
Towards Filtering and Alerting Rule Rewriting on
Single-Component Policies

J. G. Alfaro1,2, Frédéric Cuppens1, and Nora Cuppens-Boulahia1

1 GET/ENST-Bretagne, 35576 Cesson Sévigné - France
{frederic.cuppens,nora.cuppens}@enst-bretagne.fr

2 dEIC/UAB, Edifici Q, 08193, Bellaterra, Barcelona - Spain
Joaquin.Garcia-Alfaro@deic.uab.es

Abstract: The use offirewallsandnetwork intrusion detection systems(NIDSs) is
the dominant method to survey and guarantee the security policy in current corpo-
rate networks. On the one hand, firewalls are traditional security components which
provide means to filter traffic within corporate networks, aswell as to police the
incoming and outcoming interaction with the Internet. On the other hand, NIDSs
are complementary security components used to enhance the visibility level of the
network, pointing to malicious or anomalous traffic. To properly configure both
firewalls and NIDSs, it is necessary the use of a set of configuration rules, i.e., a set
of filtering or alerting rules. Nevertheless, the existenceof anomalies within the set
of configuration rules of both firewalls and NIDSs is very likely to degrade the net-
work security policy. The discovering and removal of these anomalies is a serious
and complex problem to solve. In this paper, we present a set of mechanisms for
such a management.

Keywords: Network Security, Firewalls, NIDSs, Policy Anomalies

1 Introduction

Many companies and organizations usefirewalls to police their incoming and out-
coming flow of traffic between different zones of the network,as well asnetwork
intrusion detection systemsto monitor and survey such a traffic. A firewall is a
network security component, with several interfaces associated with the different
zones of the network. The company may partition, for instance, its network into
three different zones: ademilitarized zone(or DMZ), a private network and a zone
for security administration. This way, one may use a single firewall setup, with
three interfaces associated with these three zones, to police the protection of each
zone3. Network intrusion detection systems (NIDSs for short), onthe other hand,

3 Firewalls also implement other functionalities, such as Proxying and Network Address Transfer
(NAT), but it is not the purpose of this paper to cover these functionalities.



are complementary network security components which are incharge of detecting
malicious or anomalous activity in the network traffic, suchas denial of service
(DoS) attacks or intrusion attempts. NIDSs can employ different families of de-
tection methods, beinganomaly detectionand misuse detectiontwo of the most
frequently used methods. We refer to [9] for a good survey on the field.

In order to apply a filtering policy, it is necessary to configure the firewall with a set
of filtering rules. Similarly, and in order to apply an alerting policy, it is also nec-
essary to configure the NIDS with a set of alerting rules (i.e., detection signatures
when using misuse detection methods). Both filtering and alerting rules are specific
cases of a more general configuration rule, which typically defines adecision (such
asfilter, alert, pass, etc.) that applies over a set ofcondition attributes, such as
protocol, source, destination, classification, etc.

For our work, we define a general configuration rule as follows:

Ri : {conditioni} → decisioni (1)

wherei is the relative position of the rule within the set of rules,{conditioni} is the
conjunctive set of condition attributes such that{conditioni} equalsC1∧C2∧ ...∧
Cp – beingp the number of condition attributes of the given rule – anddecision is
a boolean value in{true, false}.

Let us notice that the decision of a filtering rule will be positive (true) whether it
applies to a specific value related todeny(or filter) the traffic it matches, and will be
negative (false) whether it applies to a specific value related toaccept(or pass) the
traffic it matches. Similarly, the decision of an alerting rule will be positive (true)
whether it applies to a specific value related towarn (or alert) about the traffic it
matches, and will be negative (false) whether it applies to a specific value related
to ignore the traffic it matches.

In the configuration policy of a component, conflicts due to rule overlaps, i.e., the
same traffic matching more than one rule, can occur. To solve these conflicts, most
components implement afirst matchingstrategy through the ordering of rules. This
way, each packet processed by the component is mapped to the decision of the rule
with highest priority. This strategy introduces, however,new configuration errors,
often referred in the literature aspolicy anomalies.

In [5], we presented an audit process to manage firewall policy anomalies, in order
to detect and remove anomalies within the set of rules of a given firewall. This audit
process is based on the existence of relationships between the condition attributes
of the filtering rules, such as coincidence, disjunction, and inclusion, and proposes
a transformation process which derives from an initial set of rules – with potential
policy anomalies – to an equivalent one which is completely free of such anomalies.



