
Attribute-based Mining Process for the
Organization-Based Access Control Model

Ahmad Samer Wazan, Gregory Blanc, Hervé Debar and Joaquin Garcia-Alfaro
Institut Mines-Telecom, Telecom Sudparis
CNRS Samovar UMR 5157, Evry, France

{samer.wazan,gregory.blanc,herve.debar,joaquin.garcia alfaro}@telecom-sudparis.eu

Abstract—Since the late 60’s, different security access control
models have been proposed. Their rationale is to conceive high
level abstract concepts that permit to manage the security policies
of organizations efficiently. However, enforcing these models is
not a straightforward task, especially when they do not consider
the reality of organizations which may have ad-hoc security
policies already deployed. Another issue is the vagueness of their
abstract concepts. We propose to bridge the gap between the
theory of access control models and the reality of organizations
by defining an attribute-based mining process that deduce the
abstract concepts starting from the attribute level. Additionaly,
the attributes allow us to semantically enrich the obtained
results. We have selected the Organization-Based Access Control
(OrBAC) model as the abstraction objective of our study.

Index Terms—Security, Policy Management, Access Control, Role
Mining.

I. I NTRODUCTION

A security policy defines all the actions that need to be
enforced in order to ensure the security of the assets of an
organization. Regarding the information systems of an orga-
nization, different security mechanisms can contribute totheir
protection and safety. In particular, access control mechanisms
enforce the permissions of individuals to access resources. An
access control system is composed of three entities: access
control policy, access controlmechanismand access control
model. The objective of access controlpoliciesis to determine
whether asubjecthas the right to execute anaction on an
object. Access controlpolicies are enforced through security
mechanisms, like Firewalls. Access controlmodelsare usually
used to analyze and evaluate the access control systems. A
modelis a formal presentation of the security policy enforced
by the system and is useful for proving theoretical limitations
of a system [1].

There exist different securitymodels (e.g., RBAC [2],
OrBAC [3] and ABAC [4]). The main idea of thesemod-
els is to conceive high level abstract concepts (e.g., Roles,
Sessions, Views and Activities) that permit to manipulate the
organizations’ policies at a higher level. However, applying
these models in order to manage the security policies is not a
straightforward task, for two reasons:

• migration problem: for an organization that has already
an ad-hoc security policy deployed on different security
mechanisms, it would be difficult to adopt one of the
access control models.

Manual work in order to read the existing rules is a
cumbersome task. The difficulty depends on the number
of the security rules present in the different security
mechanisms.

• semantic problem: the semantics of abstract concepts are
often vague, leading to different interpretations of these
concepts (e.g. roles, views and activities). Indeed, admin-
istrators often have hardships to capture the meaning of
abstract concepts and designing them may fail to comply
with the chosen model. If we consider a firewall, how do
we model a subject? Can it be an IP address or would it be
better to consider the pair (IP address, port)? What are the
actions implemented by the configuration rules? Allow or
block packets? Log packets? What is an appropriate role
with regards to firewalls? A range of IP addresses?
The task of enforcing a security model raise many philo-
sophical questions about the nature of concrete entities
or how to design abstract entities.

This makes the whole task cumbersome and time-
consuming, even when security mechanisms do not have
already deployed security policies. There is a need to bridge
the gap between the theory of access control models and the
reality of organizations. The persistence of this gap constitutes
a real obstacle for the organizations that want to adopt one of
the access control models. This observation is based on our
experience acquired during the implementation of an inference
engine for the OrBAC model.

One can consider that handling these problems fall under
the domain of role engineering. This is from one side partially
correct because our approach aims to deduce abstract concepts
(such as roles) from low-level configuration rules. On the other
side, our approach is different because it does not start from
the couple< user, permissions > which is the pillar of that
domain. Our approach proposes to start one level below, which
is the attribute level. We consider that the rules of all security
mechanisms (such as firewalls, operating systems, databases,
etc.) can be modeled as sets of attributes along with decisions.

Traditionally, in the access control area, security mecha-
nisms have been considered as pure access control mecha-
nisms, particularly firewalls. However, this point of view does
not permit to model all the functions provided by security
mechanisms. We propose to utilize the concept ofobligations
to specify actions to be executed before, during or after access
control requests. For example, thelog action provided by most

stateful firewalls is anobligation that should be performed
along with the access control decision. Thus, each security
mechanism would be modeled as two related matrices: one
being the access control matrix which is a set of attribute
vectors associated with decisions (accept or deny), the other
being the obligation matrix which is also a set of attribute
vectors associated with decisions (oblige or dispense).

Once security mechanisms are formally modeled, we pro-
pose a mining approach that starts the processing from the
attribute level. The process deals with security mechanisms by
grouping them into classes (e.g., routers, firewalls, operating
systems and database management systems). Members of a se-
curity mechanism class share more or less the same functions
so that it is possible to express them in a unified manner. Each
class is expressed using a specific set of attributes that allow
to rewrite the configuration rules. An administrator selects a
model that maps the attributes to the concrete entities (subject,
action, object, context). An algorithm has been proposed
to deduce the abstract concepts (role, activity, view). With
contrast to previous algorithms proposed for role mining,
our algorithm mines both the users and the permissions so
that the obtained concepts reflect exactly the security policy
of the organization. Additionaly, we leverage the concept of
attributes by performing correlation analysis that permits to
attach semantic information to the obtained results.

Paper organization —Section II briefly presents a selection
of work in the domain of role mining. Section III presents
the OrBAC model and introduces the concepts ofcontexts
andobligationshandled by this model. Section IV shows our
approach, based on the definition of security mechanisms in
terms of attribute matrices. Section V presents the different
stages of our proposed attribute-based mining process and
the algorithmic solution to deduce the abstract concepts.
Section VI closes the paper with some conclusions and per-
spectives for future work.

