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Abstract

Firewall configurations are evolving into dynamic policies that depend on protocol states. As a result,
stateful configurations tend to be much more error prone. Some errors occur on configurations that only
contain stateful rules. Others may affect those holding both stateful and stateless rules. Such situations
lead to configurations in which actions on certain packets are conducted by the firewall, while other related
actions are not. We address automatic solutions to handle these problems. Permitted states and transitions
of connection-oriented protocols (in essence, on any layer) are encoded as automata. Flawed rules are
identified and potential modifications are provided in order to get consistent configurations. We validate the
feasibility of our proposal based on a proof of concept prototype that automatically parses existing firewall
configuration files and handles the discovery of flawed rules according to our approach.
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1. Introduction

Firewalls aim at optimising the degree of security deployed over an information system. Their configura-
tion is, however, very complex and error-prone. It is based on the distribution of several packages of security
rules that define properties such as acceptance and rejection of traffic. The assembly of all these properties
must be consistent, addressing always the same decisions under equivalent conditions, and avoiding conflicts
or redundancies. Otherwise, the existence of anomalies and misconfiguration will lead to weak security ar-
chitectures, potentially easy to be evaded by unauthorised parties. Approaches based on formal refinement
techniques, e.g., using abstract machines grounded on the use of set theory and first order logic, ensures,
by construction, cohesion, completeness and optimal deployment [1]. Unfortunately, these approaches have
not always a wide follow. Network policies are often empirically deployed over firewalls based on security
administrator expertise and flair. It is then relevant to analyse these deployed configurations in order to
detect and correct errors, known in the literature as misconfiguration discovery. Several research works exist
to directly manage the discovery and correction of stateless firewall configuration anomalies [2, 3, 4, 5]. By
stateless firewall configurations we refer to the security policies of first generation firewalls, mostly packet
filtering devices working only on the lower layers of the OSI reference model. In this paper, we are particu-
larly interested in addressing the analysis of deployed configurations of second and third generation firewalls
peeking into the transport and upper layers.

The main goal of a firewall is to control network traffic flowing across different areas of a given local
network. It must provide either hardware or software means to block unwanted traffic, or to re-route packets
towards other components for further analysis. In the stateless case, the filtering actions, such as accepting
or rejecting packet flows, are taken according to a set of static configuration rules. These rules only pay
attention to information contained in the packet itself, such as network addresses (source and destination),
ports and protocol. The main advantage of stateless firewalls is their filtering operations speed. However,
since they do not keep track of state connection data, they fail at handling some vulnerabilities that benefit
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from the position of a packet within existing streams of traffic. Stateful firewalls solve this problem and
improve packet filtering by keeping track of connection status. Indeed, they can block those packets that
are not meeting the valid state machine of a given connection-oriented protocol. As with stateless packet
filtering, stateful filtering intercepts the packets at the network layer and verifies if they match previously
defined security rules. Moreover, stateful firewalls keep track of each connection in an internal state table.
Although the entries in this table varies according to the manufacturer of every product, they typically
include source and destination IP addresses, port numbers and information about the connection status.

Most methods that have been proposed to detect anomalies in the configuration of firewalls, such as
[2, 3, 4, 5], are limited to the stateless case. Little work has been done for the detection of anomalies in the
stateful case. Some approaches aim at describing stateful firewall models [6], while others adapt management
processes previously designed for stateless firewalls [7]. In [8], we uncovered new misconfiguration types that
lead to flawed configurations in which some stateful actions, according to a connection-oriented protocol,
are conducted by the firewall, while other related actions are not. We also provided algorithmic solutions
to discover and correct explicit conflicting rules, so that the resulting set gets consistent with the action of
those rules with higher priority in order. In this paper!, we complement the algorithmic solutions in [8], in
order to assist and guide in the correction of the more complex case, in which misconfiguration is driven
by the omission of explicit rules in a policy. The principle of our approach is based on the specification of
general automata. Such automata describe the different states that traffic packages can take throughout
the filtering process. We also present the ongoing development of a proof of concept prototype that shows
the validity of our approach in the case of stateful deployed configurations. The prototype, based on model-
driven engineering, extends the results presented in [9] for managing stateless configurations based on Linux
firewalls, and tackles the stateful case. The model-driven engineering approach is chosen with the aim of
getting rid off the low level details of the concrete solution, and provide a solution for any other stateful
filtering system with minimum effort. The prototype we present also provides an extension of MIRAGE
[10, 11], a firewall audit tool for the automatic detection and correction of stateless firewall configuration
anomalies. The extension aims at covering the management of stateful firewalls as well.

Paper organisation — Section 2 presents in more detail our motivation scenario. Section 3 presents the
case of detecting anomalies on those configurations that contain only stateful rules. Section 4 addresses the
case in which stateful and stateless rules coexist in a given configuration rule set. Section 5 presents our
automatic audit tool that parses deployed stateful firewall configuration files and handles the discovery of
flawed rules according to our approach. Section 6 surveys related work. Section 7 closes the paper.

2. Motivation scenario

Stateful firewalls provide fine-grained filtering capabilities to protect networks against complex attacks.
For instance, stateful filtering can be used to detect and block anomalous behaviour in traffic flows that
progress via invalid connection states of a given connection-oriented protocol. Assume the case of the TCP
protocol and its simplified automaton depicted in Figure 1(a). The automaton describes the progression of a
TCP connection exhibiting normal behaviour [12]. Illicit scanning activities [13] or brute force termination
attacks [14] can be described in the configuration of a stateful firewall, so that albeit of being dropped,
such activities are also reported to the security administrator. As represented by the automaton, a TCP
connection progresses from state to state based on the information contained in the headers of the TCP
packets exchanged between two peers, and specified as the TCP traffic flag combination in Figure 1(b).
Based on this approach, the security administrator can now signal invalid transitions, as represented in
Figure 1(c) by the symbol @. This way, illicit scanning activities and brute force termination attacks can
easily be identified by means of the invalid transitions. Existing tools such as NMAP [15] and HPINGS [16]
are available on-line to conduct and verify such kind of illicit activities. Using the information in Figure 1,
the security administrator can now define a list of stateful filtering rules to report and block these invalid
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transitions. Exactly how this shall be done differs from one firewall to another, but let us exemplify here the
case for stateful firewalls based on the Linux firewall architecture [17]. Such an architecture, popularly known
as Netfilter, provides stateful filtering capabilities in order to grant access to network traffic based on already
existing connections. This feature of Netfilter is based on the use of the iptables and conntrack modules.
The iptables module defines tables (e.g., filtering tables) and chains (e.g., input, forward and output chains)
to conduct actions over packets traversing the network stack. The conntrack module (short for connection-
tracking) provides Netfilter with the ability for maintaining state information about the packets the firewall
is examining [18]. Therefore, the combination of both modules allows the user to define stateful filtering
rules for connection-oriented protocols. Suppose the addition of the following rules in the tables of a Linux
firewall controlling connections directed towards a network server whose IP address is 5.6.7.8:

01: iptables —P FORWARD ACCEPT

02: iptables —N InvRQ

03: iptables —A FORWARD —p tcp —d 5.6.7.8 ——m conntrack ——ctstate NEW | ——tcp-flags ALL SYN
——ctdir REPLY —j InvRQ@

04: iptables —A InvRQ —j LOG ——log-prefiz 'InvRQ’

05: iptables —A InvRQ —j DROP

In the previous example, rule in Line 01 sets the default policy to accept (i.e., an open policy). The rule
in Line 02 creates a new chain, that will be used later by other iptables rules to report and drop all packets
assigned to that chain (cf. Lines 04 and 05). Finally, the rule in Line 03 contains the main action. This
rule is based on the conntrack match for iptables, which makes it possible to define filtering rules in a much
more granular way than simply using stateless rules or rules based on the old state match. This is defined
by providing the parameter ——m conntrack to the rules (cf. reference [17] for a more extensive description
of conntrack and [19] for extending the regular matching module to increase its stateful expressivity). The
——ctstate NEW parameter is used to instruct the firewall to match those TCP packets in the conntrack table
that are seen that first time. The ——tcp-flags parameter, preceded by the ’!” symbol, is used to exclude
from such packets, those with the SYN flag header activated. Finally, the ——ctdir REPLY parameter is
used to exclude those packets originated at the IP address 5.6.7.8. As a result, the above rules allow to
report and drop those TCP traffic connections across the FORWARD chain that exhibit the invalid behaviour
defined in the first row of Figure 1(c), i.e., transitions from the initial state to the invalid state, which can
be associated with illicit scanning activities. In order to address the invalid transitions of the second and
third rows in Figure 1(c), we can complement now the previous set of rules with the following ones:

06: iptables —N InvRP

07: iptables —A FORWARD —p tcp —s 5.6.7.8 ——m conntrack ——ctstate ESTABLISHED ——ctdir ORIGINAL
——ctstatus SEEN_REPLY —j InvRP

08: iptables —A FORWARD —p tcp —d 5.6.7.8 ——m conntrack ——ctstate ESTABLISHED ——ctdir REPLY
——ctstatus ASSURED —j InvRP

09: iptables —A InvRP ——tcp-flags ALL SYN —j RETURN

10: iptables —A InvRP ——tcp-flags ALL SYN,ACK —j RETURN

11: iptables —A InvRP ——tcp-flags ALL ACK —j RETURN

12: iptables —A InvRP —j LOG ——log-prefix ’InvRP’

13: iptables —A InvRP —j DROP

Equivalent rationale can be used to complement the set of rules and cover all the remainder cases of
invalid transitions in Figure 1(c). The result shall be a very granular set of stateful rules covering each of the
invalid transitions. This gain in expressivity may lead, however, to error-prone configurations. Indeed, it is
possible to end up with flawed rule sets, in which some threats are not appropriately covered, while legitimate
actions are denied. This can be the case when some parameters like ctstatus, ctdir, tcp-flags, etc., are
not appropriately used. For instance, the omission (by mistake) of the ’!” symbol in Line 03 of our previous
example would lead to a situation in which all the invalid transitions of the first row in Figure 1(c) (e.g.,
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illicit scanning activities) are now allowed by the firewall. At the same time, it also instructs the firewall to
deny the initial connection establishment to the server, and therefore blocking all potential communication
with it. Similarly, the inversion (by mistake) of values ORIGINAL and REPLY in Lines 07 and 08 in the above
example would instruct the firewall to allow invalid transitions while denying valid ones. In the sequel, we
address these misconfiguration issues and provide an automatic solution to handle them for any generic
purpose stateful firewall system and connection-oriented protocol.

