing a net-
work model that is further used in Section 3 when presentimgset of algorithms.
Section 4 overviews the performance of our proposed alguost and Section 5 in-
troduces an analysis of some related work. Finally Sectiologes the paper with
some conclusions.

2 Network Moded

The purpose of our network model is to determine whetherrtiféd that matches

a given configuration ruld?; may or may not cross the component configured by
such arule. It is defined as follows. First, and concernirgytthffic flowing from
two different zones of the network, we may determine thefssdmponents that are
crossed by this flow. Regarding the scenario shown in Figuier £xample, the set



of components crossed by the network traffic flowing from zenernal network
to zoneprivates equals {U1,C2,C4], and the set of components crossed by the
network traffic flowing from zonerivates to zoneprivates equals {4,Co,C3].

Y —
external
network Gi

Fig. 1. Simple distributed policy setup.

Let C' be a set of components and ete a set of zones. We assume that each pair
of zones inZ are mutually disjoint, i.e., it; € Z andz; € Z thenz; N z; = 0.

We then define the predicatennected(c;, co) as a symmetric and anti-reflexive
function which becomesgrue whether there exists, at least, one interface con-
necting component; to components. On the other hand, we define the predi-
cateadjacent(c, z) as a relation between components and zones which becomes
true whether the zone is interfaced to componermnt Referring to Figure 1, we

can verify that predicatesonnected(C1, Cy) and connected(C1,Cs), as well as
adjacent(Cy, DM Z), adjacent(Cs, privatey), adjacent(Cs, DM Z), and so on,
becomerue.

We then define the set of pathB, as follows. Ifc € C then|c] € P is an atomic
path. Similarly, if[p.c;] € P (be “.” a concatenation functor) and € C, such that
c2 ¢ p andconnected(cy, c2), then[p.c;.ca] € P. This way, we can notice that,
concerning Figure 1, Co, Cy] € P and[Cy,Cs) € P.

Let us now define a set of functions related with the order betwpaths. We first
define functionsfirst, last, and the order functor between paths. We first define
function first from P in C such that ifp is a path, therfirst(p) corresponds to the
first component in the path. Conversely, we define functici from P in C such
that if p is a path, theriast(p) corresponds to the last component in the path. We
then define the order functor between pathg.as p», such that patl, is shorter
thanps, and where all the components withip are also withirps.

Two additional functions areoute and minimal_route. We define first define
function route from Z to Z, i.e., {route(z1, 20) : Z x Z in 2}, such thap ¢
route(z1, z9) iff the pathp connects zone; to zonezs. Formally, we defing <
route(z1, z9) iff adjacent(first(p),z1) andadjacent(last(p), z2). Similarly, we
then defineminimal_route from Z to Z, i.e., {minimal_route(z1,z2) : Z %
Z in 2P}, such thap € minimal_route(z1, z7) iff the following conditions hold:
(1) p € route(z1, z2); (2) There does not exigt € route(z1, z2) such thap’ < p.



Regarding Figure 1, we can verify that theinimal_route from zoneprivates
to zoneprivates equalsCy, Co, Cs], i.e.,minimal _route(privates, privates) =
{[C4, C2, Csl}.

Let us finally conclude by defining the predicatféect§Z, A.) as a boolean expres-
sion which becomesg-ue whether there is, at least, an elemer¢ Z such that the
configuration ofz is vulnerable to the attack categady. € V, whereV is a vul-
nerability set built from a vulnerability database, suclC&E[8] or OSVDBJ[10].

3 Our Proposal

In this section we present our set of audit algorithms, whoaa objective is the
complete discovering and removal of policy anomalies tlmafd exist in a sin-
gle component policy, i.e., to discover and warn the segofficer about potential
anomalies within the configuration rules of a given companieet us start by clas-
sifying the complete set of anomalies of our proposal.

3.1 Classifying the Anomalies

We classify in this section the complete set of anomalies ¢aa occur within a
single component configuration. An example for each anomaélybe illustrated
through the sample scenarios shown in Figure 2.

Shadowing A configuration ruleR; is shadowed in a set of configuration rules
R whether such a rule never applies because all the packetB thaay match, are
previously matched by another rule, or combination of rueh higher priority

in order. Regarding Figure 2, ru@, { R} is shadowed by the overlapping of rules
01{R3} andCl{Rg)}.