In this paper, we extend our proposal of detecting and removing firewall policy
anomalies [5], to a more complete setup where both firewalls and NIDSs are in
charge of the network security policy. Hence, assuming thatthe role of both pre-
vention and detection of network attacks is assigned to these two components, our
objective is to completely correct the anomalies within their configuration.

We also extend in this paper the set of anomalies studied in [5] which, in turn,
are not reported, as defined in this paper, in none of the studied related work. For
such a purpose, we also introduce in this paper the use of a model to specify some
properties of the network, e.g., vulnerabilities, as well as to determine whether the
network traffic that matches a given configuration rule, may or may not cross the
component configured by such a rule.

The advantages of our proposal are threefold. First, when performing our proposed
discovery and removal of anomalies, and after rewriting therules, one can verify
that the resulting configuration of each component in the network is free of miscon-
figuration. Each anomalous rule will be reported to the administration console. This
way, the security officer in charge of the network can check the network policy, in
order to verify the correctness of the whole process, and perform the proper policy
modifications to avoid such anomalies.

Second, the resulting rules are totally disjoint, i.e., theordering of rules is no longer
relevant. Hence, one can perform a second transformation ina positive or negative
manner, generating a configuration that only contains positive rules if the compo-
nent default policy is negative, and negative rules if the default policy is positive.

Third, the set of configuration rules enhanced through our algorithms may signi-
ficatively help to reduce the number of false positive eventswarned by NIDSs (i.e.,
alerts that the NIDS reports when it is not supposed to) sincewe best fit the number
and type of alerting rules to the network properties.

The rest of this paper is organized as follows. Section 2 starts by introducing a net-
work model that is further used in Section 3 when presenting our set of algorithms.
Section 4 overviews the performance of our proposed algorithms, and Section 5 in-
troduces an analysis of some related work. Finally Section 6closes the paper with
some conclusions.

2 Network Model

The purpose of our network model is to determine whether the traffic that matches
a given configuration ruleRi may or may not cross the component configured by
such a rule. It is defined as follows. First, and concerning the traffic flowing from
two different zones of the network, we may determine the set of components that are
crossed by this flow. Regarding the scenario shown in Figure 1, for example, the set



of components crossed by the network traffic flowing from zoneexternal network
to zoneprivate3 equals [C1,C2,C4], and the set of components crossed by the
network traffic flowing from zoneprivate3 to zoneprivate2 equals [C4,C2,C3].

Fig. 1. Simple distributed policy setup.

Let C be a set of components and letZ be a set of zones. We assume that each pair
of zones inZ are mutually disjoint, i.e., ifzi ∈ Z andzj ∈ Z thenzi ∩ zj = ∅.
We then define the predicateconnected(c1, c2) as a symmetric and anti-reflexive
function which becomestrue whether there exists, at least, one interface con-
necting componentc1 to componentc2. On the other hand, we define the predi-
cateadjacent(c, z) as a relation between components and zones which becomes
true whether the zonez is interfaced to componentc. Referring to Figure 1, we
can verify that predicatesconnected(C1, C2) andconnected(C1, C3), as well as
adjacent(C1,DMZ), adjacent(C2, private1), adjacent(C3,DMZ), and so on,
becometrue.

We then define the set of paths,P , as follows. Ifc ∈ C then[c] ∈ P is an atomic
path. Similarly, if[p.c1] ∈ P (be “.” a concatenation functor) andc2 ∈ C, such that
c2 /∈ p andconnected(c1, c2), then [p.c1.c2] ∈ P . This way, we can notice that,
concerning Figure 1,[C1, C2, C4] ∈ P and[C1, C3] ∈ P .

Let us now define a set of functions related with the order between paths. We first
define functionsfirst, last, and the order functor between paths. We first define
functionfirst from P in C such that ifp is a path, thenfirst(p) corresponds to the
first component in the path. Conversely, we define functionlast from P in C such
that if p is a path, thenlast(p) corresponds to the last component in the path. We
then define the order functor between paths asp1 ≤ p2, such that pathp1 is shorter
thanp2, and where all the components withinp1 are also withinp2.