II. RELATED WORKS

Our work has close relation with the domain of role engi-
neering. Two basic approaches have been considered in this
domain: top-down and bottom-up approaches. In the top-down
approach, the roles are defined from business perspective.
Several research works [5], [6] , [7] have focused on the top-
down approach. However, according to the NIST report, this
approach is costly and time-consuming process [8].

The bottom-up approach defines roles by analyzing the
existing permissions using data mining techniques. The term
role mining is often used to refer to this approach. Starting
from 2003, different works have been proposed [9] [10] [11]
[12] [13]. Kuhlmann et al. [9] have adopted IBM Intelligent
Miner as the mining engine of the security data. The tool
enables to select the data portions to be analyzed, recognize
invalid data, iterate the mining processes until an acceptable
result is reached, and finally produce role definitions based
on the attained grouping. Schlegelmilch and Steffens [10]
proposed the ORCA algorithm for role mining. The algorithm

performs a cluster analysis on permission assignments to
build a hierarchy of permission clusters. However, as the
ORCA algorithm does not allow overlapping roles (i.e., a
user cannot play multiple roles), Vaidya et al. [11] propose
an approach based on subset enumeration, called RoleMiner,
which eliminates these limitations. Subsequently, Vaidyaet al.
[12] have proposed a formal definition for the role mining
problem. The salient idea from the given definition is the
necessity to minimize the number of the mined roles. Two
different algorithms (δ-approx RMPandMinimal Noise RMP)
have been defined to reduce the number of the mined roles.

Two main problems come from the mining techniques that
have been adopted by these approaches. Firstly, instead of
discovering the roles that are naturally defined as sets of
shared permissions among subjects (users) in organizations
security policies, they define roles by optimizing combinations
of permissions based on different heuristics. Thus, the mined
roles often fail to recover the original security policy of
the organization [12] and generate roles that are not useful
to the organization. To cover this problem, different works
have proposed to define a set of metrics used to inform the
administrators about the utility of the mined roles in their
organizations [14].

Secondly, since these mining techniques do not con-
sider the attributes and start mining from the couples<

user, permissions >, they are not able to semantically define
the obtained roles. By starting one level below (attribute level),
we claim the ability to attach semantic information to the
mined concepts.

III. O RGANIZATION-BASED ACCESSCONTROL MODEL

Since the late 60’s, several access control models have
been proposed. Generally, the proposed access control models
are classified in three categories: discretionary access control
(DAC) [15], mandatory access control [16], [17] and role-
based access control (RBAC) [2]. Discretionary access control
means that the access rights to an object are managed by its
owner, whereas mandatory access control (MAC) means that
the access rights are managed by a central authority and not
by the owner of the object. RBAC is non-discretionary model,
but in the literature it is considered as independent category
of access control models [1].

Many extensions to RBAC have been widely proposed in
the literature. Organization-Based Access Control (OrBAC)
model [3], [18] is one of the most interesting models because
it gives a high consideration to the concept ofcontext. In
addition to theRoleconcept, which is an abstract concept used
to group subjects which share the same permissions,OrBAC
proposes two new abstract concepts:View and Activity. The
concept ofView is used to group objects on which the same
permissions are applied whereas the concept ofActivity is used
to group actions that share the same permissions. The model
supportshierarchies, delegation[19] andconflict detection and
resolution[20]. Additionally, OrBAC supports the concept of
Obligation [21], which is the set of actions that a subject is
required to execute before, during or after access control.Thus,

Obligations can be used to express the requirements that a
subject must execute.

In OrBAC, a policy is defined at the abstract level (also
known as theorganizationallevel) and then expressed at the
concrete level by a derivation process. The concrete entities
(subject, action, object) are bound by conditions to an access
control decision (permissionor prohibition). The conditions
that apply to subjects, actions and objects correspond to the
facts that, in a given organization (org), a subject (s) is
empoweredinto a role (r), an action (α) is consideredto
implement anactivity (a) and an object (o) is usedin a view
(v). These relations are represented by the following built-in
predicates:

Empower(org, s, r) (1)

Use(org, o, v) (2)

Consider(org, α, a) (3)

The concept of context in the OrBAC model defines when the
security rules should be activated. The contexts are specified
using the predicateHold:

Hold(Org, s, α, o, Ctx)← P1, ..., Pn (4)

The organizationOrg considers that the contextCtx holds
for a subjects taking an actionα on an objecto if the set of
conditionsP1, ..., Pn are true. For instance, we can define a
contextsecure area network that activates when a subject
s connects from a secure area network:

Hold(Trustedbank, s, α, o, secure area network)

← host IP (s, ip) ∧ IP range(ip, SA) (5)

The context holds for a subjects if it is assigned the IP
addressip (by the predicatehost IP) and this IP address
falls within a network range designated as a secure area (SA).
IP range(ip, range) checks the membership ofip to range.

The OrBAC derivation process from the abstract level to the
concrete level is specified using the following rule:

Is permitted(Org, s, α, o)←

Permission(Org, r, a, v, Ctx) ∧

Empower(Org, s, r) ∧ Consider(Org, α, a)

∧ Use(Org, o, v) ∧Hold(Org, s, α, o, Ctx) (6)

With regards to obligations, Elrakaiby et al. discussed in
[21] the use of group obligation actions based on the OrBAC
model. Obligation actions may represent prerequisites to gain
some privilege (pre-obligations), to satisfy some ongoingor
post requirement for resource usage (ongoing and post obli-
gations). Two main types of obligations have been defined:
system and user obligations. System obligations are generally
enforced by mechanisms implemented in the system. On the
other hand, user obligations are actions that subjects are
required to take in the future [21]. Since subjects cannot be
forced to take actions, user obligations are unenforceableand
should be monitored for violation/fulfillment. However, system
obligations do not need to be monitored.