3. Intra-state rule misconfiguration

3.1. Previous work

In our previous work presented in [8], we showed that a fully stateful firewall configuration (i.e., a firewall
configuration containing only stateful rules) may be affected by three main misconfiguration types. The first
type consists of shadowing, in which some rules expected to conduct a given action over the traffic are
cancelled by preceding rules with higher priority in the order. As a result, some packets that should be
blocked by the firewall can be granted access to reach their destination by mistake. The second type consists
of redundancy, in which some useless rules in the configuration can be removed without changing the filtering
policy of the firewall. These two first types of misconfiguration already existed for the stateless case, and
can be efficiently handled by existing solutions (cf. algorithmic solutions in [20, 2, 7] and citations thereof,
for the discovery and correction of these two cases). The third misconfiguration class, denoted as intra-state
rule misconfiguration, is specific to the stateful case. The rationale assumed in our previous work reads
as follows. Suppose a connection-oriented protocol, not necessarily the TCP protocol, in which we may
identify (1) the establishment phase; (2) the data transfer phase; and (3) the termination phase. In such a
case, we defined that an intra-state misconfiguration arises if: (a) the client succeeds to start the handshake
connection establishment with a server, while the firewall is configured in a way that some necessary steps
of the handshake are rejected; or (b) the client starts the connection termination, but the firewall rejects,
at least, one of the remainder or previous operations.

An algorithmic solution to discover and handle the third misconfiguration type was presented in [8].
The proposed solution uses automata theory in order to encode the permitted states and transitions of the
protocol. Then, stateful rules are checked against the resulting automaton, in order to determine whether
the initial (establishment) phase of the protocol is permitted but denied later during the remainder (e.g.,
transfer or termination) phases. Conflicting rules are discovered and modified, so that the resulting set gets
consistent with the action with higher priority (e.g., accepting the termination phase if the establishment was
accepted as well). For instance, let us assume the rule set shown in Table 1. Each rule specifies an Action
(e.g., ACCEPT or DENY) that applies to a set of condition attributes, such as SrcAddr, DstAddr, SPort,
DPort, Protocol, and Transition. The Transition attribute stands for current_state + event, according
to the automaton of the connection-oriented protocol specified in the Protocol attribute. Assume the state
automaton depicted in Figure 2. Rule 75 gives an example of a correction on a subset of stateful rules
by using the algorithmic solution in [8]. In accordance with the automaton, the rule actually contradicts
the decision in rule 71, which is allowing the initial step in the establishment of a connection. Then, the
algorithm will suggest correcting rule ry to preserve the inner logic of the connection establishment.

3.2. Current limitations

A first limitation of our previous approach is that it does not warn about missing rules to fulfil complete
paths of protocol automata. For instance, if we trace the path followed by rules rq, ro, 3, and 74, we can
notice that some transitions which are necessary to allow the progression of a connection from Qg to Qi2,
are not included in the rule set. A possible solution would be to warn that, at least, two extra rules covering
the transitions Q4 + Eg and Qg + Eg shall be added in the aforementioned rule set. We, therefore, need to
complement the algorithmic solution provided in [8], to verify complete coverage of automata paths by rules
of a given stateful rule set. A second limitation of our previous approach is that it does not warn either
about lack of coverage of rules addressing the invalid states. For instance, let us assume the rule set depicted
in Table 2. This set enforces an open policy, in which we define as prohibitions those invalid transitions
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of the protocol that are considered either unnecessary or harmful for the network that is being protected
by the stateful firewall. If we apply our previous series of algorithms in [8], the rule set will be reported
as correct. However, notice that just a subset of those transitions to the invalid state are contained in the
policy. From the list of 130 possible transitions of the automaton in Figure 2 (i.e., 13 states times 10 events,
as shown in Appendix A, Figure 7), from which only 16 transitions are represented as valid transitions, the
rule set is only covering 6 transitions (i.e., Qo + E4 to Qs + Es in the T'ransition column of Table 2) of
the remainder 114 invalid cases that shall be denied as well (see in Appendix A, Figure 8(b) such missing
rules). This case of potential misconfiguration must be treated by our approach as well. In the sequel, we
extend our early algorithmic construction in [8], and provide a more complete solution that handles these
aforementioned limitations.

3.3. Extended work

Algorithm audit_rule_set complements our previous intra-state rule misconfiguration management pro-
cess presented in [8]. Its pseudocode is summarised in Algorithm 1. It uses as input a stateful rule set R, in
which each rule specifies an Action (e.g., ACCEPT or DENY) that applies to a set of condition attributes,
such as SrcAddr, DstAddr, SPort, DPort, Transition, and Protocol. The Protocol attribute corresponds
to a connection-oriented protocol. An automaton A characterising the progression of a connection for such a
protocol is also provided to the algorithm. Finally, the identifiers for the initial (Qp), final (Q,,) and invalid
(©) states are also used as input parameters. The main steps of the algorithm are:

e Build a set S containing all possible paths of valid transitions connecting the initial (Qg) and the final
(Qn) states of automaton A (Line 6);

e Build a set T containing all the transitions of automaton A to reach the invalid (@) state (Line 7);

e Verify the coverage of either S or T' (Lines 8 to 20), w.r.t. the Action (i.e., ACCEPT or DENY) and
Transition attributes of all the rules in R;

— In case of a permission (i.e., rule in R whose Action attribute is set to ACCEPT) covering one of
the transitions in a given path of S, verify that all the remainder transitions of such a path are
also covered by other permissions in R (Lines 11 and 15). If the verification fails, report those
transitions that are not covered and the necessary rules to correct the failure (Lines 16 and 18).

— In case of a prohibition (i.e., rule in R whose Action attribute is set to DENY) covering, at least,
one of the transitions in 7', verify that all the other transitions in T are also covered in R (Lines
13 and 15). If the verification fails, report those transitions that are not covered and the necessary
rules to correct the failure (Lines 16 and 18).

Let us elaborate further on the use of Algorithm 1 by describing the example shown in Figure 3. For
simplicity, we assume here just the case of a closed policy (rule set with only permissions, whose default
policy is set to block all those packets not matching any given permission). An example to handle as well
open policies (rule set with only prohibitions, whose default policy is set to grant access to all those packets
not matching any given permission) is provided in Appendix A. In both examples, we assume that the
initial rule sets have previously been processed by the series of algorithms in [2, 20]. This way, we can
guarantee that the rule sets are free of shadowing and redundancy, and that the rules are mutually disjoint.
These algorithms can be applied in the stateful case as well (as pointed out in [7]) and allow us to transform
rule sets with mixed policies (combining both permissions and prohibitions) in a closed or open way as
well. Notice, however, that the application of our extended solution does not alter the configurations. It
correlates rules with regard to network layer information and reports those missing data with regard to
stateful coverage, to detect the existence of intra-state rule misconfiguration.

The first step of the algorithm is the construction of sets S and T. Assume an automaton A based on
the finite state machine depicted in Figure 2. For simplicity, the graphical representation does not contain
the invalid state. The complete table of transitions, containing the invalid state, is shown in Appendix A,
Figure 7. To build S, the algorithm uses function find all_paths. Function find all_paths recursively
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performs exhaustive search of automaton A and keeps track of all the possible paths of valid transitions to
go from Qg to Q12. More precisely, it starts at node Qp and builds a new subset for S each time it reaches
Q12. Figure 3(b) shows a sample interpretation of S over a two-dimensional vector. Similarly, T is built
using function transitions_to_state. This function starts at @ (invalid state) and recursively builds T
with all the transitions it finds over a one-dimensional vector (cf. Appendix A, Figure 9). Assume now the
rule set shown in Figure 3(a). This rule set contains a closed policy, i.e., it contains only permissions. The
processing of this rule set starts in Line 9, based on function next_unvisited_rule. This function processes
the rules in R as a list, and returns those unmarked ones, one at each execution time. All the rules are
unmarked at the beginning of the process. The first time Line 9 is executed rule r; is marked as visited
and starts the process. Given that its Action attribute contains the value ACCEPT, a subset is built in
Line 11 based on function prune_paths and the Transition attribute of r1 (i.e., Qo + E2). As a result,
function prune_paths removes out from S all those paths not containing the transition Qg + Es. The result
is assigned to L. Figure 3(c¢) shows a sample interpretation of L over a two-dimensional vector.