Two additional functions areroute and minimal route. We define first define
function route from Z to Z, i.e., {route(z1, z2) : Z × Z in 2P }, such thatp ∈
route(z1, z2) iff the pathp connects zonez1 to zonez2. Formally, we definep ∈
route(z1, z2) iff adjacent(first(p), z1) andadjacent(last(p), z2). Similarly, we
then defineminimal route from Z to Z, i.e., {minimal route(z1, z2) : Z ×
Z in 2P }, such thatp ∈ minimal route(z1, z2) iff the following conditions hold:
(1) p ∈ route(z1, z2); (2) There does not existp′ ∈ route(z1, z2) such thatp′ < p.



Regarding Figure 1, we can verify that theminimal route from zoneprivate3

to zoneprivate2 equals[C4, C2, C3], i.e.,minimal route(private3, private2) =
{[C4, C2, C3]}.

Let us finally conclude by defining the predicateaffects(Z,Ac) as a boolean expres-
sion which becomestrue whether there is, at least, an elementz ∈ Z such that the
configuration ofz is vulnerable to the attack categoryAc ∈ V , whereV is a vul-
nerability set built from a vulnerability database, such asCVE[8] or OSVDB[10].

3 Our Proposal

In this section we present our set of audit algorithms, whosemain objective is the
complete discovering and removal of policy anomalies that could exist in a sin-
gle component policy, i.e., to discover and warn the security officer about potential
anomalies within the configuration rules of a given component. Let us start by clas-
sifying the complete set of anomalies of our proposal.

3.1 Classifying the Anomalies

We classify in this section the complete set of anomalies that can occur within a
single component configuration. An example for each anomalywill be illustrated
through the sample scenarios shown in Figure 2.

Shadowing A configuration ruleRi is shadowed in a set of configuration rules
R whether such a rule never applies because all the packets that Ri may match, are
previously matched by another rule, or combination of rules, with higher priority
in order. Regarding Figure 2, ruleC1{R6} is shadowed by the overlapping of rules
C1{R3} andC1{R5}.

Redundancy A configuration ruleRi is redundant in a set of rulesR whether
the rule is not shadowed by any other rule or set of rules and, when removingRi

from R, the security policy does not change. For instance, referring to Figure 2, rule
C1{R4} is redundant, since the overlapping between rulesC1{R3} andC1{R5} is
equivalent to the police of ruleC1{R4}.

Irrelevance A configuration ruleRi is irrelevant in a set of configuration rulesR
if one of the following conditions holds:

(1) Both source and destination address are within the same zone, and its decision
is false. For instance, ruleC1{R1} is irrelevant since the source of this address,
external network, as well as its destination, is the same.

(2) The component is not within the minimal route that connects the source zone,
concerning the irrelevant rule which causes the anomaly, tothe destination zone.



(a) Example scenario with a single filtering policy.

(b) Example scenario with a single alerting policy.

Fig. 2. Example filtering and alerting policies.

Hence, the rule is irrelevant since it matches traffic which does not flow through
this component. RuleC2{R3}, for example, is irrelevant since componentC2 is
not in the path which corresponds to the minimal route between the source zone
windows network to the destination zoneunix network.

(3) At least one of the condition attributes inRi is related with a classification of
attackAc which does not affect the destination zone of such a rule, i.e., the predicate
affects(zd, Ac) becomesfalse. Regarding Figure 2, we can see that ruleC2{R2}
is irrelevant since the nodes in the destination zoneunix network are not affected
by vulnerabilities classified aswinworm.

3.2 Proposed Algorithms

Our proposed audit process is a way to alert the security officer in charge of the
network about these configuration errors, as well as to remove all the useless rules
in the initial component configuration. The data to be used for the detection process
is the following. A set of rulesR as a list of initial sizen, wheren equalscount(R),
and where each element is an associative array with the stringscondition, decision,
shadowing, redundancy, andirrelevance as keys to access each necessary value.

For reasons of clarity, we assume one can access a linked-list through the operator
Ri, wherei is the relative position regarding the initial list size –count(R). We



also assume one can add new values to the list as any other normal variable does
(element ← value), as well as to remove elements through the addition of an
empty set (element ← ∅). The internal order of elements from the linked-listR
keeps with the relative ordering of rules.

Each elementRi[condition] is a boolean expression overp possible attributes. To
simplify, we only consider as attributes the following ones: szone (source zone),
dzone (destination zone),sport (source port),dport (destination port),protocol,
andattack class – or Ac for short – which will be empty whether the component
is a firewall. In turn, each elementRi[decision] is a boolean variable whose val-
ues are in{true, false}. Finally, elementsRi[shadowing], Ri[redundancy], and
Ri[irrelevance] are boolean variables in{true, false} – which will be initialized
to false by default.