R1 AAT1 AAT2 AAT3 AAT4 . . . Decision1
R2 AAT1 AAT2 AAT3 AAT4 . . . Decision2
R3 AAT1 AAT2 AAT3 AAT4 . . . Decision3
. .

Fig. 1. Access Control Matrix

The obligation rules can take the following form:

Obligation(Org, r, a, v, Ctxa, Ctxv) (7)

Ctxa and Ctxv are obligation context expressions.Ctxa

denotes the obligation’s activation context andCtxv the
obligation’s violation context. In this paper, we are interested
only in the system obligations; in this case the subject entity
is always the security mechanism we are studying, and the
violation context is always considered false. Thus, there is no
need to monitor system obligations.

IV. M ODELING A SECURITY MECHANISM FROM ACCESS

CONTROL PERSPECTIVE

A security mechanism is the system that enforces the secu-
rity policy. In the access control jargon, a security mechanism
is referred to as Policy Enforcement Point (PEP) [22]. The
policies of security mechanisms can be expressed as a matrix
of attributes that are associated with decisions.

Each security mechanism manipulatesrules that define the
authorizationsof a subject (s) to perform anaction (α) on
an object (o). In these mechanisms, a request represented as
a triplet < s, α, o > is matched to attributes that constitute
the conditions to be satisfied in order to take the associated
decision. Thus, a security mechanism is a set of rulesR, that
is a possiblyorderedlist of rules. Eachrule Ri has the form:

∀s, ∀α, ∀o, (Condition→ Decision)

while, theDecisionpart of the relation is usually reduced to
allow or deny(but other values can apply such asundefined),
Conditioncan be further modeled as:

cond subject(s) ∧ cond action(α) ∧

cond object(o) ∧ contexts(s, α, o)

wherecond subject(s) ∧ cond action(α) ∧ cond object(o)
represent the set of entity-related attributes with their associ-
ated values.contexts(s, α, o) represents the set of attributes
that deal with the context during which the configuration
rule is activated. Here, we make the assumption that such
logical conditions can be built upon entity attributes, such
that each concrete entityc is an attribute vector(c1, ..., cn).
Each attribute is a property expressed as a name:value pair that
can be associated with concrete entities(i.e. subjects, actions
and objects) as well as the contexts. Generally, the attributes
express capacity of the PEPs to implement access control
related functions.

It is not totally true to consider each PEP as a pure access
control mechanism; there exist associated functions that are
dependent of the access control functions. The access control-
dependent functions are executed before, during or after the

O1 OAT1 OAT2 OAT1 OAT4 . . . Decision1
O2 OAT1 OAT2 OAT2 OAT4 . . . Decision2
O3 OAT1 OAT3 OAT3 OAT4 . . . Decision3
. .

Fig. 2. Obligation Matrix

access control requests. We consider these kinds of functions
asobligations, where eachobligation is associated with three
entities: subject, action and object. The subject entity isalways
the security mechanism (e.g. firewall).

As a consequence, each PEP can be represented using two
matrices:

• the access control matrix (Fig. 1) is composed of the set
of attributes that give arise to concrete entities used in
the access control rules: subject, action and object. The
associated decisions are usually : allow, deny.

• the obligation matrix (Fig. 2) is composed of set of
attributes that give arise to concrete entities used for
defining the obligations associated with the access control
rules. The associated decisions are usually: oblige or
dispense.

The relation between the matrices can be defined using
the activation contexts that define the moment at which the
obligations should be applied.

The matrix approach (Figures 1 and 2) implements the
concept of attribute-based entity definition. Therefore, these
entities are defined for each line of the matrix (corresponding
to a single rule) as subsets of the attributes. Formalizing the
mapping between concrete entities and rule attributes relies
on a model. However, following one’s point of view, the
model may differ, though some mappings are semantically
consistent while others are not. Actually, an expert can define
a set of constraints over the mappings to express mutual
exclusion or association relationships between the attributes.
Other environmental phenomena can be taken into account to
further constrain or loosen up relationships between attributes,
as well as the possible mappings. This leads to a finite but
possibly large number of models to express concrete entities
using PEP rule attributes.

In the remainder of the paper, we will assume that an
administrator, responsible for the PEP mining process, decides
on the most adequate mapping to model the concrete entities
of the PEP policy.

V. ATTRIBUTE-BASED M INING PROCESS FORPEP
POLICIES

Applying access control models to manage the security
policies of organizations having security policies already de-
ployed is not an easy task. In most cases, the policies of
organizations are defined in an ad-hoc manner. Two main
parameters characterize the difficulty of the task: thenumber
of rules, and thenumber of attributespresent in each rule.
Thus, a manual work in order to read the existent rules and
to translate them towards the abstract concepts of any access
control model is difficult to realize. Additionally, the semantics

of abstract concepts of access control models are often vague,
leading to different interpretations of these concepts.

We handle these problems by proposing to infer from low
level existing rules the high level concepts of the OrBAC
model. The bottom-up inference process deals with PEPs by
grouping them into classes (e.g., firewalls, operating systems,
MPLS routers, etc.). Our idea is that each class of PEPs shares
more or less the same functions so that the same inference
strategies can be applied to each class. For example, all the
operating systems should provide functions that enable users
to implement access control actions (read, write and execute)
on the files, but they use different syntax to implement these
functions.

The proposed bottom-up inference process relies on the
architecture depicted in Figure 3. For a given PEP whose class
is known, we can apply the following process:

1) parsing: using the common language dictionary, the PEP
configuration rules are parsed into attribute vectors;

2) data preprocessing: in this step, the data of the PEP is
prepared before deducing the concrete entities;

3) modelization of concrete entities: by grouping attributes
into concrete concepts according to a given paradigm,
we generate models of concrete entities that maps con-
figuration selector values to concrete entity attributes.
The output is the set of concrete entities, authorizations,
obligations and contexts;

4) discovery of abstract entities: once concrete entities have
been discovered, we infer abstract entities, authoriza-
tions and obligations by grouping concrete entities that
share exactly the same permissions.