Based on L, R, and the attributes of r1, the algorithm calls in Line 15 to function cover_with rules.
This function provides a mapping between the sets of transitions in L, and those in rules of R that are
consistent with the attributes of r1. In other words, it provides a correlation of rules in R that are consistent
with r; and necessary to cover the transitions in L. All those rules being correlated during the process, are
marked as visited, and indexed to the transitions they cover. In the end, those transitions in L not covered
by any rule in R are also marked, and a series of missing rules (consistent with the attributes of r1) are
generated and indexed as well. All this information is returned by function cover_with _rules and assigned
to C. Figure 3(d) shows a sample interpretation of the information returned by the process. We can see in
our example that all the rules in R are partially covering the three paths in L. The first path is covered
by rules 71, r2, and r3; and requires four extra rules to be fully covered. First, rule m; is generated, so
that its Action and Protocol attributes are equivalent to the one of 7y (ACCEPT and P), and its remainder
attributes (SrcAddr, DstAddr, SPort, DPort) are consistent with those of ro and r3 (i.e., inverting their
source and destination sense). Same rationale applies for the generation of rules ms to mg.

The final step is conducted in Line 16, in which function extract missing rules simply pulls out from
C one series of missing rules. In our example, we assume that the function returns just one of the paths in
C' (e.g., the shortest and most covered path). In most cases, this solution is enough to signal the discovered
misconfiguration and guide the security administrator on the correction of the rule set. This way, we consider
that function extract missing rules derives from C rules m; and my, and signal as possible correction
the rule set shown in Figure 3(e). However, as we will discuss in Section 3.5, straightforward modifications
of Algorithm 1 and the aforementioned function can be done to fulfil other strategies (e.g., report the three
rule sets that could be derived from set C in Figure 3(d)). In any case, the information is reported in Line 18
to the security administrator, who is in charge of taking the final decision. Finally, and since all the rules in
R have been marked as visited during the construction of C in Line 15 (the last rule signalling the default
policy does not count), the condition in Line 20 holds and the verification process ends.

3.4. Complexity of the algorithm

The space consumption complexity of Algorithm 1 is bounded by Functions find_all_paths and transi-
tions_to_state. The problem to solve by Function find all _paths can efficiently be accomplished with
either depth-first or breadth-first search of the automaton provided as input, so that the process recursively
computes and returns all the paths from the initial to the final state of the automaton. Therefore, its space
consumption complexity is linear in the total length of all the paths (at most, ¢ times the number of paths,
where ¢ is a constant). An example is shown in Figure 3(b). Function transitions_to_state simply returns
all those terminal transitions associated with a given state of the automaton (the invalid state). Therefore,
its space consumption complexity is linear in the total number of invalid transitions. An example is shown
in Appendix A, Figure 9. The resulting structures are computed just once at the beginning of the algorithm,
regardless the number of iterations or length of the rule set.

The time complexity of Algorithm 1 is bounded by the complexity of Function cover_with_rules. As we
have seen in the previous section, the problem to solve by this function is a special case of the set covering
problem [21]. Therefore, its complexity is NP-complete: (1) the problem is NP since checking the validity of
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a solution, i.e., comparing the set of transitions covered by rules in a rule set, can be done in polynomial time;
(2) there exists another known NP-complete problem, any instance of which can be reduced in polynomial
time to an instance of our problem. Given that the size of protocol automata containing valid and invalid
transitions is expected to be rather small, it is reasonable to use any O(no(loglog ”))—time deterministic
function based on the simple greedy polynomial time heuristic defined in [22]. Moreover, notice that within
the main loop of the algorithm, Function cover_with_rules() is not necessarily computed for every rule in
the set provided as input. All those rules correlated with the one being inspected are also marked as visited
during the execution of the coverage function, so that the number of iterations is not greater than necessary.
In the experimentations we have done (cf. Section 5, Figure 6), we noticed that this significantly reduces
the processing time consumption.

8.5. Discussion

During the processing of a rule set with a closed policy, Algorithm 1 verifies only that, at least, one of
the paths to progress from Qg to Q,, via valid states of the automaton is fulfilled. Notice that the analysis
technique could also verify that all possible paths are covered, i.e., verifying redundant stateful rules covering
the automaton as a whole. We consider that such a redundant property of the analysis does not reflect the
regular practises followed when configuring a given stateful firewall. However, if that would be necessary,
the modification of the algorithm is straightforward and does not change its complexity. It simply relies
on affecting set S to L in Line 11, instead of prune_paths(S,r;[Transition]); and instructing to function
extractmissing rules in Line 16 to extract all missing rules, instead of those covering only one of the
paths. On the contrary, Algorithm 1 processing a rule set with an open policy verifies that all possible
transitions that end in the invalid state are fulfilled. The opposite, i.e., verifying only one transition case
per state (i.e., from valid to invalid state), would not be correct.

A second observation is about the case where the initial rule set contains permissions associated with
invalid transitions, or prohibitions associated with valid transitions. Most scenarios applying to this case
are already detected and corrected by the algorithms in [8], as we have shown in Section 3.1. For instance,
in the example shown in Table 1, we have the case of a prohibition associated with a valid transition that is
detected and corrected once it is correlated to the remainder permissions in the set. However, the anomaly
would certainly not be handled if such other explicit rules were not in the audited rule set. Although, in
our opinion, these scenarios seem artificial, straightforward modifications of Algorithm 1 can be done to
handle these cases as well, and complexity does not change. In the case of permissions associated with
invalid transitions, the anomaly can be detected after the execution of Line 11, since the use of Function
prune_paths with a rule containing a permission to the invalid state will return the empty set. Therefore,
it suffices to add this constraint and report the anomaly to security administrator. In the second case,
the anomaly can be detected in Line 15, by instructing to Function cover_with_rules to report the case
in which none of the invalid transitions in the set provided to the function is covered by the rule being
inspected.

4. Inter-state rule misconfiguration

We have previously addressed the case of intra-state rule misconfiguration, where sets of stateful rules
containing anomalies put in risk the inner logic of connection-oriented protocol states. The use of both state-
ful and stateless rules may be also found in a firewall configuration. For instance, a security administrator
may add a rule in order to handle forwarding of connections which are used to transferring data in FTP
sessions. On Linux based firewalls, we can manage this situation by adding a rule with the RELATED state
parameter to the conntrack module. This rule will be inserted in the other stateless rules which have been
previously defined in the rule set. We then search for anomalies between stateful and stateless rules based
on the specification of a transport layer protocol. Most application layer protocols use several lower-layer
protocol connections during a session between two nodes. This applies to FTP, IRC or VoIP protocols which
use related transport-layer protocol connections. Let us further elaborate on the FTP case. A typical FTP
session consists on the following two steps:



1. The client starts the session with the FTP server on port 21; a TCP connection — on the control
plane — is established;
2. When the client wants to transfer data (file transfer, directory listing, etc.), two cases may occur:

e Active mode: after the connection negotiation on the control plane, the server initiates a new
transport layer connection for the data transfer, from the port 20 to a client’s given port;

e Pasive mode: the data transfer connection is directly initiated from the client to a FTP server’s
given port.

The configuration of the firewall protecting the FTP server may contain:

e A stateless rule for allowing transport layer packets with the destination port 21;

e A stateful rule for allowing packets whose associated transport layer connection is marked with a
related connection in a FTP session. The destination port will be either 20 (active mode) or greater
than 1024 (passive mode).

In the previous example, one issue consists in correctly handling the related transport layer connections
between two nodes using an application layer protocol. First, the firewall should understand the given
application layer protocol concerned by the rules in order to identify related connection packets. For instance,
a Linux based stateful firewall can handle this case based on the RELATED state provided by the conntrack
system, and can be added to those rules of the filtering table of iptables via the parameters -—-m conntrack
and --ctstate RELATED. If such options are enabled in the firewall, the security administrator can then
specify stateful rules to define the filtering rules in a much more granular way. If this is not done, it shall
be reported as an inter-state misconfiguration anomaly. To automatically identify such anomalies for any
given protocol, we also assume knowing the full specification of the connection-oriented protocol. This
specification shall explain how connections are initiated and how related actions are triggered during a given
session (order, number, ports, etc.). The first step consists in searching the stateless rules which stand
for the establishment of the protocol connection. In the case of FTP, we search a rule which matches the
transport layer packets with the destination port 21. If such rules are found, we consider the three following
cases:

1. Stateful rules exist in the configuration to handle the possible related connections that may be used
by the application layer protocol;

2. Stateless rules exist to handle these connexions;

3. No rule is defined to handle the related connexions.

The case 2 is too general because it does not take into account the inner logic of the application layer
protocol. An attacker may be able to initiate a transport layer connection on a port which will be used only
for a related connection of an application session. For example, a FTP connection on the server’s port p will
be allowed only if the server has previously initiated a FTP transfer on passive mode with a client on such
a port p. In the case 3, the application session may fail because the firewall will probably deny the related
connections. The case 1 solves the encountered problem with the other ones and complies with the protocol
specification. In a Linux firewall, such rules may be specified using the RELATED state.

