Towards an Access-Control Metamodel for Web
Content Management Systems

Salvador Martinez', Joaquin Garcia-Alfaro®, Frédéric Cuppens?, Nora
Cuppens-Boulahia? and Jordi Cabot*

1 ATLANMOD, & Ecole des Mines de Nantes, INRIA, LINA, Nantes, France
{salvador.martinez_perez, jordi.cabot}@inria.fr
Télécom Bretagne; LUSSI Department Université Européenne de Bretagne, France
forename.surname@telecom-bretagne.eu
3 Télécom SudParis; RST Department CNRS Samovar UMR 5157, Evry, France
joaquin.garcia_alfaro@telecom-sudparis.eu

Abstract. Out-of-the-box Web Content Management Systems (WCMSs) are the
tool of choice for the development of millions of enterprise web sites but also the
basis of many web applications that reuse WCMS for important tasks like user
registration and authentication. This widespread use highlights the importance of
their security, as WCMSs may manage sensitive information whose disclosure
could lead to monetary and reputation losses. However, little attention has been
brought to the analysis of how developers use the content protection mechanisms
provided by WCMSs, in particular, Access-control (AC). Indeed, once config-
ured, knowing if the AC policy provides the required protection is a complex task
as the specificities of each WCMS need to be mastered. To tackle this problem, we
propose here a metamodel tailored to the representation of WCMS AC policies,
easing the analysis and manipulation tasks by abstracting from vendor-specific
details.

1 Introduction

Web Content Management Systems (WCMSs) is the technology of choice for the devel-
opment of millions E] of Internet sites and increasingly, becoming a framework widely
used for the development of Web applications. They provide an integrated environment
for the definition of the design, layout, organization and content management of the ap-
plication and, because of its relative ease of use, they enable users with little technical
knowledge to develop fully functional systems.

This widespread use highlights the importance of security requirements, as WCMSs
may manage sensitive information whose disclosure could lead to monetary and repu-
tation losses. Due to the nature of the users, the focus has been often put in facilitating
the WCMSs configuration. Although this systems are easy to use, a proper configura-
tion is needed to minimize the introduction of vulnerabilities. As a consequence, tools
for checking the configuration of WCMSs have been provided and analysed by the sci-
entific communities. However, this tools are focused in low-level security aspects like
management of cookies or prevention of SQL injection vulnerabilities [SI8]].

4 http://trends.builtwith.com/cms (15 April 2013)

Moreover, despite some approaches for extracting AC information from dynamic
web applications source code[3l2], little attention has been brought to the analysis of
how developers use the content protections mechanisms provided by WCMSs systems.
Particularly, Access-control techniques, integrated in most WCMSs and capable of en-
forcing confidentiality and integrity of data must be analyzed so that no logical flaws
are present in the security policy. Unfortunately knowing if an implemented AC policy
on a WCMS provides the required content protection is a complex and error-prone task
as the specificities of each WCMS vendor AC implementation must be mastered (e.g.
the set of roles and permissions that can be defined vary largely among the different
WCMSs).

In order to tackle this problem, we propose to raise the level of abstraction of the
AC implementation so that it gets represented acording to a vendor-independent meta-
model. This WCMS security metamodel must be able to represent WCMS specific in-
formation along with AC concerns. We can regard such a metamodel as an extension of
typical AC models[6] specially tailored to the representation of security in WCMSs.

Ideally, this models should be automatically obtained from existing WCMS AC
configurations. Therefore, here, along with the description of the metamodel for the
representation of WCMS AC policies, we describe the process to automatically extract
them from a Drupal[l] WCMS, one of the three most popular WCMSs. Note how-
ever, that the extraction from other WCMSs like Wordpress or Joomla will follow the
same process. Once these models are available, they can be analysed in a generic way,
focusing in the security aspects and disregarding the specificities of concrete vendors.
Moreover, Model-driven tools for querying, performing metrics, provide visualizations,
etc, become automatically available, easing the analysis tasks.

Combining the vendor-independent representation and the extraction process, mi-
gration and reengineering tasks are facilitated. Recovered AC policies represented in
our metamodel can be used, after its analysis, correction, etc., as a pivot representation
for automatically generating correct configurations or configurations for other WCMSs.

The rest of the paper is organized as follows. In Section [2] previous concepts are
introduced whereas is Section [3] we describe our proposed WCMS AC metamodel. In
Section [4] the extraction approach over a Drupal system is described. Applications of
the extracted model are summarized in Section[5] Finally, Section[6|concludes the paper
and discusses some future work.