We split the whole process in four different algorithms. Thefirst algorithm (cf. Al-
gorithm 1) is an auxiliary function whose input is two rules,A andB. Once exe-
cuted, this auxiliary function returns a further rule,C, whose set of condition at-
tributes is the exclusion of the set of conditions fromA overB. In order to simplify
the representation of this algorithm, we use the notationAi as an abbreviation of
the variableA[condition][i], and the notationBi as an abbreviation of the variable
B[condition][i] – wherei in [1, p].

The second algorithm is a boolean function in{true, false} which applies the
necessary verifications to decide whether a ruler is irrelevant for the configuration
of a componentc. To properly execute this algorithm, let us defineZ as the set of
zones,source(r) as a function inZ such thatsource(r) = szone, anddest(r) as
a function inZ such thatdest(r) = dzone.

The third algorithm is a boolean function in{true, false} which, in turn, applies
the transformationexclusion(cf. Algorithm 1) over a set of configuration rules to
check whether the rule obtained as a parameter is potentially redundant.

The last algorithm (i.e., Algorithm 4) performs the whole process of detecting and
removing the complete set of anomalies. This process is split in three different
phases. During the first phase, a set of shadowing rules are detected and removed
from a top-bottom scope, by iteratively applying Algorithm1 – when the decision
field of the two rules is different. Let us notice that this stage of detecting and remov-
ing shadowed rules is applied before the detection and removal of proper redundant
and irrelevant rules.

The resulting set of rules is then used when applying the second phase, also from a
top-bottom scope. This stage is performed to detect and remove proper redundant
rules, through an iterative call to Algorithm 3 (i.e.,testRedundancy), as well as
to detect and remove all the further shadowed rules remaining during the latter
process. Finally, during a third phase the whole set of non-empty rules is analyzed



in order to detect and remove irrelevance, through an iterative call to Algorithm 2
(i.e., testIrrelevance).

Let us conclude by giving an outlook to the set of warnings send to the security
officer after the execution of Algorithm 4 over the configuration of the two compo-
nents shown in Figure 2.

First case of irrelevance onC1{R1}
Redundancy onC1{R4}
Shadowing onC1{R6}

Third case of irrelevance onC2{R2}
Second case of irrelevance onC2{R3}
Redundancy onC2{R6}



3.3 Correctness of the Algorithms

Lemma 1 Let Ri : conditioni → decisioni andRj : conditionj → decisionj

be two configuration rules. Then{Ri, Rj} is equivalent to{Ri, R
′
j} whereR′

j ←
exclusion(Rj , Ri).

Proof of Lemma 1 Let us assume thatRi[condition] = A1 ∧A2 ∧ ... ∧Ap, and
Rj [condition] = B1 ∧B2 ∧ ... ∧Bp. If (A1 ∩B1) = ∅ or (A2 ∩B2) = ∅ or . . . or
(Ap ∩ Bp) = ∅ thenexclusion(Rj , Ri) ← Rj . Hence, to prove the equivalence
between{Ri, Rj} and{Ri, R

′
j} is trivial in this case.

Let us now assume that(A1∩B1) 6= ∅ and(A2∩B2) 6= ∅ and ... and(Ap∩Bp) 6= ∅.
If we apply rules{Ri, Rj} whereRi comes beforeRj , then ruleRj applies to a
given packet if this packet satisfiesRj[condition] but notRi[condition] (sinceRi

applies first). Therefore, notice thatRj [condition]−Ri[condition] is equivalent to
(B1−A1)∧B2∧ ...∧Bp or (A1∩B1)∧ (B2−A2)∧ ...∧Bp or (A1∩B1)∧ (A2∩
B2) ∧ (B3 −A3) ∧ ... ∧Bp or ... (A1 ∩B1) ∧ ... ∧ (Ap−1 ∩Bp−1) ∧ (Bp −Ap),
which corresponds toR′

j = exclusion(Rj , Ri). This way, ifRj applies to a given
packet in{Ri, Rj}, then ruleR′

j also applies to this packet in{Ri, R
′
j}. Conversely,

if R′
j applies to a given packet in{Ri, R

′
j}, then this means this packet satisfies

Rj [condition] but notRi[condition]. So, it is clear that ruleRj also applies to this
packet in{Ri, Rj}. Since in Algorithm 1R′

j[decision] becomesRj[decision], this
enables to conclude that{Ri, Rj} is equivalent to{Ri, R

′
j}. ⊓⊔

Theorem 2 Let R be a set of configuration rules and letTr(R) be the resulting
rules obtained by applying Algorithm 4 toR. ThenR andTr(R) are equivalent.