Definitions: Our proposed audit process aims at assisting the security administrator to detect and fix cases
2 and 3 of the aforementioned anomaly. We first provide the data structures and functions that will be used
to conduct the audit process:

e L: set of stateless rules, such that every rule L; (where ¢ is a natural integer) is characterised by the
following conditions L;[SrcAddr], L;[DstAddr], L;[SPort, L;[DPort] and L;[Protocol] (such as TCP,
UDP, or any other transport layer protocol).



e [ set of stateful rules, such that every rule F; is characterised by the same conditions as the rules in
L, plus the condition attribute F;[State]. It is important to consider such a protocol, since the protocol
of a given connection could be different from the protocol of the main connection. For instance, in
scenarios based on VoIP applications, data transfer might be carried upon UDP traffic, while the main
connection is relayed via TCP connections.

e A: deterministic finite automaton that describes an application layer protocol. We rely on the use
of the alphabet of events and table of transitions of A, containing the set of operations that can
be exchanged between hosts, e.g., remainder set of operations once the main connection of two FTP
entities has been established. Q is the set of states, from which we identify the subset Q2. The elements
q of Qg represent establishment of adjacent connections (such as TCP connections or from any other
protocol type). The elements are characterised by the same set of conditions as the one in the rules
(i.e., g[SrcAddr], q[DstAddr], etc.). Let us observe that ¢[State] will highly rely on the specific firewall
vendor (cf. following function definition, in which we define the way to link the specific state attribute
of the automaton to the corresponding firewall device). Notice that R;[State] (i.e., the state defined
in a given rule R;) corresponds to the specific state as it is represented by the underlying firewall that
contains the rule, not the state attribute of the automaton. If necessary, we can rely on extended
features to provide a more fine-grained state management of some application layer protocols [19].
Q1 = Q — Q2 contains the set of states that are independent from related connections, and for which
the element ¢[State] is not defined. Finally, the initial state gy of the automaton holds the following
condition attributes: qo[SPort], qo[DPort] and go[Protocol] (corresponding to the connection-oriented
layer protocol). Figure 4 depicts a sample automaton based on our construction, for the FTP protocol.

e state firewall(q): function that links a given state ¢ € Q2 of the corresponding state automaton to
the firewall. For instance, in the case of the FTP protocol and a Linux firewall based on iptables and
conntrack, this function returns parameters --m conntrack and --ctstate RELATED for those states
where the establishment of connections is called.

o rule_exists(R, ¢): boolean function. R is a set of either stateless or stateful rules (but not both), ¢
represents a state of the automaton A which belongs to Qs (the state corresponding to the establish-
ment of related connections). If R contains stateless rules, then rule_exists(R,q) is true only when
there exists exactly one rule R; € R, such that g[SrcAddr] € R;[SrcAddr], g[DstAddr] € R;[DstAddr],
q[SPort] € R;[SPort], q(DPort] € R;[DPort], and g[Protocol] = R;[Protocol]. If R contains state-
ful rules, then rule_exists(R,q) is true when the previous conditions also hold and, moreover,
state_firewall(q[State]) = R;[State].

e rule exists(L, qp): boolean function. ¢p contains the initial state of the protocol, and L is a set
of stateless rules. The function is true only when there exists a rule L; € L, such that go[SPort] €
L;[SPort], qo[DPort] € L;[DPort], qo[Protocol] = L;[Protocol].

Algorithms: Algorithm 2 enables the verification of every state Q2 of an automaton associated with a given
protocol, in order to find rules that can be correlated. The algorithm specifies the appropriate corrections
in accordance to the detection of inter-state misconfiguration, and following the three cases mentioned
above (absence of rules, or misconfigured stateless or stateful rules). A[Qs2] points out to the Qo set of the
automaton. Algorithm 3 allows detection and correction of inter-state misconfiguration between stateless
and stateful rules, provided that a library of application layer protocols is given as input. Such a library
must contain the corresponding automata for the protocols. Then, it verifies whether the firewall handles
each of them, by looking at the initial state attribute gy of the corresponding automaton. In such a case,
Algorithm 2 processes the specific anomalies associated with that protocol. A[gg] points out the initial state
qo of every automaton. The following example presents an extract from a Linux based firewall configuration.
It contains a closed policy with three stateless rules that aim at granting authorisation to node 1.2.3.4 for
accessing the FTP service of node 5.6.7.8 (both in active and passive mode):



01: iptables —P FORWARD DROP

02: iptables —A FORWARD —p tcp —s 1.2.8.4 —d 5.6.7.8 ——sport 1024:65535 ——dport 21 —j ACCEPT

03: iptables —A FORWARD —p tcp —s 5.6.7.8 —d 1.2.8.4 ——sport 20 ——dport 1024:65535 —j ACCEPT

04: iptables —A FORWARD —p tcp —s 1.2.83.4 —d 5.6.7.8 ——sport 1024:65535 ——dport 1024:65535 —j ACCEPT

The previous sample contains two rules affected by inter-state misconfiguration. Rule in Line 02 is a
stateless authorisation to control incoming higher port connections targeting the FTP server listening on
port 21. Then, rules in Lines 03 and 04 grant authorisation access to the data connection counterpart, i.e.,
outcoming connection from the server to the client. However, these last two rules are stateless. They grant
access to any connection targeting ports in the whole range from 1024 to 65535. If we apply Algorithm 3
to the previous configuration, it will detect such a situation and suggest to handle the discovered issue by
adding to Lines 03 and 04 the parameters ——m conntrack and ——ctstate RELATED.

5. Experimental results

In order to validate the feasibility of our approach, a proof-of-concept prototype has been developed under
the Eclipse [23] framework. The prototype, available at [11], also provides an extension of MIRAGE [10], a
firewall audit tool for the automatic detection and correction of stateless firewall configuration anomalies.
The development of the stateful features is based on model-driven engineering, and extends the results
presented in [9] for the stateless case. Model-driven engineering promotes the use of abstract software
models, representing the concepts of a problem domain. In our case, this means extracting and verifying
already deployed stateful firewall configuration scripts affected by rule misconfiguration. The goal of using
model-driven engineering is getting rid off the low level details of the concrete solution system, so that we
can focus on the problem itself. This has enabled us with the possibility of abstracting from the rule filtering
language and providing the precise implementation of our algorithmic solutions in a generic and reusable
way. The result is a system that builds Platform-specific models (PSMs) from firewall configuration files
(e.g., iptables-scripting files), and transforms them into a Platform-independent model (PIM). Then, we
apply our discovery algorithms at the PIM level. This way, the solution obtained for a given firewall (e.g.,
a Linux firewall based on iptables) is reusable for any other system with little effort.

Figure 5 summarises the approach followed by our prototype to handle misconfigured files. It comprises
the following steps: (1) Parsing and injection of already deployed configuration files into models at the PSM
level; (2) Transformation of models from the PSM level to the PIM level; (3) Alignment of models at the PIM
level w.r.t. a given protocol automaton; (4) Execution of misconfiguration algorithms and reporting of the
discovered anomalies; (5) Generation of corrective rules. During the first phase, the prototype parses already
deployed configuration files and inject their information into a PSM representation. This step constitutes a
bridge between technical spaces allowing to pass from the technical space of configuration files (grammars
and text files) to the technical space of the model-driven methodology (metamodels and models) [24]. To
build the necessary parser for this step, we have used Xtext [25], an eclipse-based framework for building
domain specific languages. A parser for iptables configurations has been implemented as follows. First,
we have specified the grammar corresponding to the user-space iptables tool necessary to configure Linux
firewalls. Then, the grammar has been used as an input for the Xtext framework. As a result, we have
obtained the specific metamodel for iptables rules, as well as its parser and editor. Based on these three
generated artifacts, our prototype can now inject existing configuration files into models at the PSM level
(i.e., from existing Linux iptables configuration files to a PSM of iptables conforming the metamodel obtained
via the Xtext framework). Appendix B, Figure 11, shows a simplified version of the grammar we used to
build the three artifacts. Appendix B, Figure 12, shows the graphical representation of the metamodel that
can be obtained by providing such a grammar to Xtext. This metamodel, as well as all the others described
in this section, are implemented as an EMF (Eclipse Modelling Framework) Ecore model [26].

Once the specific model at the PSM level is available, a transformation towards a generic stateful filter
model at the PIM level is performed. The PIM metamodel that we use is an extension of the one presented
in [9]. Appendix B, Figure 13, shows a sample graphical representation of our new metamodel. The previous
metamodel contained only two entities: (1) Host, that represents network hosts as they are represented in

10



the configuration files, i.e., as IP addresses and IP ranges; and (2) Connection, that represents connections
between hosts specifying the port used to make the connection, the protocol (protocolKind in {icmp, tcp,
udp}) and, if the connection, is allowed or denied (connectionKind in {ACCEPT, DENY}). That was a
simplified representation of some relevant information contained in the configuration files of stateless packet-
filter firewalls while eliminating the redundancy and readability problems that low level filter rule languages
present. To make it able to represent stateful information as well, State and Event entities have been added.
These two fields correspond to the Transition attribute shown in Section 3, for our generic stateful filter
model. This way, State represents the state a connection is w.r.t. the finite state machine of a connection-
oriented protocol (e.g., TCP, TCP, DCCP, ATM, Frame Relay, TIPC, SCTP, etc.); and Fvent represents the
triggering condition for the transitions of such a state machine. For instance, with regard to the examples
in Section 3, the Ewvent field would be characterised by Flags and direction of a given protocol packet. The
information to be injected in these two entities, as well as the other entities, comes from the original files
parsed in the first step. For the model transformations, we use the ATL [27] model-to-model transformation
language. ATL is a hybrid (declarative with imperative facilities) language and framework that provides
the means to easily specify the way to produce target models from source models. In Appendix B, Figure
14, we show an ATL example that deals with the transformation of rules from the PSM level (e.g., iptables
rules) to the PIM level (e.g., rules of the generic stateful filter model where we will apply the algorithms).
The transformation keeps those general parameters (states, source and destination addresses, etc.) of every
iptables rule while it gets rid of any unnecessary specific values (e.g., notion of tables, chains, etc.). During
the transformation, it is also computed the mapping between the treatment of protocol automata by the
specific vendor firewall and the generic one. Some more examples of ATL transformations of our prototype
are available at [11].