Fig. 3. Attribute-based Mining Process

A. Parsing Configuration Rules

The common language is a key element of the inference
process. It enables giving a common representation of the
policies of different PEPs, provided they share common func-
tions. PEPs are categorized by classes. A class denotes a setof
common functions implemented by all members of the class,
such as firewalls, operating systems, enterprise directories,
etc. Figure 4 is an excerpt of a firewall common language
dictionary.

Using this dictionary, we can parse rules from different
firewall vendors, provided we can translate the specific firewall

Attributes Values
1 Source and Destination IP Ad-

dress
IP address, Wildcard, Block

2 Interface Identifier
3 Interface direction In, out
4 Protocol TCP, UDP, ICMP, Number, Wild-

card
5 Source and Destination Port Number, Range: [p1,p2], Identifier,

Wildcard
6 ICMP Type Number, Identifier
7 Non-AC Action Log, Mark, Nat, ...
8 Decision Allow, Deny, Oblige, Dispense
9 Connection State New, Established, Related, Invalid

Fig. 4. Firewall common language

language to the firewall class common language (this transla-
tion task is out of the scope of this work). For example, let us
consider the same rule written in bothpf language:

pass
︸ ︷︷ ︸

8

in
︸︷︷︸

3

log
︸︷︷︸

7

on $ext if
︸ ︷︷ ︸

2

proto tcp
︸ ︷︷ ︸

4

to ! <firewall>
︸ ︷︷ ︸

1

port ssh
︸ ︷︷ ︸

5

(8)

andiptables language:

iptables -A INPUT
︸ ︷︷ ︸

3

-i $ext inf
︸ ︷︷ ︸

2

-p tcp
︸ ︷︷ ︸

4

-d ! <firewall>
︸ ︷︷ ︸

1

–dport 22
︸ ︷︷ ︸

5

-j LOG
︸ ︷︷ ︸

7

(9)

This rule logs packets incoming on the external interface
and bound to hosts on port 22, excluding the firewall itself.
The numbers correspond to the parsing index of the common
language dictionary in Figure 4. According to this dictionary,
the rule is interpreted as follows:

src ip(sip, any) ∧ src port(sp, any) ∧ if dir(dir, in)∧

if(inf, $ext inf) ∧ proto(p, tcp) ∧ ¬dst ip(dip, <firewall>)

∧dst port(dp, 22) ∧ action(a, log)→ is permitted

The expression varies from language to language, mostly by
the syntax. A notable difference is the decision (8) which is
explicite for pf and is not visible in theiptables rule.
Actually, the rule iniptables only features the non-AC
action (7), which is a non-terminal target, i.e., the packet
matching the rule will be later processed by another rule.
Here, we assume the packet will be eventually processed by
anACCEPT target, which is similar topf’s pass.

It should be noted that the expressiveness of the common
languages depends on the shared functions between the PEPs
belonging to the same class. For example, if an organization
uses three different types of firewalls, one of which does not
support the audit function, the common language should not
contain attributes representing the audit functionality.How-
ever, if an organization uses three firewalls from the same
type, e.g.iptables, then the common language should be
more expressive (encompassing all functions implemented in
iptables).

In other words, the expressiveness of a common language
must be adaptive to the organization’s environment. The more
homogeneous the environment, the more expressive the lan-
guage will be. Thus, the transformation step must be executed
in a semi-automatic manner to give an environment-adaptive
common language. In this step, the functions of known PEPs

(e.g., CISCO PIX,iptables, pf for the firewall class)
are stored by the process so that the common language can
be generated automatically. However, an administrator of an
organization must be authorized to declare the functions of
unknown PEPs (e.g., a custom-made firewall) in order to
generate a common language appropriate to the administrator’s
environment.

The uncommon functions can be managed at the level of
each PEP. The attributes relative to the uncommon functions
are extracted and attached to the rule just before applying
it to the concerned PEP. We represent this transformation as
follows:

is permitted(s, a, o) ∧ additional attributes(s, α, o)→

is permitted(s′, α′, o′)

The main idea is that the triplet< s, α, o > constitutes
a key, used to look up the additional attributes and apply the
transformation. It should be noted that some of the uncommon
functions can be “emulated” by the other PEPs. For example,
the possibility for a firewall to represent a range of ports in
its rules should not be considered as uncommon since it can
be emulated by other firewalls using their available syntax.

The output is a set of attribute vectors representing each a
configuration rule.

B. Data Preprocessing

The objective of this step is to prepare the data of the PEP
before deducing the concrete entities. This mainly includes the
correction of errors. PEPs can have several anomalies in their
configuration rules. This situation results from errors made
during successive configuration of a PEP, especially when
different administrators are involved in its management over
the years. If not corrected, these errors could compromise the
security of organizations.

Three main types of errors can be detected:

• Conflict errors: these errors are raised when two opposed
decisions are detected for the same configuration rule.
For example, when a firewall associates bothallow and
deny decisions to the same traffic.

• Shadowing errors: A configuration ruleRi is shadowed
in a set of configuration rulesR when such a rule
never applies because all the information that the rule
Ri matches are already matched by another set of rules
[23], [24].

• Redundancy errors: A configuration ruleRi is redundant
in a set of configuration rulesR when the following
conditions hold: (1)Ri is not shadowed by any other
rule or set of rules; (2) when removingRi from R, the
security policy does not change.

These errors must be detected and corrected. There exist in the
literature many proposals to resolve these problems [25]. We
consider that developing new algorithms is out of the scope
of this paper.