Proof of Theorem 2 Let Tr′
1
(R) be the set of rules obtained after applying

the first phase of Algorithm 4. SinceTr′
1
(R) is derived from ruleR by applying

exclusion(Rj , Ri) to some rulesRj in R, it is straightforward, from Lemma 1, to
conclude thatTr′

1
(R) is equivalent toR.

Let us now move to the second phase, and let us consider a ruleRi such that
testRedundancy(Ri) (cf. Algorithm 3) is true. This means thatRi[condition]
can be derived by conditions of a set of rulesS with the same decision and that
come after in order than ruleRi. Since every ruleRj with a decision different
from the one of rules inS has already been excluded from rules ofS in the first
phase of the Algorithm, we can conclude that ruleRi is definitely redundant and
can be removed without changing the component configuration. This way, we con-
clude that Algorithm 4 preserves equivalence in this case. On the other hand, if
testRedundancy(Ri) is false, then transformation consists in applying function
exclusion(Rj , Ri) to some rulesRj which also preserves equivalence.



Similarly, and once in the third phase, let us consider a ruleRi such thattestIr-
relevance(c,Ri) is true. This means that this rule matches traffic that will never
cross componentc, or that is irrelevant for the component’s configuration. So, we
can removeRi from R without changing such a configuration. Thus, in this third
case, as in the other two cases,Tr′(R) is equivalent toTr′

1
(R) which, in turn, is

equivalent toR. ⊓⊔

Lemma 3 Let Ri : conditioni → decisioni andRj : conditionj → decisionj

be two configuration rules. Then rulesRi andR′
j, whereR′

j ← exclusion(Rj , Ri)
will never simultaneously apply to any given packet.

Proof of Lemma 3 Notice that ruleR′
j only applies when ruleRi does not apply.

Thus, if ruleR′
j comes before ruleRi, this will not change the final decision since

ruleR′
j only applies to packets that do not match ruleRi. ⊓⊔

Theorem 4 Let R be a set of configuration rules and letTr(R) be the resulting
rules obtained by applying Algorithm 4 toR. Then the following statements hold:
(1) Ordering the rules inTr(R) is no longer relevant; (2)Tr(R) is completely free
of anomalies.

Proof of Theorem 4 For any pair of rulesRi andRj such thatRi comes be-
fore Rj , Rj is replaced by a ruleR′

j obtained by recursively replacingRj by
exclusion(Rj , Rk) for anyk < j.

Then, by recursively applying Lemma 3, it is possible to commute rulesR′
i andR′

j

in Tr(R) without changing the policy.

Regarding the second statement –Tr(R) is completely free of anomalies – notice
that, inTr(R), each rule is independent of all other rules. Thus, if we consider a
rule Ri in Tr(R) such thatRi[condition] 6= ∅, then this rule will apply to any
packet that satisfiesRi[condition], i.e., it is not shadowed.

On the other hand, ruleRi is not redundant because if we remove this rule, since
this rule is the only one that applies to packets that satisfyRi[condition], then
configuration of the component will change if we remove ruleRi from Tr(R).

Finally, and after the execution of Algorithm 4 over the initial set of configuration
rules, one may verify that for each ruleRi in Tr(R) the following conditions hold:
(1) s = z1 ∩ source(r) 6= ∅ andd = z2 ∩ dest(r) 6= ∅ such thatz1 6= z2 and
componentc is in minimal route(z1, z2); (2) if Ac = attack category(Ri) 6= ∅,
the predicateaffects(Ac, z2) becomestrue. Thus, each ruleRi in Tr(R) is not
irrelevant. ⊓⊔



3.4 Default policies

Each component implements a positive (i.e., close) or negative (i.e., open) default
policy. In the positive policy, the default policy is toalert or todeny a packet when
any configuration rule applies. By contrast, the negative policy will accepts or pass
a packet when no rule applies.