2 Background and Motivation

WCMSs are Content Management Systems (CMSs) specially tailored to the authoring
of content in the Internet. They integrate facilities for the definition of the design, layout,
organization and collaborative content management of web sites and can also be used,
due to the wide range of features they offer, as a framework basis for the development
of web applications. They are, due to its relative ease of use (they allow users with little
knowledge of web markup and programming languages to create and manage fully
functional web sites) and low cost, the technology of choice for the development of
millions of web sites.

In general, they are composed by a back-end, comprising the repository of contents
and administrative tools and a front-end that displays this information to web clients.

Access-control[7]] is a mechanism aiming at the enforcement of the Confidentiality
and Integrity security requirements. Basically, AC defines the Subjects, Objects and
Actions of a system and provides the means to describe the assignment of permissions
to subjects. This permissions declare which actions the subject is authorized to perform
on the objects of the system. It is, due to its conceptual simplicity w.r.t. other techniques,
like cryptography, heavily used in multiple domains and it has been integrated, among
others, in file systems, databases, network filtering languages and WCMSs.

There exist different models for the specification of Access-control policies, where
the current trend is Role-based access control (RBAC)[6]], as it simplifies the adminis-
tration of security policies by granting privileges to roles and not directly to users.

Motivation. As discussed in the introduction, security is a critical concern in WCMSs
as they may manage sensitive information. Therefore, security mechanisms have been
integrated in most WCMSs where access-control mechanisms play a prominent role.
However, WCMSs users often lack depth technical and security knowledge, so that the
implemented access-control policies may contain security flaws. For instance, in Dru-
pal, the permission Delete any content of type Article could be, by mistake, granted to
the default role Authorized User. As all user-defined roles inherit by default from this
role, this mistake will give them the capacity of deleting the content of the application.
Furthermore, the frequent need of migrating from one WCMS to another, also high-
lights the need for understanding the current security policy so that it can be accurately
translated especially, since the security concepts in each WCMS differ. Failing at doing
so will often imply putting the new system under risk.

In this scenario, analysing and understanding the security policy enforced by a
WCMSs turns up as a critical necessity. Unfortunately, each WCMSs vendor provides
its own access-control model and management tools so that this analysis tasks requires
in-depth knowledge of the concrete system in hand.

We believe that, in order to tackle this problem, the level of abstraction of the AC
policies enforced in WCMSs needs to be raised, so that the information is represented in
a vendor-independent manner. We propose thus to represent the AC policies as models
corresponding to a WCMS access-control metamodel. In the rest of the paper, we will
detail the proposed metamodel and extraction approach.

3 WCMS Access-Control Metamodel

Central to the process of recovering and analysing the access-control information of
WCMSs is the definition of a metamodel able to concisely represent the extracted
Access-control information in the domain of WCMSs. This metamodel must also be
platform-independent, so that we can analyse the access-control information disregard-
ing the especificities of the concrete WCMS security features and implementation.
Figure|l| depicts our proposal for such a metamodel. It is an RBAC-inspired meta-
model, thus, containing all RBAC basic concepts along with WCMS specific infor-

| Create ‘ ’ Read ‘ | Edit I ’ Delete ‘ | Publish |
| | L | | | L | | |

| 1
| Search | | Unpublish |

ContentOperation CustomOperation

| AdministrativeOperation

I 0.1 content

V contents
— Operation 0.. Content —
1| description : EString author __Node
0.% description : EString
operation 0.*
perations comments
0.*
Wcms
Comment Page Post CustomNode
wcm:
0.1 t 1
ype
1.*| subjects - - .
. pages 0.* ontentType
subject description : EString

inheritsFrom [NotBlackListed | GenericCondition 0.1
0.7 condition : EString

| User | roles Role

T predefined : EBoolean Authorship
IdentifiedRole

constraintIO..* l .
1/ permission

Permission
description : EString

T
NotldentifiedRole contentType

permissions
0.*

permissions 0..*

Fig. 1. WCMS metamodel excerpt

mation. It consists basically of four kind of elements. Contents, i.e., the information
hosted by the system, Actions, i.e., operations that can be performed on the WCMS,
Permissions, i.e., the right of performing these Actions and Subjects, i.e., the triggers
of Actions. In the following, we will detail the metamodel concepts of these categories
along with its rationale.

Content. The content of a WCMS is the information it manages. This is represented in
our metamodel by the Content metaclass. Each WCMS defines its own kinds of content.
To be able to represent that eventuality, our Content elements have a ContentType that
identifies its type. This also allows for the representation of fine-grained and coarse
grained access-control. Effectively, some WCMS access-control models allow for the
definition of different permissions for individual content elements, while others only
allow the definition of global permissions on all the contents of a type.