OrBAC concrete entities
Subject Action Object Context

-s –sport -p tcp -i -o -m state -d –dport -m time
udp
icmp

Source Protocol Network
Interfaces

Connection
State

Destination Periodic

iptables rules fields

TABLE I
A MODEL OF CONCRETE ENTITIES FOR A FIREWALL INSTANCE(IPTABLES)

iptables -A FORWARD -p udp -s 192.168.1.0/24
-d 192.168.0.0/24 -m state --state ESTABLISHED,RELATED
-m time --timestart 08:30 --timestop 18:00
--days Mon,Tue,Wed,Thu,Fri -j ACCEPT

Fig. 5. An iptables rule

C. Modeling Concrete Entities

As mentioned previously in Section IV, the modelization
of the concrete entities is done by mapping the selectors of a
PEP language to the concrete entities. A given model relies on
a given mapping of the selectors as attributes of the concrete
entities. The model may follow a paradigm: a fixed association
between a selector and an entity attribute, that constrains
the other associations by mutual exclusion or dependency
relations. These relations may be explicitely described ina
specification language.

For example, considering the class of firewalls, we may
start our modelization by considering either of the following
paradigms (the list is not exhaustive):

• the action is a service: the entity action is constituted of
the protocol and destination port attributes;

• the object is a service: the entity object is constituted of
the protocol and destination port attributes;

• the subject is a packet: the entity subject is constituted
of the source port, protocol and other header attributes;

• the subject is the originating host: the entity subject is
constituted of the source IP address and port.

Following a model, each parsed configuration rule will
generate attribute vectors that will be mapped to the concrete
entities according to the paradigm and the constraint rules.
Therefore, for a given ruleset, there exist many modelizations
of the concrete entities. The administrator is responsiblefor
the choice of the model that best fits his needs and/or views.

Table I is an excerpt of the table mapping firewall selector
values (here for the soleiptables instance) to OrBAC
concrete entities (subject, action, object). This is indeed one
model among many. One drawback is that this model freezes
the mapping for each configuration rule. In the future, we will
propose several ways to loosen up the models and generalize
the expression of models through the constraints imposed on
attributes as a formal expression of the paradigms.

As an example of application, let us consider the
iptables rule in Figure 5 that allows UDP connections
originating from the 192.168.1.0 network to the 192.168.0.0
network only during working hours and week days.

According to Table I, the concrete entities modeled from
the above rule (Fig. 5) are as follows:

subject:ip(si, 192.168.1.0/24) ∧ port(si, ANY)

action: proto(αj , UDP)∧

(state(αj , ESTABLISHED)∨ state(αj , RELATED))

object: ip(ok, 192.168.0.0/24) ∧ port(ok , ANY)

The attributes beyond-m time are mapped to the context
entity. This is actually a temporal context that constraints the
expression of the permission to week working hours. The
contextweek working hours can be expressed as follows:

week working hours =

after time(08 : 00)&before time(18 : 00)&

(on day(saturday)&on day(sunday)

D. Expressing Additional Requirements

Most security policies describe access control requirements
to be enforced by PEPs. But their scope is more general and
encompass additional requirements bound to usage, system
state or other environmental properties, as well as dissemina-
tion of target objects and effects of decisions over the subjects
and objects [26].

In the context of our approach, we lack much information
on the deployment context and we assume no written policy
since our goal is to infer the policy of an organization from the
configurations of its deployed PEPs. Much of the framework
components defined in related works are useless, and we shall
not consider anything but requirements bound to the system
(PEP) we are studying, and its configuration.

In general, PEP configuration rules do not only express
access control policies at a low-level but also specify some
additional requirements to be satisfied in order to get access.
These requirements specify actions to be taken by the system
which may or may not modify the attributes of subjects and
objects.

Our approach does not ignore such behavior and processes
these requirements along the related authorizations, i.e., au-
thorizations that feature subjects and objects whose attributes
have been updated by the requirements. We propose to use the
concept of system obligations (as specified in [21]) presented
in Section III. Therefore, theObligation(as expressed in Eq. 7)
can be written as follows at the concrete level:

Is obliged(PEP, obα, obo) (10)

The PEP isobliged (resp.,dispensed) to execute the action
obα, which is not an access action, on the objectobo, which
may be constituted from entity attributes of the related per-
mission Is permitted(s, α, o) (resp., the related prohibition
Is prohibited(s, α, o)). The relationship between the obliga-
tion and the permission is not formally defined. This is why
we use the context of activation (as expressed in Eq. 7) to

bind the two predicates. The context of activation is therefore
based on the request of the permission, the triplet< s, α, o >:

Is permitted(s, α, o)⇒ Is obliged(PEP, obα, obo) (11)

Ctxa ← Conditions(s, α, o) (12)

As a practical example, we can consider thepf rule (see
Eq. 8) once again. This rule not only expresses a permission as
stated previously, but also specifies the additional requirement
of logging the packets allowed by the permission. Hence the
following obligation associated to the permission derivedfrom
the pf rule:

Is obliged(FW,LOG,< allowed packets >) (13)

With < allowed packets > being expressed as the following
combination of attributes:

src ip(sip, any) ∧ src port(sp, any) ∧ if dir(dir, in)∧

if(inf, $ext inf) ∧ proto(p, tcp)∧

¬dst ip(dip, <firewall>) ∧ dst port(dp, 22)

E. Inferring Abstract Entities

As mentioned earlier,Roles (resp., Views and Activities)
are sets of subjects (resp., objects and actions) that sharethe
same permissions. Sandhu et al. [2] demonstrate that the role
concept is close to the group concept. In fact, the role is a set
of subjects on one side and a set of permissions on the other,
whereas groups are defined as a set of subjects only.