After rewriting the rules with our algorithms, we can actually remove every rule
whose decision ispassor acceptif the default policy of this component is negative
(else this rule is redundant with the default policy) and similarly we can remove
every rule whose decision isdenyor alert if the default policy is positive. Thus,
we can consider that our proposed algorithms generate a configuration that only
contains positive rules if the component default policy is negative, and negative
rules if the default policy is positive.

4 Performance Evaluation

In this section, we present an evaluation of the performanceof MIRAGE (which
stands for MIsconfiguRAtion manaGEr), a software prototypethat implements the
algorithms presented in sections 3. MIRAGE has been developed using PHP, a
scripting language that is especially suited for web services development and can
be embedded into HTML for the construction of client-side GUI based applications
[3]. MIRAGE can be locally or remotely executed by using a HTTP server (e.g.,
Apache server over UNIX or Windows setups) and a web browser.

(a) Memory space evaluation (b) Processing time evaluation

Fig. 3. Memory and processing time evaluation.

We evaluated our algorithms through a set of experiments over an IPv4 network.
The topology for this network consisted of a single firewall based on Netfilter [13],
and a single NIDS based on Snort [12] – both of them connected to three different
zones with more than 50 hosts. The whole of these experimentswere carried out



on an Intel-Pentium M 1.4 GHz processor with 512 MB RAM, running Debian
GNU/Linux 2.6.8, and using Apache/1.3 with PHP/4.3 configured.

During our experiments, we measured the memory space and theprocessing time
needed to perform Algorithm 4 over several sets of IPv4 filtering and alerting poli-
cies for the two IPv4 networks, according to the three following security officer
profiles: beginner, intermediate, and expert – where the probability to have over-
laps between rules increases from 5% to 90%. The results of these measurements
are plotted in Figure 3(a) and Figure 3(b). Although the plots reflect strong mem-
ory and process time requirements, we consider they are reasonable for off-line
analysis, since it is not part of the critical performance ofan alerting or filtering
component.

5 Related Work

A first approach to get a configuration free of errors is by applying a formal model
to express the network policy. In [4], for example, we presented a model with this
purpose. This way, a set of configuration rules, whose syntaxis specific to a given
component, may be generated using a transformation language.

The proposals in [1, 6, 7, 2], provide means to directly manage the discovery of
anomalies from the components’ configuration. For instance, the authors in [1] con-
sider that, in a configuration set, two rules are in conflict when the first rule in order
matches some packets that match the second rule, and the second rule also matches
some of the packets that match the first rule. This approach isvery limited since it
just detects a particular case of wrongly defined rules in a single configuration, i.e.,
just ambiguity within the set of rules is detected.

In [6], two new cases of anomalies are considered. First, a rule Rj is defined as
backward redundant iff there exists another ruleRi with higher priority in order
such that all the packets that match ruleRj also match ruleRi. Second, a ruleRi is
defined as forward redundant iff there exists another ruleRj with the same decision
and less priority in order such that the following conditions hold: (1) all the packets
that matchRi also matchRj ; (2) for each ruleRk betweenRi andRj, and that
matches all the packets that also match ruleRi, Rk has the same decision asRi. We
consider this approach as incomplete, since it does not detect all the possible cases
of anomalies defined in this paper. For instance, given the set of rules shown in
Figure 4(a), sinceR2 comes afterR1, ruleR2 only applies over the interval[51, 70]
– i.e.,R2 is redundant. Their approach, however, cannot detect the redundancy of
ruleR2 within this setup.

Another similar approach is presented in [2]. Again, and even though the efficiency
of their proposed discovering algorithms and techniques isvery promising, we con-



R1 : s ∈ [10, 50] → deny

R2 : s ∈ [40, 70] → accept

R3 : s ∈ [50, 80] → accept

(a) Set of rules A

R1 : s ∈ [10, 50] → accept

R2 : s ∈ [40, 90] → accept

R3 : s ∈ [30, 80] → deny

(b) Set of rules B

Fig. 4. Example of some firewall configurations.

sider this approach not complete since, given a misconfigured component, their
detection algorithms could not detect all the possible errors. For example, given the
set of rules shown in Figure 4(b) their approach cannot detect that ruleR3 will be
never applied due to the union of rulesR1 andR2.

6 Conclusions

In this paper we presented an audit process to set the configuration of bothfirewalls
andnetwork intrusion detection systems(NIDSs) free of anomalies. Our audit pro-
cess is based on the existence of relationships between the condition attributes of
the configuration rules of those network security components, such as coincidence,
disjunction, and inclusion. Then, our proposal uses a transformation process which
derives from an initial set of rules – potentially misconfigured – to an equivalent
one which is completely free of anomalies.