The application of the audit algorithms presented in this paper is done at the PIM level. The algorithms
themselves have been encoded as ATL transformations. This way, the application of the algorithms and
functions is independent of the specific firewall. The output of the audit process is a new model that contains
all the necessary feedback to handle the detected misconfiguration, such as the missing rules needed to handle
it. At the time of writing this paper, a complete implementation of Algorithm 1, together with a PSM to
PIM transformation based on stateful Linux firewall configuration files is available for our prototype at [11].
A sample screenshot with the results of such an implementation is shown in Appendix B, Figure 15. We
show in the screenshot how a configuration file, based on iptables and the conntrack match, is processed.
The output model is displayed in the console window, to guide the user on the necessary steps to update
and correct an initial set with flawed rules. Using the framework, we conducted some tests and measured
the memory consumption and the processing time needed to audit flawed configuration files based on the
following two classes: (1) closed policies, containing only permissions to valid TCP transitions; (2) open
policies, containing only prohibitions to invalid TCP transitions. The results of these measurements are
plotted in Figures 6(a) and 6(b). Notice that the plots are consistent with the complexity analysis discussed
in Section 3.4 (in terms of space and time complexity). Although the results show strong requirements, we
believe that they are reasonable for off-line analysis, since the whole process does not affect the critical
performance of the audited firewall.

6. Related Work

Traditional research work on the design of firewalls, essentially stateless firewalls, mainly address the
construction of high level languages for the specification of firewall configurations. This includes functional
languages [28], rule-based languages [29] and higher abstract models that allow capturing some further
aspects such as network topologies [30]. Such languages allow security administrators to free themselves
from the technical complexity and specificity of proprietary firewall languages. Some of them allow, moreover,
the automatic derivation of concrete access control rules to configure specific firewalls through a translation
process. At the same time, research and development work in this context may allow the verification
of consistency (i.e., absence of conflicts), completeness (all the expected requirements are covered), and
compactness (none of the rules are redundant or unnecessary) [1]. Refinement approaches may also take
into account the functionality offered by every firewall manufacturer (stateless, stateful, management of
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virtual private networking, etc.) [31] to ensure the effective distribution of tasks between a decision module
and the eventual filtering (enforcement) components.

For the already deployed firewall configurations, the aforementioned approaches do not solve redundancy
or configuration conflicts that might have been introduced due to periodic, often manual, updates. Several
studies have been conducted toward audit mechanisms that analyse already deployed configurations, with
the goal of signalling inconsistencies and fixing the discovered anomalies. We can classify them into three
categories: (I) those that are oriented towards directly querying the firewall itself [32, 33, 34], (II) those
targeting conflict management [35, 36] and (IIT) those focusing on the detection of anomalies [37, 4, 20, 2, 38].
In category I, the analysis problem is relayed towards a process of information retrieval by directly querying
the firewall. This requires having highly structured configurations and specific query languages for processing
them, as well as for generating complete and effective data queries. The results are, moreover, prone to both
false negatives and false positives, since no track from previous filtering matches are taken into account during
the audit process. Category II is concerned with packet classification algorithms, mostly for packet filtering
routers, and that rely on optimised data structures to speed up the matching process between incoming flows
of packets and filtering rules. Then, the goal is to verify that there are no conflicting situations in which
several rules with different actions (e.g., accept or reject the traffic) apply to the same traffic. Examples in
this category include the use of techniques such as grid-of-tries classification [39] and bit vector aggregation
[35]. Class III improves the detection offered by solutions in class II, by: (1) characterising in more detail
the set of anomalies, e.g., redundancy is also addressed; (2) transforming the rule sets in such a way that
the ordering of rules is no longer relevant; (3) considering combinations of rules instead of simply comparing
rules two by two as proposed by Al-Shaer et al. [37], which enables the detection of a combination of rules
that conflict with another rule [20, 2]; and (4) extending the process to distributed setups with multi-firewall
scenarios, in order to detect situations in which different firewalls within interconnected paths may perform
different actions to the same network traffic.

None of the above surveyed techniques consider the case of stateful firewalls. So far, little work in the
stateful case has been conducted. Buttydn et al. proposed in [7] an early approach that heads towards
this research line. Built upon an existing tool reported by Yuan et al. in [5], the solution is limited to
the adaptation of existing anomaly detection techniques for stateless firewalls, such as redundancy and
shadowing, to those that are stateful. Therefore, their work does not take into account anomalies that may
impact, for instance, the tracking of connections or the management of the internal firewall state memory
table. Automatic methods of theoretical nature based on high-level declarative languages [6], theorem
provers [40], and satisfiability solvers [41], have also been proposed as plausible solutions to conduct formal
verification of stateful policies properties. The goal is to attest that a given firewall correctly implements
the policy being verified. The practical application of these approaches to known (existing) firewall vendors
is, however, unknown. In a different vein, Fitzgerald et al. propose in [42] an approach based on semantic
web technologies to model both stateless and stateful firewalls. Although the generality of their proposed
representation is interesting enough, the work fails at characterising the precise types of errors that would
be necessary to handle by the detection process in the stateful case. The approach only represents those
good practises that must be followed when configuring a given stateful firewall.

7. Conclusion

Nowadays, packet filtering requires more than a passive solution to stop malicious traffic. Stateful
firewalls are the predominant solution to guarantee such a protection. They provide an effective enforcement
of access control rules at higher network layers, in order to protect incoming and outcoming interaction with
the Internet. Nevertheless, the existence of anomalies in their configuration is very likely to degrade the
protection they provide. While some anomalies may occur in rule sets that only contain stateful rules (intra-
state rule misconfiguration), others affect rule sets that contain both stateful and stateless rules (inter-state
rule misconfiguration). In this paper, we presented algorithmic solutions to handle anomalies for each of
these two categories. Based on an automata theory approach, we provided solutions to detect inconsistent
rules and report alternative configurations, in order to guide security administrators to handle such rules and
get consistent rule sets. We validated the feasibility of our approach over a proof of concept prototype based
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on model-driven engineering. The model-driven engineering approach was chosen with the aim of separating
the low level details of the problem (e.g., firewall vendor specificities) from the enforcement of the algorithmic
solutions. This way, we applied the algorithms to the generic representation of the stateful filtering rules,
at the abstract level. As a result, we expect to extend the prototype to address any other stateful filtering
systems with minimum effort. Perspectives for further work include the extension of our approach to handle
inter-state rule misconfiguration and multi-component scenarios. In multi-component scenarios, several
network security components are in charge of enforcing distributed network security policies, and would
require a verification of the security functions supplied to them, to avoid the cases of misconfiguration
reported in our work.
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Figure 1: Progression of a TCP connection exhibiting normal behaviour, based on [12]. (a) Unified TCP automaton (for
simplicity, it represents together the two separate automata, one for the client and one for the server, of the traditional TCP
finite state machine). (b) Events description. (b) Transition table, where the symbol @ represents the invalid state.
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Event label | Flag set Direction Event description Event label | Flag set Direction Event description
E, {SYN} Sender path Send SYN Eg {ACK} Receiver path Receive ACK

E, {SYN} Receiver path Receive SYN E, {FIN} Sender path Send FIN

Ey {SYN+ACK} Sender path Send SYN+ACK Eg {FIN} Receiver path Receive FIN

E, {SYN+ACK} Receiver path Receive SYN+ACK Ey Set of all other invalid flag combinations (Sender path)
Eg {ACK} Sender path Send ACK Eyp Set of all other invalid flag combinations (Receiver path)

Figure 2: Automaton of a given connection-oriented protocol P. For simplicity, invalid transitions are not shown. Such
transitions are available in Appendix A, Figure 7.
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Rule | SrcAddr | DstAddr | SPort | DPort | Protocol | Transition Action
1 1.2.3.4 5.6.7.8 1080 80 P Qo + Eo ACCEPT
Ira 5.6.7.8 1.2.3.4 80 1080 P Q2 + E3 DENY ACCEPT
r3 5.6.7.8 1.2.3.4 80 1080 P Qs + E7 ACCEPT
T4 1.2.3.4 5.6.7.8 1080 80 P Qo + Eg ACCEPT

Table 1: Stateful filtering rule set addressing valid transitions. Algorithms in [8] detect an anomaly in rule 72, and propose its
modification from DENY to ACCEPT.

Rule | SrcAddr | DstAddr | SPort | DPort | Protocol | Transition | Action
1 1.2.3.4 5.6.7.8 1080 80 Qo + E4 DENY
Ty 5.6.7.8 1.2.3.4 80 1080 Q1 + E; DENY
I3 1.2.3.4 5.6.7.8 1080 80 Q2 + E; | DENY
Iy 5.6.7.8 1.2.3.4 80 1080 Qs + E; | DENY
s 1.2.3.4 5.6.7.8 1080 80 Q4 + Eg DENY
e 5.6.7.8 1.2.3.4 80 1080 Qs + Es DENY

cBa~Raviaciisciiae

Table 2: Stateful filtering rule set addressing invalid transitions. Algorithms in [8] report the set as correct.