Per analogy with RBAC, OrBAC features a role concept
defined for subjects but also a role concept in relation to
actions, which is the concept ofActivity as well as a role
for objects, the concept ofView [18]. Thus, deducing aRole
(resp., anActivity and a View) consists in identifying the
subjects (resp. actions and objects) that share the same set
of permissions.

The permissions from the perspective of roles are based on
the actions and objects, they can be defined as follows:
PERrole = {(decisionk, oj , αl)si : ∀decisionk ∈
{Accept,Deny}, ∀oj ∈ O, ∀αl ∈ A, ∀si ∈ S}

The permissions from the perspective of views are based on
the subjects and actions, they can be defined as follows:
PERview = {(decisionk, si, αl)oj : ∀decisionk ∈
{Accept,Deny}, ∀si ∈ S, ∀αl ∈ A, ∀oj ∈ O}

The permissions from the perspective of activities are based
on the subjects and objects, they can be defined as follows:

TABLE II
SAMPLE SET OF PERMISSIONS

R1 s1 α1 o1 accept
R2 s1 α1 o2 accept
R3 s1 α1 o3 accept
R4 s1 α2 o1 accept
R5 s1 α3 o1 accept
R6 s2 α1 o1 accept
R7 s2 α1 o2 accept
R8 s2 α2 o2 accept

R9 s2 α2 o3 accept
R10 s2 α3 o2 accept
R11 s2 α3 o3 accept
R11 s3 α1 o1 accept
R13 s3 α1 o2 accept
R14 s3 α1 o3 accept
R15 s3 α2 o1 accept
R16 s3 α3 o1 accept

PERactivity = {(decisionk, si, oj)αl
: ∀decisionk ∈

{Accept,Deny}, ∀si ∈ S, ∀oj ∈ O, ∀αl ∈ A}
Algorithm GetAbstractEntities summarizes our

proposed process to infer the abstract entities. The main task
of the algorithm is to identify the set of permissions of each
concrete entity (i.e., subjects, actions or objects) and deduce
abstract entities by detecting concrete entities that strictly share
the same set of permissions.

Algorithm 1 A← GetAbstractEntities(C,PER)
1: Input: C /* set of concrete entities */
2: Input: PER /* set of permissions */
3: Output: A /* set of obtained abstract entities */

4: PERMci ← ∅
5: A← ∅
6: for all ci ∈ C do
7: new abstract entity ← true
8: for all perk ∈ PER do
9: if perk.ck == ci then

10: PERMci ← perk
11: end if
12: end for
13: for all aj ∈ A do
14: if PERMci == aj .PERMS then
15: aj .CONCRETE ← aj .CONCRETE ∪ ci
16: new abstract entity ← false
17: end if
18: end for
19: if new abstract entity then
20: alength(A)+1.PERMS = PERMci

21: alength(A)+1.CONCRETE = ci
22: A← A ∪ alength(A)+1

23: end if
24: end for
25: return A

Suppose an organization with the set of permissions rep-
resented in Table II. The corresponding set of concrete en-
tities contains three subjects (i.e.,s1, s2, s3); and the set of
permissions with respect to each concrete entity contains the
following permissions1:

s1 :: {α1o1, α1o2, α1o3, α2o1, α3o1}
s2 :: {α1o1, α1o2, α2o2, α2o3, α3o2, α3o3}
s3 :: {α1o1, α1o2, α1o3, α2o1, α3o1}

Notice that subjectss1 and s3 share exactly the
same permissions. Therefore, by applying Algorithm
GetAbstractEntities with the set of subjects and their
permissions as input parameters, we obtain as output a set
containing two roles, i.e., one role grouping the permissions
associated to subjectss1 ands3, and another role containing
the permissions associated to subjects2.

Suppose now the set of permissions in Table II with respect
to actionsα1, α2, andα3:

1We omitted the decision from the permissions since all permissions cause
the same decision in Table II. This should make the example easier to read.

α1 :: {s1o1, s1o2, s1o3, s2o1, s2o2, s3o1, s3o2, s3o3}
α2 :: {s1o1, s2o2, s2o3, s3o1}
α3 :: {s1o1, s2o2, s2o3, s3o1}

Actions α2 and α3 share exactly the same
permissions. Therefore, by applying Algorithm
GetAbstractEntities with the aforementioned set of
actions and permissions, we obtain as output a set containing
two activities: one activity grouping the permissions associated
to actionα1, and another activity containing the permissions
associated to actionsα2 andα3.

Similarly, from the set of permissions in Table II containing
rules with respect to objectso1, o2, and o3, we have the
following permissions:

o1 :: {s1α1, s1α2, s1α3, s2α1, s3α1, s3α2, s3α3}
o2 :: {s1α1, s2α1, s2α2, s2α3, s3α1}
o3 :: {s1α1, s2α2, s2α3, s3α1}

We can see that none of the objects share
permissions. Therefore, by applying Algorithm
GetAbstractEntities with the aforementioned set
of objects and permissions, we obtain as output a set
containing three views, i.e., one view per object.

If we group now the inferred abstract entities (roles, activ-
ities, and views) as follows:

R = {r1 = {s1, s3}, r2 = {s2}}
A = {a1 = {α1}, a2 = {α2, α3}}
V = {v1 = {o1}, v2 = {o2}, v3 = {o3}}

We can finally derive the following abstract authorizations
(displayed as triplets):
(r1, a1, v1), (r1, a1, v2), (r1, a2, v1), (r2, a1, v1),

(r2, a1, v2), (r2, a2, v2), (r1, a1, v3), (r2, a2, v3)

F. Complexity

With regard to the complexity of Algorithm
GetAbstractEntities, Theorems 1 and 2 provide
its space and time consumption boundaries. Figure 6 depicts
some simulated results, based on [24], [27], to complement
the complexity analysis.