We also presented in this paper a network model to determine whether the network
traffic that matches a given configuration rule, may or may notcross the component
configured by such a rule, as well as other network properties. Thanks to this model,
our approach best defines all the set of anomalies studied in the related work, and
it reports, moreover, a new anomaly case not reported, as defined in this paper, in
none of the other approaches.

Some advantages of our approach are the following. First, our transformation pro-
cess verifies that the resulting rules are completely independent between them. Oth-
erwise, each rule considered as useless during the process is reported to the security
officer, in order to verify the correctness of the whole process. Second, we can
perform a second rewriting of rules, generating a configuration that only contains
positive rules if the component default policy is negative,and negative rules if the
default policy is positive. Third, the elimination of alerting rules during the audit
process helps to reduce future false positive events alerted by a NIDS.

Regarding a possible increase of the initial number of rules, due to the applying
of our algorithms, it is only significant whether the associated parsing algorithm of
the component depends on the number of rules. In this case, anincrease in such a
parameter may degrade the performance of the component. Nonetheless, this is not
a disadvantage since the use of a parsing algorithm independent of the number of



rules becomes the best solution as much for our proposal as for the current deploy-
ment of network technologies. The set pruning tree algorithm is a proper example,
because it only depends on the number and size of attributes to be parsed, not the
number of rules [11].

The implementation of our approach in a software prototype demonstrate the practi-
cability of our work. We shortly discussed this implementation, based on a scripting
language [3], and presented an evaluation of its performance. Although these exper-
imental results show that our algorithms have strong requirements, we believe that
they are reasonable for off-line analysis, since it is not part of the critical perfor-
mance of the audited component.

Acknowledgments

This work was supported by funding from the French ministry of research, under
theACI DESIRSproject, the Spanish Government projectTIC2003-02041, and the
Catalan Government grants2003FI126and2005BE77.

References

1. Adiseshu, H., Suri, S., and Parulkar, G. (2000). Detecting and Resolving Packet Filter Conflicts.
19th Annual Joint Conference of the IEEE Computer and Communications Societies.

2. Al-Shaer, E. S., Hamed, H. H., and Masum, H. (2005). Conflict Classification and Analysis of
Distributed Firewall Policies InIEEE Journal on Selected Areas in Communications, 1(1).

3. Castagnetto, J. et al. (1999).Professional PHP Programming.
4. Cuppens, F., Cuppens-Boulahia, N., Sans, T. and Miege, A.(2004). InSecond Workshop on For-

mal Aspects in Security and Trust. A formal approach to specify and deploy a network security
policy. In Second Workshop on Formal Aspects in Security and Trust, 203–218.

5. Cuppens, F., Cuppens-Boulahia, N., and Garcı́a-Alfaro,J. (2005). Detection and Removal of
Firewall Misconfiguration. In2005 International Conference on Communication, Network and
Information Security. 154–162.

6. Gupta, P. (2000).Algorithms for Routing Lookups and Packet Classification. PhD Thesis, De-
partment of Computer Science, Stanford University.

7. Liu, A. X. and Gouda, M. G. (2005). Complete Redundancy Detection in Firewalls. InProceed-
ings of 19th Annual IFIP Conference on Data and ApplicationsSecurity, 196–209.

8. MITRE Corp. Common Vulnerabilities and Exposures. [Online]. Available from:
http://cve.mitre.org/

9. Northcutt, S. (2002).Network Intrusion Detection: An analyst’s Hand Book. New Riders Pub-
lishing, third edition edition.

10. Open Security Foundation. Open Source Vulnerability Database. [Online]. Available from:
http://osvdb.org/

11. Paul, O., Laurent, M., and Gombault, S. (2000). A full bandwidth ATM Firewall. InProceedings
of the 6th European Symposium on Research in Computer Security (ESORICS 2000).

12. Roesch, M. (1999), Snort: lightweight intrusion detection for networks. In13th USENIX Systems
Administration Conference, Seattle, WA.

13. Welte, H., Kadlecsik, J., Josefsson, M., McHardy, P., and et al. The netfilter project:
firewalling, nat and packet mangling for linux 2.4x and 2.6.x. [Online]. Available from:
http://www.netfilter.org/