Then, we provide the users of our metamodel with some predefined kinds of con-
tent. In one side we have Node, representing the principal contents of the WCMSs. We
have specialised them in two subclasses: Page that represents full content pages (that
can contain other pages) and Post that represents individual blog posts. We also pro-
vide a CustomNode metaclass so that additional types of nodes ca be integrated. On
the other side, we have Comments that represents comments that can be posted in any

other content element. We do not represent pages in the back-end of the WCMS used
to administer content. That behaviour will be represented by permissions of executing
administrative operations on the WCMS.

Operations are the actions than can be performed over the WCMS. We can divide all
operations that can be done over a WCMS between two types, content operations and
administration operations (e.g., operations to manage users and roles). The latter cate-
gory is more WCMS specific and as such, we will uniquely represent the permissions
on that category with the metaclass Administration Operation.

W.r.t. the content operations, in our metamodel, all CRUD actions are available:
Create for the creation Content elements; Edit for the modification of already created
Content elements; Read for reading/viewing created Content elements; Delete for the
deletion of Content elements. The Search operation is also available. It is a very com-
mon action in WCMSs and, as it can be expensive, it is usually restricted only to certain
users (e.g., logged users). Additionally, there are two special actions the Subjects of
WCMSs can perform. Publish and Unpublish. In WCMSs it will not be surprising to
find that some Subjects can create and manage contents using CRUD operatios while
not being authorized to make it publicly available without revision-moderation from
another authorized Subject. These two actions support this behaviour. Publish is the ac-
tion of making available some created Content element and Unpublish is the action of
removing a piece of Content from its place of publication without internally deleting it.

Finally, we also consider the possibility of new operations that may appear e.g.,
when extending the WCMS. In order to be able to represent these possible new opera-
tions, we provide the Custom Operation metaclass. This way, if the WCMS is extended
with the capability of e.g., doing polls, an eventual new operation, vote, could be repre-
sented by this metaclass.

Permissions are the right of performing actions on the WCMS. They can define con-
straints that restrict the Permission to execute the corresponding action only when cer-
tain conditions hold. In our metamodel, we have identified two kinds of Constraints that
typically appear in WCMSs: Authorship and NotBlacklisting. The former expresses that
the permission is effective only if the Subject is the author of the Content whereas the
latter restricts the applicability of the permission to the condition of not being black-
listed. Other conditions may exist and therefore, we provide the means to represent
them by the GenericCondition metaclass. It holds in a text field the condition of the
Constraint. The nature of the contents of this text field is left open to the metamodel
users, so that in can hold conditions expressed in natural language or in more formal
constraint languages like OCL. Similarly, in [4] the authors added the constraints to per-
missions represented by triggers to a metamodel tailored to represent Relation Database
Management Systems (RDBMS) access-control by adding the source code of the trig-
gers. As in there, the representation and extraction of the meaning of such custom con-
straints will require a further analysis. We leave such analysis as future work.

Subjects are the elements interacting with the contents of the WCMS by performing
actions (note that a Subject can be the author of a piece of Content and that this may

@r@z

Applications

/ Queries and Wetrics
S R e
Drupal Database WCMS AC Visualizations
Back-end Model

Deployment and Migration

Fig. 2. Drupal AC extraction and analysis approach

influence the Access-control of the information. Thus, this is represented in our meta-
model). Following a RBAC approach, in our metamodel we have two kinds of Subjects:
Users and Roles where Users get Roles assigned. However, unlike RBAC we are more
flexible in the permission assignment by allowing both User and Role to get permissions
granted.

Depending of the WCMS in hand, Roles are predefined by the application or can
be defined by the developer. Both cases can be discerned in our metamodel by using
the predefined attribute of the Role metaclass. Moreover, we have identified two spe-
cific roles that often appear in WCMSs. IdentifiedRole and NotldentifiedRole are often
present in WCMS to discriminate between not logged and logged users. As such, we
have decided to add them to the metamodel so that this behaviour can be easily mod-
eled. Finally, role inheritance is also supported.

4 Approach

Although our metamodel could be manually filled by inspecting the AC information us-
ing the WCMS administration tools, ideally, it should be filled by an automatic reverse-
engineering approach. In the following, we present such an automatic process for a
Drupal WCMS although it can be easily adapted to work with other WCMSs. The pro-
cess in depicted in Figurd2]

In Drupal, contents, along with the corresponding access-control information (i.e.,
users, roles and permissions) are stored in a database back-end. Thus, in order to ob-
tain a model conforming to our WCMSs metamodel with this information, an injection
process need to be launched. This process performs SQL queries over the database
back-end while creating, as output, the corresponding model elements. Note that, addi-
tionally, extra access-control rules could be defined or modified programatically, in the
source code of plugins, etc. Techniques as the ones in [3l2] could be used to as a further
step to complement our approach.