Redundancy A configuration ruleR; is redundant in a set of ruleR whether
the rule is not shadowed by any other rule or set of rules ah@nwemovingR;
from R, the security policy does not change. For instance, refgtd Figure 2, rule
C1{R4} is redundant, since the overlapping between rale§Rs } andC1{R5} is
equivalent to the police of rul€{R4}.

Irrelevance A configuration ruleR; is irrelevant in a set of configuration rulés
if one of the following conditions holds:

(1) Both source and destination address are within the same and its decision
is false. For instance, rul€’; { R, } is irrelevant since the source of this address,
external network, as well as its destination, is the same.

(2) The component is not within the minimal route that coneéce source zone,
concerning the irrelevant rule which causes the anomalihdadestination zone.



external
network

windows
network

unix

Cy network

192.170.26.[0,255] 192.170.21.[0,255] 192.170.33.[0,255]

Cy{Ry} : {tcp, 192.170.26.[10,20]:any, 192.170.26.[50,60]:any} > false
Ci{Rq} : {tcp, 192.170.26.[0,255]:any, 192.170.33.[0,255]:any} > false
C+{Rs} : {tcp, 192.170.21.[1,30]:any, 192.170.26.[20,45]:any} -> true
Ci{Ra} : {tcp, 192.170.21.[20,60]:any, 192.170.26.[25,35]:any} > false
C+{Rs)} : {tcp, 192.170.21.[30,70]:any, 192.170.26.[20,45]:any} -> false
C+{Rg} : {tcp, 192.170.21.[15,45]:any, 192.170.26.[25,30]:any} > true

(a) Example scenario with a single filtering policy.

external
network

unix
network

windows
network

CZQ

192.170.26.[0,255] 192.170.21.[0,255] 192.170.33.[0,255]

C2{R1} : {tcp, 192.170.26.[0,255]:any, 192.170.33.[0,255]:any, payload,, winworm} > true
C2{R2} : {tcp, 192.170.26.[0,255]:any, 192.170.21.[0,255]:any, payload,, winworm} > true
C2{Rs} : {tcp, 192.170.33.[0,255]:any, 192.170.21.[0,255]:any, payloads, unixworm} > true
Cz{Rs} : {tcp, 192.170.26.[1,30]:any, 192.170.21.[20,45]:any, payloads, unixworm} -> true
C»{Rs} : {tcp, 192.170.26.[20,60]:any, 192.170.21.[25,35]:any, payloads, unixworm} -> true
C2fRe} : {tcp, 192.170.26.[10,40]:any, 192.170.21.[25,30]:any, payloads, unixworm} > true

(b) Example scenario with a single alerting policy.

Fig. 2. Example filtering and alerting policies.

Hence, the rule is irrelevant since it matches traffic whioksdnot flow through
this component. Rul€>{ Rs}, for example, is irrelevant since componei is
not in the path which corresponds to the minimal route betwtbe source zone
windows network to the destination zonenix network.

(3) At least one of the condition attributes R} is related with a classification of
attackA. which does not affect the destination zone of such a rulethe predicate
affectgzq4, A.) becomesfalse. Regarding Figure 2, we can see that rGig{ R, }
is irrelevant since the nodes in the destination zenér network are not affected
by vulnerabilities classified asinworm.

3.2 Proposed Algorithms

Our proposed audit process is a way to alert the securityeoffic charge of the
network about these configuration errors, as well as to rematithe useless rules

in the initial component configuration. The data to be usedhe detection process

is the following. A set of rules as a list of initial size:, wheren equalscount(R),

and where each element is an associative array with thgstiindition, decision,
shadowing, redundancy, andirrelevance as keys to access each necessary value.

For reasons of clarity, we assume one can access a linkeatrisigh the operator
R;, wherei is the relative position regarding the initial list sizeceunt(R). We



also assume one can add new values to the list as any othealnaarrable does
(element < walue), as well as to remove elements through the addition of an
empty set ¢lement < ()). The internal order of elements from the linked-1i3t
keeps with the relative ordering of rules.

Each elemenkR;[condition] is a boolean expression ovepossible attributes. To
simplify, we only consider as attributes the following ongsone (source zone),
dzone (destination zone)sport (source port)dport (destination port)protocol,
andattack_class — or A, for short — which will be empty whether the component
is a firewall. In turn, each elemem;[decision] is a boolean variable whose val-
ues are in{true, false}. Finally, elementsk;[shadowing|, R;[redundancy], and
R;lirrelevance] are boolean variables iftrue, false} —which will be initialized

to false by default.