Algorithm 1 audit_rule_set(A4,R,Qq,Q,,@)

10:
11:

12:
13:
14:
15:
16:

17:
18:
19:

Input

Input:

Input
Input
Input

S« f
/%S

J*T:

: A, protocol automaton

R, stateful rule set

: Qp, initial state of automaton A
: Qp, final state of automaton A
: @, invalid state of automaton A

ind_all_paths(A,Qo,Qn);
set of sets, s.t. every element in S is a set of valid transitions connecting Qy and Qn*/

: T «— transitions_to_state(4,0);

set of invalid transitions, s.t. every element in T is a transition of A to reach @ */

: repeat

r; < next_unvisited_rule(R);

if (r;[Action] = ACCEPT) then

L — prune_paths(S,r;[Transition] );
/*¥L C S, s.t. every path in L is a set of valid transitions connecting @y and Q, that
contains the state represented by r;[Transition] */

else if (r;[Action| = DENY) then

L—T;

end if

C «— cover_with rules(L,R,r;);

M «— extract missing rules(C);

/* M: set of mutually disjoint rules derived from R, s.t. M N R = 0; let m be a rule in M,
then m[Action] = r;[Action], Address and Port attributes of m are consistent with rules in R, and
m|Transition] is necessary to fully cover the set of transitions in L */

if (M #0) then

report ('Intra-state misconfiguration in R discovered via r;. Update R based on rules in M’);

end if

20: until no_more_rules_to_visit(R);

/* no-

more-rules-to-visit(R) holds true whenever all rules in R but the last are reported as visited (the

last rule is not inspected given that it is just a mark to the default policy)*/
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Rule | SrcAddr | DstAddr | SPort | DPort | Protocol | Transition Action
I 1.2.3.4 5.6.7.8 1080 80 P Qo + Eo ACCEPT
To 5.6.7.8 1.2.3.4 80 1080 P Q2 + E3 ACCEPT
T3 5.6.7.8 1.2.3.4 80 1080 P Qs + E~ ACCEPT
v, | 1234 | 5678 | 1030 | 80 P Qo + Es | ACCEPT
s any any any any any any DENY
(a) Initial (flawed) rule set R
S 01 02 03 04 05 06 07 08
01| Qo +E1 | Qi +E2 | Qo+ E3 | Qi+ Eg | Qs +Er | Qs +Eg | Qs +Es | Qu1 + Eg
02| Qo +E1 | Qi +E2 | Q+E3 | Qi+Eeg | Qs +Er| Qs +Eg | Qo+ Eg
03| Qo +E; | Qi +E | Q+E3z| Qi+ Eg | Qs +Esg | Qr +Es | Qo + Er
04| Q+E1 | Qi +Es | Q3 +Es5 | Qs +Er | Qs +Eg | Qs + Es | Qu1 + Eg
05| Q+E1 | Q+Es | Q3 +Es | Qs +E7r | Qs +Eg | Qo + Eg
06 | Qo +E1 | Qi +Es | Q3 +Es | Qs +Esg | Q7 + E5 | Quo + E7
07 | Qo+ E2 | Qe +E3 | Qs +Ee | Qs + Er | Qs + Eg | Qs +Es | Quu + Eg
08| Qo+Ex | Qe+ E3z | Qi+ Eg | Qs +Er | Qs +Eg | Qo + Eg
09 | Qo+Ex | Qe+ E3 | Qi+ Eg | Qs + Eg | Q7 + E5 | Quo + Er
(b) Contents of set S
L 01 02 03 04 05 06 07
07 | Qo+ E2 | Qe+ E3 | Qi+ Eg | Qs + Er | Qs + Eg | Qs + Es | Qu1 + Eg
08| Qo+Ex| Q+E3|Qi+Es| Qs+ Er| Qs+ Eg | Qo+ Eg
09 | Qo +Ex | Qe+ E3 | Qi+ Eg | Qs + Eg | Q7 + E5 | Quo + Ev
(c) Contents of set L
C 01 02 03 04 05 06 07
01 | r1: Qo + E2 | r2: Qo + Ez | my: Qu + Eg | 13: Qs + E7 | m3: Qg + Eg | mg: Qs + Es | mg: Qi1 + Eg
02 | r1: Qo+ E2 | 12: Q2 + E3 | mi: Qg+ Eg | 13: Qs + E7 | my: Qg + Eg | 14 Qo + Eg
03 Iy QO + E2 To: QQ + E3 myq: Q4 + E6 msy: Q5 + Eg ms: Q7 + E5 mry: QlO + E7
(d) Contents of set C
Rule | SrcAddr | DstAddr | SPort | DPort | Protocol | Transition Action
Iy 1.2.3.4 5.6.7.8 1080 80 P Qo + E» ACCEPT
Iy 5.6.7.8 1.2.3.4 80 1080 P Q2 + E3 ACCEPT
m; 1.2.3.4 5.6.7.8 1080 80 P Qs + Eg ACCEPT
I3 5.6.7.8 1.2.3.4 80 1080 P Qs + Er ACCEPT
my 1.2.3.4 5.6.7.8 1080 80 P Qs + Eg ACCEPT
v, | 1234 | 5678 | 1080 | 80 p Qo + Fs | ACCEPT
rs any any any any any any DENY

Figure 3: Applying Algorithm 1 to a sample rule set with a closed policy.

(e) Sample updated rule set
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Algorithm 2 handle_inter rule misconfiguration(L, F, A)

1: Input: L, set of stateless rules
2: Input: F, set of stateful rules
3: Input: A, protocol automaton
/¥ AlQs]: Qo states for automaton A */

4: for all g € A[Qs] do

5: if rule_exists(F,q) then

6: /* Move to following state */

7: continue;

8 else if rule_exists(L,q) then

9: report(’stateless rule for state q of protocol A’)
10: else
11: report(’missing rule for state q of protocol A’)
12: end if
13: end for

Algorithm 3 handle_all_protocols(L, F, Library)

Input: L, set of stateless rules
Input: F, set of stateful rules
Input: Library of automata, containing the list of supported application-layer protocols
for all A € Library do

if rule_exists(L, Algo]) then

handle inter rule misconfiguration(L, F, A);

end if

end for

g New TCP N s
./ SourceAddr: servers address \
DestAddr: client’s address 1
SrcPort: 1024:65535 )

AN DestPort: 20 J/
N Protocol: TCP .

Open transfer
qo: START (active mode)
SourceAddr: client’s address
DestAddr: serverst s address
SrcPort: 1024:65535
DestPort: 21
Protocol: TCP

Client initiates
session

Open transfer
(passive mode)

e S R ' ~ \
et New TCP s L Q,state )
’ SourceAddr: clients address \ RS e

DestAddr: servers address \ T

1

\ SrcPort: 1024:65535 B

AN DestPort: 1024:65535 S
.. Protocol: TCP ot

Figure 4: Suggested automaton for the application layer protocol FTP.

18



Conf. file PSM Iiyel PIM level (during the PSM to PIM transformation,

fora (speur:c it is also computed the mapping between the

given ;0 eac“ treatment of protocol automata by the specific

vendor irewa vendor firewall and the generic one).

stateful vendor)

firewall.

N application of
parsing model audit algorithms
——P> —Pr! Y >
injection transformation 4
File e.q., Genefrlc| Report
iptables statje IU model
stateful mode
model
Protocol
automata
Figure 5: Our proposed Model-driven evaluation framework.
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Figure 6: Experimental evaluations conducted using the framework shown in Figure 5, and ATL transformations implementing
Algorithm 1. The evaluations use incremental configuration files (from 8 to 180 rules), based on iptables and the conntrack
match, representing (1) open policies, containing only prohibitions to invalid TCP transitions; and (2) closed policies, containing
only permissions to valid TCP transitions. (a) Processing time needed to audit the files. (b) Space necessary to store the
associated structures in memory.
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A. Applying Algorithm 1 to an open policy

We show in this appendix an intra-state misconfiguration example over a rule set enforcing the prohibition
of invalid transitions, i.e., the default policy is to accept all those packets not matching any given prohibition.
The complete table of transitions containing the invalid transitions is shown in Figure 7 and the rule set
is summarised in Figure 8(a). The example complements the one given in Section 3.3, Figure 3, on the
application of Algorithm 1 to a sample rule set with a closed policy. The main difference here is the coverage
of transitions applied in Line 15 of Algorithm 1. Notice that, instead of covering paths of the automaton
from Qg to Q12, we shall only verify the coverage of transitions to the invalid state (@) from any other state
of the automaton. Hence, the contents of set L in Line 15 corresponds to the one-dimensional vector T
built in Line 7 (cf. Figure 9). Another difference is the representation of the rules in Figures 8(a) and 8(b).
To reduce their size, we grouped all the transitions sharing the same state and event path direction. We
use the notation Q, + {E.|Ep} to represent transitions Q, + E, and Q. + E;. The remainder rationale
of the algorithm for this second example prevails. Indeed, the application of function cover with rules in
Line 15 of L is triggered by rule r; (first rule obtained in Line 9). This suffices to mark as visited all the
remainder rules in R, and propose the updated rule set shown in Figure 8(b). Notice that the 15 missing
rules signalled in such a Figure, correspond to the 67 rules (out of 114) denoted as missing in Figure 10.
The remainder 47 rules in Figure 10, already in R, correspond to rules r; to r1; shown in Figure 8(a). We
recall that the last rule in the set is not processed by the algorithm, since it is just the default policy action.