Theorem 1 Let PER be the set of permissions associated
to the security mechanism. Letn be the cardinality
of PER. Then, the space consumption complexity of
AlgorithmGetAbstractEntities is of O(n).

Proof If we assume the worst case scenario, in which
none of the concrete entities inPER share common
permissions, then the output setA returned by Algo-
rithm GetAbstractEntities is a set of abstract entities
whose cardinality equals the number of concrete entities. Same
applies for the auxiliary setPERMSci . At the same time, in
such a worst case scenario, each permission inPER holds
a different set of concrete entities, i.e., the cardinalityof
C equals the cardinality ofPER. Therefore, letn be the
cardinality of PER, the space consumption complexity of

Algorithm GetAbstractEntities is upper bounded by
a linear combination ofn. �

Theorem 2 Let PER be the set of permissions associated
to the security mechanism. Letn be the cardinality
of PER. Then, the time consumption complexity of
AlgorithmGetAbstractEntities is of O(n2).

Proof The time complexity of Algo-
rithm GetAbstractEntities is bounded by the
nested iterations associated to Lines 6, 8, and 13 of the
algorithm. This corresponds to an exhaustive search of
concrete entities inC sharing permissions inPER. Let
n be the length of setPER, and let m be the length of
set C, then it is straighforward that the time complexity of
Algorithm GetAbstractEntities is upper bounded by
the following expression:

(m× n) +
(m− 1)(m)

2

Assuming the worst case scenario, in whichm equalsn,
i.e., rules inPER are completely disjoint, and holding inde-
pendent concrete entities per rule, then the above expression
can be simplified as follows:

n2 +
(n− 1)(n)

2

Therefore, the time consumption complexity of Algo-
rithm GetAbstractEntities is upper bounded by a
linear combination ofn2. �

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

Number of rules

Worst case
Average case

Best case

Fig. 6. Processing time evaluation of executing Algo-
rithm GetAbstractEntities upon three different rule set classes. Best
case assumes rule sets containing a ratio one to ten rules pertriplets of
concrete entities, i.e., one triplet of concrete entities for every ten rules.
Average case assumes rule sets containing a ratio five to ten rules per triplets
of concrete entities. Worst case assumes rule sets containing a ratio one to
one rules per triplets of concrete entities, i.e., rule setsthat contain as much
concrete entities as rules.

G. Beyond Traditional Mining: Semantic Enrichment for Or-
BAC Entities

Traditional role mining approaches often fail to generate
meaningful roles. Since mined roles lack semantic data, ad-
ministrators refuse to deploy roles that they can not under-
stand [13]. So far, the process has outputtedunlabelednatural
roles, i.e., roles that faithfully reflect the PEP policy butwhich
are not named. To further help administrators adopt our pro-
posal, we can leverage the knowledge we have of the processed
PEPs to generate additional data that will semantically enrich
the discovered results, both concrete and abstract entities. This
knowledge can be expressed in the form of heuristics that will
allow the process to infer semantic attributes for the mined
entities. Heuristics to generate specific semantic information
can be developed at the level of each PEP or between several
PEPs. Additionally, external knowledge resources can be used
to spread information over the entities discovered during the
process (subjects, actions, objects, roles, activities, views,
contexts, authorizations, obligations).

As an example, let us consider a setting with two PEPs,
a firewall and an enterprise directory (LDAP) covering the
same domain. For each PEP, the administrator has to select
one model among many. These models will be applied to the
parsing of the PEP configurations into concrete entities. Once
the knowledge is structured, we can derive more knowledge by
developing PEP-specific heuristics. Regarding the firewall, we
can interpretate information found in configuration files about
the existing sub-networks or VLANs. Also, it is commonly
known that IP ranges starting in10.∗ or 192.168.∗ are reserved
for private use, thus indicating local networks activities. A
subject whose IP address falls into an identified network can
then be characterized. By correlating this information with the
enterprise directory information, a firewall subject may gain
additional semantic attributes. In case the LDAP’s subjecthas
a DN (distinguished name) extended with alternative name
extensions, a rule can join the LDAP’s subject to the firewall’s
subject by their common IP address. This leads to the fusion of
both subjects into a composite subject, and by extension, the
fusion of two PEP models. Otherwise, browsing an external
resource such as a DHCP configuration may characterize the
firewall’s subject IP address with organizational information
such as the company department to which the IP addess has
been allocated. This can be further semantically qualified by
adjoining LDAP’s OU (organizational unit) attribute informa-
tion and its inherited attributes’ information.

Although designing heuristics to feed this process is specific
to each PEP class, this process of enrichment and correlation
can be generalized at several levels: attribute level, concrete
level and abstract level. Such process has the potential to
enhance natural roles we mined during the attribute-based
mining process, and should be integrated to it.

VI. CONCLUSION AND FUTURE WORKS

Almost all the known existing access control models adopt
the top-down approach for the designing and the management
of security policies. However, the top-down approach is costly

and time-consuming process. Additionally, adopting such ap-
proach by the access control models create an huge obstacle
for organizations to migrate their existing security policies
towards one of the access control models.

We propose to take the opposite direction of common access
control models by proposing a attribute based mining process.
The process has the advantage that it makes no assumption on
the status of policies within the organizations and is therefore
adaptive to any access control model. The main idea of
the process is to handle PEPs by classes so that the same
translation strategies can be applied to each member of the
class. We start by parsing the existing configurations rules,
processing them and then deducing the concrete entities. We
have lastly designed an algorithm to perform a concrete-to-
abstract deduction by browsing the permissions of the concrete
entities. The complexity computation shows that this algorithm
has a linear space complexity and a quadratic time complexity.