We split the whole process in four different algorithms. Tingt algorithm (cf. Al-
gorithm 1) is an auxiliary function whose input is two rulesand B. Once exe-
cuted, this auxiliary function returns a further ru@, whose set of condition at-
tributes is the exclusion of the set of conditions fragnover B. In order to simplify
the representation of this algorithm, we use the notatlgrmas an abbreviation of
the variableA[condition|[i], and the notatiorB; as an abbreviation of the variable
Bjcondition|[i] — wherei in [1, p].

The second algorithm is a boolean function{itrue, false} which applies the
necessary verifications to decide whether a rukeirrelevant for the configuration
of a component. To properly execute this algorithm, let us defidias the set of
zones,source(r) as a function inZ such thatsource(r) = szone, anddest(r) as
a function inZ such thatlest(r) = dzone.

The third algorithm is a boolean function {rue, false} which, in turn, applies
the transformatiorexclusion(cf. Algorithm 1) over a set of configuration rules to
check whether the rule obtained as a parameter is potgntellndant.

The last algorithm (i.e., Algorithm 4) performs the wholegess of detecting and
removing the complete set of anomalies. This process is ispthree different
phases. During the first phase, a set of shadowing rules szeteé and removed
from a top-bottom scope, by iteratively applying Algoritm- when the decision
field of the two rules is different. Let us notice that thisgga@f detecting and remov-
ing shadowed rules is applied before the detection and rehadyproper redundant
and irrelevant rules.

The resulting set of rules is then used when applying thergepbase, also from a
top-bottom scope. This stage is performed to detect andwemamper redundant
rules, through an iterative call to Algorithm 3 (i.¢estRedundangy as well as
to detect and remove all the further shadowed rules rengidinming the latter
process. Finally, during a third phase the whole set of mapte rules is analyzed



Algorithm 1: exclusion(B,A) Algorithm 4: intra-component-audit(c, R)

1 Clcondition] «— (; 1 begin
2 C[shadowing] « false; 2 n «— count(R);
3 Clredundancy] «— false; 3 /*Phase 1%/
4 Clirrelevance] «— false; 4 fori — 1to(n—1)do
5 Cldecision] «— Bldecision]; 5 for j — (i+ 1) ton do
6 forall the elements of A[condition] and Blcondition] do 6 if Ri[decision] # Rj[decision] then
7 if (A1NB1)# 0and (A2 N Bz) # 0 7 R; — exclusion (R;,R:);
8 and ... and (A, N By) # () then 8 if R;j[condition] = () then
9 Cleondition] « C|condition] U 9 warning (“Shadowing”);
10 {(Bi —A1)ABa A ... A By, 10 Rj[shadowing] «— true;
11 (A1 N B1) A (B2 — A2) A ... A By,
12 (A1 N B1) A (Ay N By) A(Bs — As) A ... A By, u J+Phase 2%/
13 .
14 (A1 0 B1) A A(Apo1 0 Bypo1) A (By — Ap)}: " f"”l‘;a L"’{ﬁfeg‘d";kﬂmd
15 else o o o 14 rr|decision] = ri[decision]};
16 |_ Cleondition] « (C|condition] U Blcondition]); 15 if testRedundancy (Ra, R:) then
1 re_turn C: 16 warning (“Redundancy”);
' 17 R;[condition] «— (;
Algorithm 2: testIrrelevance(c,) 18 Ri[redundancy] — true;
1 zs < source (r); I else . .
2 24— dest (r); 20 for j «— (i + ?)lto n do N
. ; . 21 if R;/decision]=R;[decision] then
3 if (zs = zq) and (—r[decision]) then » R, —exclusion (R;.R:):
4 | warning (“First case of irrelevance”); 23 if](“Rj [redundancy] Zl‘ndl ?
S elseif 2, 7 zq then o 4 R;[condition] = ()) then
6 b mlnlmal_roqu (G 2a); 25 warning (“Shadowing”);
7 if ¢ ¢ p and (—r[decision]) then 2% L R [shadowing] — true:
8 | warning (“Second case of irrelevance”); I gl . ’
9 else if (mempty (r[Ac])) and (—affects(zq, 7[Ac])) then L
10 | warning (“Third case of irrelevance”); 27 /:Phase 3%/
11 else return false; 28 fori — 1tondo
12 return true; 29 if R;[condition] # () then
30 if testIrrelevance (¢, RR;) then
Algorithm 3: testRedundancy(R,r) 31 R;[irrelevance] — true;
i—1; 32 L r[condition] — 0;
temp «— r; L -
while —test and (i < count(R)) do 33 end