Event E, |E, |E; |E |E |E |E |E |E |Eyp
State
Q (LISTEN) Q |Q, |0 |0 |0 |0 |0 |0 |0 |0
Q, (SYN_SENT) o |, |0 |Q;s |0 |0 |0 |0 |0 |©@
Q, (SYN_RECEIVED) %) %) Q4 %) @ %) @ @ @ )
Q;(SARECEIVED) | @ | |0 |0 |Qs |0 |© |©@ | |0o
Q, (SA_SENT) 2 |o |o |o|o | |0 |0 |0 |0
Qg (ESTABLISHED) © o |lo |lo |l | | |Q |0 |@
Qg (FIN_SENT) 2 o |o |o |o |y|o | |0 |@
Q, (FIN_RECEIVED) %) %) %) %) O\10 %) %) @ @ @
Q, (CLOSING) o o |o |o |Qu|2 |0 |0 |@ |©@
Q, (ACKRECEIVED) | 9 |@ |@ |© |© |@ |©0 |Qy|o |
Qqo (ACK_SENT) 2 |o |0 |o |o |0 |[Qy|lo |0 |©
Qq; (LAST_ACK) 2 |0 |0 |0 | |Q,|o |0 |0 |o
Q,, (CLOSED) 2 |o |0 |o |0 |0 |© |0 |0 |0

Figure 7: Complete set of transitions for the automaton depicted in Section 3, Figure 2.
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Rule | SrcAddr | DstAddr | SPort | DPort | Protocol Transition Action
I 1.2.3.4 5.6.7.8 1080 80 P Qo + {E4|E6|Es[E1o} DENY
Io 5.6.7.8 1.2.34 80 1080 P Qo + {Es|Es|E7|Eq} DENY
r3 1.2.3.4 5.6.7.8 1080 80 P Q1 + {Es|Es|E10} DENY
Iy 5.6.7.8 1.2.3.4 80 1080 P Q. + {E,|Es|E5|E;|Eg} | DENY
Ie 5.6.7.8 1.2.34 80 1080 P Qs + {E1|Es|E7|Eg} DENY
r7 1.2.3.4 5.6.7.8 1080 80 P Q4 + {E2|E4|Eg|Eso} DENY
rg 1.2.3.4 5.6.7.8 | 1080 80 P Qs + {E2|E4|E6|Es|E19} | DENY
Tg 5.6.7.8 1.2.3.4 80 1080 P Qs + {E1|E3|E7|E9} DENY
11 5.6.7.8 1.2.3.4 80 1080 P Q11 + {E1|E3|E5|E7|[Eg} | DENY
r1g any any any any any any ACCEPT

(a) Initial (flawed) rule set R
Rule | SrcAddr | DstAddr | SPort | DPort | Protocol Transition Action

I 1.2.3.4 5.6.7.8 1080 80 P Qo + {E4|Es|Eg|E1o} DENY
Io 5.6.7.8 1.2.34 80 1080 P Qo + {E3|Es|E7|Eo} DENY
I3 1.2.34 5.6.7.8 1080 80 P Qi1 + {Eg|Es|E1o} DENY
Iy 5.6.7.8 1.2.34 80 1080 P Q1 + {E||E3|Es|E;|Eg} DENY
r5 1.2.3.4 5.6.7.8 1080 80 P Q2 + {E2|E4|E6|Es|E10} DENY

m; | 5.6.7.8 | 1.2.3.4 80 1080 P Q: + {E1|E5|E;|Eg} DENY

m, | 1.2.3.4 | 5.6.7.8 | 1080 80 P Qs + {Ey|E4|E¢|Es|E1p} | DENY
Ie 5.6.7.8 1.2.34 80 1080 P Qs + {E1|E3|E7|Eq} DENY
r7 1.2.3.4 5.6.7.8 1080 80 P Q4 + {E2|E4|Eg|E1o} DENY

m; | 5.6.7.8 | 1.2.3.4 80 1080 P Qs + {E,|Es|E;|E;|Ey} | DENY

m, | 1.2.3.4 | 5.6.7.8 | 1080 80 P Qs + {E3|E4|Eg|E} DENY

m; | 5.6.7.8 | 1.2.3.4 80 1080 P Qs + {E1|E3|E5|Eg} DENY

mg | 1.2.3.4 | 5.6.7.8 | 1080 80 P Qs + {E2|E4|Eqo} DENY

m; | 5.6.7.8 | 1.2.3.4 80 1080 P Qs + {E|E3|E5|E;|[Eq} | DENY

mg | 1.2.3.4 | 5.6.7.8 | 1080 80 P Q; + {E;|E4|E¢|Es|E1p} | DENY

my | 5.6.7.8 | 1.2.3.4 80 1080 P Q; + {E{|Es|E;|Eg} DENY
rg 1.2.3.4 5.6.7.8 1080 80 P Qs + {E2|E4|Eg|Es|E10} DENY

Io 5.6.7.8 1.2.3.4 80 1080 P Qs + {E1|E3|E7|Eo} DENY

my, | 1.2.3.4 | 5.6.7.8 | 1080 80 P Qo + {Es|E4|Eg|Eqg} DENY

myq 5.6.7.8 1.2.3.4 80 1080 P Qg + {E1|E3|E5|E7|E9} DENY
mp | 1.2.3.4 | 5.6.7.8 | 1080 80 P Quo + {E2|E4|Eg|Es|Eyo} | DENY

m;; | 5.6.7.8 | 1.2.3.4 80 1080 P Qi + {E1|E3|E5|Eg} DENY

I'1o 1.2.34 5.6.7.8 1080 80 P Q11 + {E2|E4|Es|E1o} DENY

my, | 1.2.3.4 | 5.6.7.8 | 1080 80 P Qi + {E2|E4|E6|Es|Eg} | DENY

mi;s | 5.6.7.8 | 1.2.3.4 80 1080 P Q.2 + {E{|E3|E5|E;|Ey} | DENY

r12 any any any any any any ACCEPT

(b) Sample updated rule set
Figure 8: Applying Algorithm 1 to a sample rule set enforcing an open policy. For simplicity, we group transitions that share

the same state and event direction path (w.r.t. the event description shown in Section 3.3, Figure 2). This way, Qz + {Ea|Es}
represents transitions Q. + Eq and Qz + Ep.
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T 01 02 03 04 05 06

01| Qo+Es | Q+Eg | Qo +Eg | Qo+ Ei9| Qo+ E3z | Qo + Es
T 07 08 09 10 11 12

01| Qo+E7 | Q +Eg | Qi +Eg | Qi +Eg | Qi +Eio | Qi +E;
T 13 14 15 16 17 18

01| Qi +E3 | Q+Es | Q +E7 | Qi +Eg | Q@+ Ey | Qo +Ey
T 19 20 21 22 23 24

01| Qe+Es | Qe+ Eg | Qi +Ejpp | Q+E; | Qe+ Es | Qo + Er
T 25 26 27 28 29 30

01| Qe+Eg | Q3 +Ex | Q3 +Eq4 | Q3 +Es | Q3+ Eg | Q3 + Eyp
T 31 32 33 34 35 36

01| Qs3+E; | Q3+E3 | Q3 +E7 | Q3 +Eg | Qi +Ez | Qq +Ey
T 37 38 39 40 41 42

01| Qs+Eg | Qs+ Ejo| Qi+E; | Qi+ Es | Qu+Es | Q4 +Er
T 43 44 45 46 47 48

01| Qi+Eg | Qs +Ex | Qs +Es | Qs +Eg | Qs + Eip | Qs + Eg
T 49 50 51 52 53 54

01| Qs+E3 | Qs +Es | Qs +Eg | Qs+ E2 | Qs+ Es | Qs + Ego
T 55 56 57 58 59 60

01| Qs +E; | Qs +E3 | Qs +Es | Qs+ Er | Qs + Eg | Q7 + Eo
T 61 62 63 64 65 66

01| Qr+Ey | Qr+Eg | Qr +Eg | Qr+Eio | Qr +E; | Q7 + Es
T 67 68 69 70 71 72

01| Qr+Er | Qr+Eg | Qs +Ey | Qs +Ey | Qs+ Eg | Qs + Eg
T 73 74 75 76 77 78

01| Qs+Eip | Qs +Er | Qs +Es | Qs+ E7 | Qs+ Eg | Qo + Eo
T 79 80 81 82 83 84

01| Qo+ Es | Qo+ Eg | Qo + Ego Qo Eq Qg Es3 Qo Es
T 85 86 87 88 89 90

01 Qo E7 Qo Eg Qo + E2 | Quo + E4 | Qio + Eg | Qo + Es
T 91 92 93 94 95 96

01| Qo+ Ew | Quo+E1 | Qo+ E3z | Qo+ Es | Qo +Eg | Qi1 + Eo
T 97 98 99 100 101 102
01 | Quu+Es | Quu+Es | Qu+Eiwo | Qu+E1 | Qu+Es| Qi +E5
T 103 104 105 106 107 108
01 | Qi +E7 | Quu +Eg | Qiz+E2 | Q2+ Es | Q2+ Eg | Qi2 + Es
T 109 110 111 112 113 114
01 | Q2 +Ei9 | Q2 +E; | Qua +Eg | Q2 + Es5 | Qu2 + Er | Qi2 + Ey
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Figure 9: Contents of set 7', during the execution of Algorithm 1 with the automaton in Figure 2.