Our attribute mining process produces onlyunlabeledab-
stract and concrete entities. The administrators of organiza-
tions could be reluctant to adopt such process because they are
not able to understand the obtained results. We have proposed
to handle this issue by proposing heuristics that can help to
conclude semantic data and associate them with the concrete
and abstract entities resulted from the process. The heuristics
depend on the type of PEPs and can be developed at the level
of each PEP or between several PEPs.

Our approach outputs natural roles, activities and views
that reflect the current status of the security policies. Thus,
we are not concerned by computing the semantic quality of
the mined entities. However, the abstract entities rely strongly
on the attribute to concrete entities model chosen by the
administrator. Therefore, we plan to develop metrics to assess
the best model, i.e., how meaningful are the mapping of rule
attributes to concrete entities.

Finally, we plan to implement our approach as a framework
of tools that will carry out the whole process from parsing
configuration rules to building PEP class dictionaries to mining
entities.

REFERENCES

[1] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn, “Assessment of access control
systems,” National Institute of Standards and Technology,Gaithersburg,
MD, NIST Interagency Report 7316, September 2006.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,”Computer, vol. 29, no. 2, pp. 38–47, 1996.

[3] A. Abou-El-Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin, “Organization
Based Access Control,” in4th IEEE International Workshop on Policies
for Distributed Systems and Networks (Policy’03), June 2003, pp. 120–
131, lake Come, Italy.

[4] E. Yuan and J. Tong, “Attributed Based Access Control (ABAC)
for Web Services,” in Proceedings of the IEEE International
Conference on Web Services, ser. ICWS ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 561–569. [Online]. Available:
http://dx.doi.org/10.1109/ICWS.2005.25

[5] E. J. Coyne, “Role engineering,” inACM Workshop on Role-Based
Access Control (RBAC), 1995.

[6] R. W. H. Roeckle, G. Schimpf, “Process-oriented approach for role-
finding to implement role-based security administration ina large in-
dustrial organization,” inACM Workshop on Role-Based Access Control
(RBAC), 2000.

[7] S. C. D. Shin, G.J. Ahn and S. Jin, “On modeling system-centric
information for role engineering,” inACM Symposium on Access Control
Models and Technologies (SACMAT), 2003.

[8] A. O. M.P. Gallagher and B. Kropp, “The economic impact ofrole-
based access control,” National Institute of Standards andTechnology,
Gaithersburg, MD, NIST Interagency Report Technical Report Planning
Report 02-1, 2002.

[9] M. Kuhlmann, D. Shohat, and G. Schimpf, “Role mining - revealing
business roles for security administration using data mining technol-
ogy,” in ACM Symposium on Access Control Models and Technologies
(SACMAT), 2003, p. 179186.

[10] J. Schlegelmilch and U. Steffens, “Role mining with ORCA,” in ACM
Symposium on Access Control Models and Technologies (SACMAT),
2005, p. 168176.

[11] J. Vaidya, V. Atluri, and J. Warner, “Roleminer: Miningroles using
subset enumeration,” inACM Conference on Computer and Communi-
cations Security (CCS), 2006, p. 144153.

[12] J. Vaidya, V. Atluri, and Q. Guo, “The role mining problem: Finding a
minimal descriptive set of roles,” inACM Symposium on Access Control
Models and Technologies (SACMAT), 2007.

[13] A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E.
Tarjan, “Fast exact and heuristic methods for role minimization prob-
lems,” in ACM Symposium on Access Control Models and Technologies
(SACMAT), 2008.

[14] A. Colantonio, R. D. Pietro, and N. V. Verde, “A business-driven
decomposition methodology for role mining,” inComputers & Security,
2012.

[15] C. S. Jordan,Guide to Understanding Discretionary Access Control in
Trusted Systems. DIANE Publishing, 1987.

[16] D. E. Bell and L. J. La Padula, “Secure computer system: Unified
exposition and multics interpretation,” DTIC Document, Tech. Rep.,
1976.

[17] B. W. Lampson, “Protection,” in5th Princeton Symposium on Informa-
tion Sciences and Systems, March 1971, pp. 437–443.

[18] F. Cuppens and N. Cuppens-Boulahia, “Modeling Contextual Security
Policies,” International Journal of Information Security, vol. 7, no. 4,
pp. 285–305, 2008.

[19] M. Ben Ghorbel, F. Cuppens, N. Cuppens-Boulahia, and A.Bouhoula,
“A delegation model for extended RBAC,”International journal of
information security, May 2010.

[20] F. Cuppens, N. Cuppens-Boulahia, and M. Ben Ghorbel, “High level
conflict management strategies in advanced access control models,”
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 186,
pp. 3–26, July 2007.

[21] Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia, “Formal
enforcement and management of obligation policies,”Data Knowl.
Eng., vol. 71, no. 1, pp. 127–147, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.datak.2011.09.001

[22] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross,
B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence,
“AAA Authorization Framework,” RFC 2904 (Informational),
Internet Engineering Task Force, Aug. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2904.txt

[23] J. Garcia-Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete
analysis of configuration rules to guarantee reliable network security
policies,” International Journal of Information Security, vol. 7, no. 2,
pp. 103–122, 2008.

[24] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and S. Preda, “MI-
RAGE: a management tool for the analysis and deployment of network
security policies,” in3rd International Workshop on Autonomous and
Spontaneous Security (SETOP 2010). Springer, 2011, pp. 203–215.

[25] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S.Martinez,
and J. Cabot, “Management of stateful firewall misconfig-
uration,” Computers & Security, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404813000217

[26] J. Park and R. Sandhu, “TheUCONABC Usage Control Model,”
ACM Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128–174, Feb. 2004.
[Online]. Available: http://doi.acm.org/10.1145/984334.984339

[27] “MIRAGE, An Audit Tool for the Analysis of Security Policies.”
[Online]. Available: http://crimplatinum.org/mirage/