1
2
3
4 temp «— exclusion(temp, R;);
5 if temp[condition] = () then

6 L return true;
7 i— (i+1);
8

return false;

in order to detect and remove irrelevance, through an ieratll to Algorithm 2
(i.e.,testlrrelevancg

Let us conclude by giving an outlook to the set of warningsdseenthe security
officer after the execution of Algorithm 4 over the configioatof the two compo-
nents shown in Figure 2.

First case of irrelevanceon C1{R1 } Third case of irrelevance on C2{R2 }
Redundancy onC1{R4} Second case of irrelevance on C2{R3}
Shadowing onC1{Rg} Redundancy onC2{Re}




3.3 Correctness of the Algorithms

Lemmal LetR; : condition; — decision; and R; : condition; — decision;
be two configuration rules. ThefR?;, R;} is equivalent to{ R;, R’} where R}, «
exclusion(R;j, R;).

Proof of Lemma 1 Let us assume thak;[condition] = A1 A Ay A ... A A, and
Rj[COnditiOTl] =B ANBys A ... A Bp. If (A1 N Bl) =(or (A2 N BQ) =Qor...or
(A, N B,) = 0 thenexclusion(Rj, R;) — R;. Hence, to prove the equivalence
between{ R;, R;} and{R;, R’} is trivial in this case.

Let us now assume thatl; N B;) # () and(A;NBy) # and ...and 4,NB,) # 0.
If we apply rules{R;, R;} where R; comes before?;, then ruleR; applies to a
given packet if this packet satisfiés;[condition] but notR;[condition] (SinceR;
applies first). Therefore, notice th&f [condition| — R;[condition] is equivalent to
(Bl —Al)/\BQ/\.../\Bp or (Al ﬂBl)/\(Bg —142)/\.../\317 or (Al ﬂBl)/\(Agﬂ
BQ) VAN (Bg — Ag) VANV Bp or... (A1 N Bl) N oA (Ap,1 N Bpfl) AN (Bp — Ap),
which corresponds &’ = exclusion(R;, R;). This way, if ?; applies to a given
packet in{ R;, R;}, then ruIeR;. also applies to this packet {iiz;, R;.}. Conversely,
if R applies to a given packet ifii2;, R}, then this means this packet satisfies
Rj[condition] but notR;[condition]. So, itis clear that rulé?; also applies to this
packetin{ R;, R; }. Since in Algorithm 1R’ [decision] becomes;[decision], this
enables to conclude thaz;, R;} is equivalent to R;, R }. 0

Theorem 2 Let R be a set of configuration rules and [&t-(R) be the resulting
rules obtained by applying Algorithm 4 ®. ThenR andT'r(R) are equivalent.

Proof of Theorem 2 Let 7| (R) be the set of rules obtained after applying
the first phase of Algorithm 4. SincEr}(R) is derived from ruleR by applying
exclusion(R;, R;) to some rulesk; in R, itis straightforward, from Lemma 1, to
conclude thaf'r; (R) is equivalent taR.

Let us now move to the second phase, and let us consider aRpuseich that
test Redundancy(R;) (cf. Algorithm 3) is¢rue. This means thaRk;[condition]
can be derived by conditions of a set of rulgswith the same decision and that
come after in order than rul&;. Since every ruleR; with a decision different
from the one of rules irt' has already been excluded from rulesSin the first
phase of the Algorithm, we can conclude that ridgis definitely redundant and
can be removed without changing the component configurafibis way, we con-
clude that Algorithm 4 preserves equivalence in this casetl@ other hand, if
test Redundancy(R;) is false, then transformation consists in applying function
exclusion(R;, R;) to some rules?; which also preserves equivalence.



Similarly, and once in the third phase, let us consider a Rjlsuch thattestr-
relevance(c, R;) i1s true. This means that this rule matches traffic that will never
cross component, or that is irrelevant for the component’s configuration, ®e
can removeR; from R without changing such a configuration. Thus, in this third
case, as in the other two casé3; (R) is equivalent tdI'r} (R) which, in turn, is
equivalent toR. O

Lemma3 Let R; : condition; — decision; and R; : condition; — decision;
be two configuration rules. Then rulég and R, whereR’, « exclusion(R;, R;)
will never simultaneously apply to any given packet.