C 01 02 03 04 05 06

01 ri: Qo + By ri: Qo + Eg ri: Qo + Eg ri: Qo + Eq1g r2: Qo + E3 r2: Qo + Es
C 07 08 09 10 11 12

01 ra: Qo + Er ra: Qo + Eg r3: Q1 + Eg r3: Q1 + Eg r3: Q1 + Eqo ry: Q + E4
C 13 14 15 16 17 18

01 ry: Q + B3 ry: Qi + Es ry: Qp + Ey ry: Qp + By r5: Qo + Eo r5: Qo + By
C 19 20 21 22 23 24

01 r5: Qo + Eg r5: Qo + Eg r5: Qa2 + Eqg my: Qo + E; my: Q2 + Es my: Qo + B
C 25 26 27 28 29 30

01 | my: Q2 + Eg my: Q3 + Eo my: Q3 + Ey my: Q3 + Eg my: Q3 + Eg | ma: Q3 + Egp
C 31 32 33 34 35 36

01 re: Q3 + By rg: Q3 + E3 rg: Q3 + Er rg: Q3 + Eg r7: Q4 + Eo r7: Q4 + By
C 37 38 39 40 41 42

01 r7: Q4 + Eg r7: Qg4 + Eqg m3: Q4 + E; m3: Q4 + E3 m3: Q4 + Es m3: Q4 + Er
C 43 44 45 46 47 48

01 | m3: Q4 + Eg my: Qs + Eo my: Qs + By my: Qs +Eg | my: Qs + Eip | ms: Qs + Ey
C 49 50 51 52 53 54

01 | ms: Qs + Eg ms: Qs + Es ms5: Qs + Eg mg: Qs + Eo mg: Qs + B4 | mg: Qs + Eqg
C 55 56 57 58 59 60

01 | my: Qg + E; my: Qs + E3 my: Qs + Es my: Qs + Er mr: Qg + Eg mg: Q7 + Eo
C 61 62 63 64 65 66

01 | mg: Q7 + Ey mg: Q7 + Eg mg: Q7 + Eg | mg: Q7 + Ejg | mg: Q7 + Eq mg: Q7 + E3
C 67 68 69 70 71 72

01 | mg: Q7 + Er7 mg: Q7 + By rg: Qg + Eo rg: Qs + Ey rg: Qs + Eg rg: Qs + Eg
C 73 74 75 76 77 78

01 | rg: Qs + Eqp rg: Qg + Ey rg: Qs + E3 rg: Qg + Er7 rg: Qg + Eg miyg: Qo + Eo
C 79 80 81 82 83 84

01 | myp: Qo + Eq4 | myp: Qo + Eg | mig: Qg + Eqg myy: Qg By myi: Qg E3 myp: Qg Es
C 85 86 87 88 89 90

01 myy: Qg Er myi: Qg By miz: Qo + B2 | myo: Qo + By | mya: Qo + Eg | mya: Qio + Eg
C 91 92 93 94 95 96

01 | mip: Qio + E10 | mi3: Quo + E1 | myz: Quo + E3 | myz: Quo + Es | miz: Quo + Eg | 1100 Qi1 + Eo
C 97 98 99 100 101 102

01 | 110: Qu1 + E4 rigr Quu + Eg | 110t Qi1 + Eqo | 1110 Quu +E1 | 1112 Quu + E3z | 1110 Qui + E5
C 103 104 105 106 107 108

01 | ry1: Qu + Er rip: Qun + Eg | mig: Qo + Eo | myg: Qo + Ey | myg: Quo + Eg | myg: Qo + Eg
C 109 110 111 112 113 114

01 | myy: Qu2 + Eyo | mys: Qu2 + Ey | mys: Q2 + Ez | mys: Q2 + Es | mys: Qua + E7 | mys: Qi2 + Ey

Figure 10: Contents of set C, during the execution of Algorithm 1 on the initial rule set shown in Figure 8(a).
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B. Experimental results (additonal material)

Figure 11: Simplified Iptables grammar example

Model: (’=j’)? target=Target
rules += Rulex; (——log—prefix > 1p=LP)?
Rule:
declaration=ChainDeclaration | FilterDeclaration Match:

; name=(conntrack | state)
FilterDeclaration:
filter=FilteringSpec TCPFlag:
name=(Syn | Ack | Fin | Rst | Psh |
Urg | All | None)

3

FilteringSpec: H
FilterSpec
; ChainDeclaration:
iptables ’ =N’ ChainName
FilterSpec: ;
’iptables ’ option=(C-A’ | '=-D’ | '=P’)
chain=Chain (’—s’ ip=IPExpr)? IPExpr:
(’—i’ interface=Interface)? ('—d’ ipDst=IPExpr)? ipByteExpr ’.’ ipByteExpr ’.°’
(’—p’ protocol=Protocol)? ipByteExpr ’.’ ipByteExpr
(’——sport’ sourcePort=INT)? (IpRangeExpr)?
(’——dport’ destinationPort=INT)? (neg?="'!")7 ;
(syn?="——syn’)? ("——m’ matches=Match)?
("——ctstate ’ states+=State (’,’ states+=State)x*)? ipByteExpr:
(’——ctdir’ dir=Dir)? INT
("——ctstatus ’ status=Status)? ;
(——state’ states+=State (’,’ states+=State)x)?
(——tcp—flags > examFlags+=TCPFlag IpRangeExpr:
(7, examFlags+=TCPFlag)* flags+=TCPFlag >/’ INT
(7, flags+=TCPFlag)*)? ;
H Model
¢
0..* | rules
filcer
H Rule H FilterDeclaration|
0..1
[) )
declaration | 0..1 0..1 filter
H ChainDeclaration H FilteringSpec
H Interface 0.1 H FilterSpec | chain H Chain
= name : EString interface | = option : EString | 0.1.2 chainName : EString
= ip : EString "
= ipDst: EString flags 0.
H LogPrefix | 0.1 Z Ez;o:(c):glo:rEStErlrtg < l - B TCPFlag
" u : -
= name : EString I = destinationPort : EInt eexamF 395 | = name : EString
= neg: EBoolean 0.
= syn : EBoolean
B Match 0.1 = dir : EString _ states| [ State
= name : EString matches | = status : EString I 0.
= target : EString :

Figure 12: Iptables metamodel, obtained by applying the grammar in Figure 11 on the Xtext framework [25]



[ Stateful Filter

[}

. .
0.* y hosts 1 outConnections 0. connections
H Host " H Connection
T ipAddress : EString Src1H°St inConnectiogE = srcPort:Elnt
0.* 2 kind : ConnectionKind
desHost " | = protocol : ProtocolKind
o dstPort : EInt
<<enumeration>>
2 ConnectionKind ¢ ¢
= ACCEPT
= DENY
0..1| events 0..1 | states
lk<enumeration>>
2 protocolKind H Flag 0..* H Event H State
- icmp ' flag = direction
= tcp
= udp

Figure 13: Stateful (generic) filter metamodel



Figure 14: ATL transformation example

rule filterNew2ConnectionsQO {

from

to

sl: Iptables!FilterSpec,
s2: Iptables!FilterSpec (thisModule.FirstPathRules—>includes(sl)
and sl.isOfState ('NEW’ , ’SYN’)
and s2.isOfState ('NEW’ , ’SYN’)
and s2.ip = sl.ipDst
and s2.ipDst = sl.ip)

t: StatefulPIM!Connection —>
(StatefulPIM ! Network. alllnstancesFrom (’OUT)—>
first ().connections) (
srcPort <— sl.sourcePort,
dstPort <— sl.destinationPort ,
kind <— if sl.target = ’ACCEPT’ then #ACCEPT else #DENY endif,
protocol <— sl.protocol,
states <— state,
setFlags <— event,
desHost <— thisModule.createHost (thisModule.findHost (sl.ipDst)),
srcHost <— thisModule.createHost (thisModule.findHost (sl.ip))
)
state: StatefulPIM!State (
name <— ’'QO0’
)

event: StatefulPIM!Flag (
name <— ’'E2’
)

t2: StatefulPIM!Connection —>
(StatefulPIM ! Network. alllnstancesFrom (’OUT)—>
first ().connections) (
srcPort <— s2.sourcePort ,
dstPort <— s2.destinationPort ,
kind <— if s2.target = ’ACCEPT’ then #ACCEPT else #DENY endif ,
protocol <— s2.protocol ,
states <— state2,
setFlags <— event2,
desHost <— thisModule.createHost (thisModule.findHost (s2.ipDst)),
srcHost <— thisModule.createHost (thisModule.findHost (s2.ip))

state2: StatefulPIM!State (
name <— ’'QO0’

event2: StatefulPIM!Flag (
name <— ’'E1’
)
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t. (a) Project explorer, from which we can access to the

configuration files, as well as models and transformations. (b) Initial rule set, affected by intra-state misconfiguration. (c)

Console, displaying the results of the audit process and the series of missing rules to handle the misconfiguration.

1pse environment

Prototype system developed under the Ecl

Figure 15