Proof of Lemma 3 Notice that ruIeR;. only applies when rulé?; does not apply.
Thus, if ruIeR; comes before rulé;, this will not change the final decision since
rule R;. only applies to packets that do not match ride O

Theorem 4 Let R be a set of configuration rules and [&¥-(R) be the resulting
rules obtained by applying Algorithm 4 #. Then the following statements hold:
(1) Ordering the rules i'r(R) is no longer relevant; (2Y'r(R) is completely free
of anomalies.

Proof of Theorem 4 For any pair of rulesk; and R; such thatR; comes be-
fore R;, R; is replaced by a ruIeR;- obtained by recursively replacing; by
exclusion(R;, Ry) for anyk < j.

Then, by recursively applying Lemma 3, it is possible to carterrulesR, andR;
in Tr(R) without changing the policy.

Regarding the second statemerif'= R) is completely free of anomalies — notice
that, in7r(R), each rule is independent of all other rules. Thus, if we a1
rule R; in Tr(R) such thatR;[condition] # 0, then this rule will apply to any
packet that satisfieR; [condition], i.e., it is not shadowed.

On the other hand, rul®&; is not redundant because if we remove this rule, since
this rule is the only one that applies to packets that satigfyondition|, then
configuration of the component will change if we remove lerom T'r(R).

Finally, and after the execution of Algorithm 4 over the ialitset of configuration
rules, one may verify that for each rulg in 7'r(R) the following conditions hold:
(1) s = 21 N source(r) # 0 andd = 25 N dest(r) # 0 such thatz; # 2, and
component is in minimal_route(z1, z2); (2) if A. = attack_category(R;) # 0,
the predicateif fects(A., zo) becomegrue. Thus, each ruld; in Tr(R) is not
irrelevant. O



3.4 Default palicies

Each component implements a positive (i.e., close) or haegéte., open) default
policy. In the positive policy, the default policy is tdert or to deny a packet when
any configuration rule applies. By contrast, the negativepwiill accepts or pass
a packet when no rule applies.

After rewriting the rules with our algorithms, we can actyakmove every rule
whose decision ipassor acceptif the default policy of this component is negative
(else this rule is redundant with the default policy) andikirty we can remove
every rule whose decision @enyor alert if the default policy is positive. Thus,
we can consider that our proposed algorithms generate agoaoation that only
contains positive rules if the component default policy égative, and negative
rules if the default policy is positive.

4 Performance Evaluation

In this section, we present an evaluation of the performafidd|RAGE (which
stands for MIsconfiguRAtion manaGEr), a software prototiiz implements the
algorithms presented in sections 3. MIRAGE has been degdlasing PHP, a
scripting language that is especially suited for web sessidevelopment and can
be embedded into HTML for the construction of client-sidel®llsed applications
[3]. MIRAGE can be locally or remotely executed by using a HPT3erver (e.g.,
Apache server over UNIX or Windows setups) and a web browser.

i |
____________________ e
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(a) Memory space evaluation (b) Processing time evaluation

o

Fig. 3. Memory and processing time evaluation.

We evaluated our algorithms through a set of experiments awdPv4 network.
The topology for this network consisted of a single firewalséd on Netfilter [13],
and a single NIDS based on Snort [12] — both of them connectéiar¢ée different
zones with more than 50 hosts. The whole of these experinvesris carried out



on an Intel-Pentium M 1.4 GHz processor with 512 MB RAM, rurqhiDebian
GNU/Linux 2.6.8, and using Apache/1.3 with PHP/4.3 conféglr

During our experiments, we measured the memory space amtdbessing time
needed to perform Algorithm 4 over several sets of IPv4 fiigeand alerting poli-
cies for the two IPv4 networks, according to the three foiimyvsecurity officer
profiles: beginner, intermediate, and expert — where thbglitity to have over-
laps between rules increases from 5% to 90%. The resultesétmeasurements
are plotted in Figure 3(a) and Figure 3(b). Although the platflect strong mem-
ory and process time requirements, we consider they arereble for off-line
analysis, since it is not part of the critical performanceanfalerting or filtering
component.

5 Reated Work

A first approach to get a configuration free of errors is by yippgl a formal model
to express the network policy. In [4], for example, we présdra model with this
purpose. This way, a set of configuration rules, whose syistagecific to a given
component, may be generated using a transformation lapguag

The proposals in [1, 6,7, 2], provide means to directly mantmp discovery of
anomalies from the components’ configuration. For instatmasauthors in [1] con-
sider that, in a configuration set, two rules are in conflicewthe first rule in order
matches some packets that match the second rule, and threlset®also matches
some of the packets that match the first rule. This approacérislimited since it
just detects a particular case of wrongly defined rules imglsiconfiguration, i.e.,
just ambiguity within the set of rules is detected.

In [6], two new cases of anomalies are considered. FirstjeaRy is defined as
backward redundant iff there exists another ritlewith higher priority in order
such that all the packets that match ridealso match rule?;. Second, a rulé; is
defined as forward redundant iff there exists another Rylavith the same decision
and less priority in order such that the following condigdrold: (1) all the packets
that matchR; also matchR;; (2) for each ruleR; betweenR; and R;, and that
matches all the packets that also match ®jeR; has the same decision &s. We
consider this approach as incomplete, since it does nottdatehe possible cases
of anomalies defined in this paper. For instance, given thefsmiles shown in
Figure 4(a), sincdz, comes aftef?;, rule R, only applies over the intervé1, 70)
—i.e., Ry is redundant. Their approach, however, cannot detect thendancy of
rule Ry within this setup.

Another similar approach is presented in [2]. Again, anchdheugh the efficiency
of their proposed discovering algorithms and techniqueenig promising, we con-



R : s € [10,50] — deny R1 : s € [10,50] — accept

R» : s € [40, 70] — accept R> : s € [40,90] — accept
Rs : s €[50, 80] — accept Rs : s € [30,80] — deny
(a) Setofrules A (b) Setofrules B

Fig. 4. Example of some firewall configurations.

sider this approach not complete since, given a misconfigaanponent, their
detection algorithms could not detect all the possiblersrieor example, given the
set of rules shown in Figure 4(b) their approach cannot détet rule Rs will be
never applied due to the union of rul&s andR,.

6 Conclusions

In this paper we presented an audit process to set the caatfguiof bothfirewalls
andnetwork intrusion detection systetfi¢IDSs) free of anomalies. Our audit pro-
cess is based on the existence of relationships betweerotigition attributes of
the configuration rules of those network security compaenich as coincidence,
disjunction, and inclusion. Then, our proposal uses a foamstion process which
derives from an initial set of rules — potentially misconfigdi — to an equivalent
one which is completely free of anomalies.

We also presented in this paper a network model to determiveth&r the network
traffic that matches a given configuration rule, may or maycnags the component
configured by such arule, as well as other network propeifieanks to this model,
our approach best defines all the set of anomalies studideiretated work, and
it reports, moreover, a new anomaly case not reported, asedefi this paper, in
none of the other approaches.

Some advantages of our approach are the following. Firsttransformation pro-

cess verifies that the resulting rules are completely inaeget between them. Oth-
erwise, each rule considered as useless during the preoegwrted to the security
officer, in order to verify the correctness of the whole pssceSecond, we can
perform a second rewriting of rules, generating a configomathat only contains

positive rules if the component default policy is hegatamed negative rules if the
default policy is positive. Third, the elimination of alexg rules during the audit
process helps to reduce future false positive events dlbgte NIDS.

Regarding a possible increase of the initial number of rulle® to the applying
of our algorithms, it is only significant whether the asstezigparsing algorithm of
the component depends on the number of rules. In this caseci@ase in such a
parameter may degrade the performance of the componengtiNdess, this is not
a disadvantage since the use of a parsing algorithm indepéid the number of



rules becomes the best solution as much for our proposat #sgfcurrent deploy-
ment of network technologies. The set pruning tree algaritha proper example,
because it only depends on the number and size of attriboites parsed, not the
number of rules [11].

The implementation of our approach in a software prototygraehstrate the practi-
cability of our work. We shortly discussed this implemeiatat based on a scripting
language [3], and presented an evaluation of its performakithough these exper-
imental results show that our algorithms have strong requénts, we believe that
they are reasonable for off-line analysis, since it is nat pathe critical perfor-
mance of the audited component.
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