Note however, that this first step will require a previous step, i.e., the discovery of
the data model of the WCMSs as each WCMS defines its own. For doing so, we can rely
on the WCMS available documentation or in worse cases, to schema extraction tools. In
the case of drupal, the relevant tables are the following ones: USERS, that contains all

DRUPAL WCMS Metamodel

User User

Default Role Role

User-defined Role Role with inheritance relation to the Authenticated Role

Page and Article types |ContentType for Page and Article

Node If the type is page or article, Page with the proper ContentType. If it is
blog post, Post. If there is another type of node, CustomNode

Content actions ContentOperation.

Comment Comment pointing to the corresponding Content

Permission Permission with the corresponding links to the subject, object and op-
eration. For content permissions, link to Content or ContentType (for
permissions granted on all content of a given type). For administrative
permissions, link to the WCMS instance.

Table 1. Mapping from drupal to our metamodel

system users; ROLE, containing all roles; USER_ROLES relating users with assigned
roles; PERMISSION connecting roles with permissions; COMMENT for the special
content of the type comment and NODE for all the other content types.

Drupal AC. Extraction evaluation: In drupal, there exist three main kinds of content,
Pages, Articles and Comments and three roles by default, Anonimous, Authenticated
and Administrator. By default, any new user-created role, what is allowed, inherits the
permissions from the Authenticated one. Thus, to create roles more restricted than the
Authenticated role, the Authenticated role needs to get permissions removed. Using
the default modules, permissions can not be granted in concrete content, e.g., concrete
pages but on content types. This way, permission to edit content can be granted and all
Pages but not on individual pages (apart from the distinctions made wrt to ownership
and publish/unpublished).

Our metamodel is capable of representing the AC information of Drupal by using
an injector performing the mappings summarized in Table

5 Applications

Once the injection process is finished, we can start analysing and manipulating the ob-
tained model in a vendor-independent way. We summarize here some applications.

Visualization: Visual data is often easier and faster to analyze than textual or tabular
data. Using MDE tools we can easily provide a visualization of our WCMS AC model
so that the relation between subjects, objects and permissions can be easily grasp.

Queries: The most basic thing we may want to do with a security model is to query
it to learn more about specific details of the security policies currently enforced in
the WCMS. As an example, we could want to know what elements can be accessed
by a given user, taking into account its assigned roles and also the permissions inher-
ited from parent roles. This is very complex to do directly on the WCMS itself since

this information is scattered among a number of database tables which are completely
vendor-specific. Instead, when using our model we can just use a standard model query
language to traverse the information in the extracted model classes. The model query is
defined just once and can be executed on security models extracted from any relational
vendor.

WCMS migration: New requirements to be met by the application, discovered security
vulnerabilities, technological choices, etc., may impose the migration from one WCMS
to another. In this scenario, properly migrating the access-control information (users,
roles, permissions) becomes critical. Our metamodel can be used as a pivot representa-
tion. Representing the AC information of the old WCMS in a model corresponding with
our metamodel will facilitate its understanding and analysis, thus, helping to provide a
good translation towards the AC model in the new WCMS.

6 Conclusions and Future Work

We have presented a metamodel specially tailored for the representation of Access-
control policies of WCMSs in a vendor-independent manner along with an automatic
process for extracting it from Drupal WCMSs. This model facilitates de analysis and
manipulation of the implemented policies by isolating them from the specific details of
each WCMS system.

As future work we plan to extend our reverse engineering process for the other major
WCMSs. Moreover, we intend to continue working on the applications sketched in
Section[]and to investigate the benefits of a translation from our metamodel to XACML
specifications to benefit from existing general security tools and research. Finally, we
would also like to explore how Digital Rights Management (D.R.M.) concepts could be
integrated in our metamodel as DRM appears to start becoming a common requirement
for WCMSs under specific scenarios.

References

1. Drupal Open-source CMS. http://drupal.org/, 2013.

2. M. H. Alalfi, J. R. Cordy, and T. R. Dean. Recovering role-based access control security
models from dynamic web applications. In Web Engineering, pages 121-136. Springer, 2012.

3. F. Gauthier, D. Letarte, T. Lavoie, and E. Merlo. Extraction and comprehension of moodle’s
access control model: A case study. In (PST), 2011, pages 44-51. IEEE, 2011.

4. S. Martinez, V. Cosentino, J. Cabot, and F. Cuppens. Reverse Engineering of Database Secu-
rity Policies. In DEXA 2013 (to appear.). LNCS, 2013.

5. M. Meike, J. Sametinger, and A. Wiesauer. Security in open source web content management
systems. Security & Privacy, IEEE, 7(4):44-51, 2009.

6. R.Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access control: towards
a unified standard. In Proceedings of the fifth ACM workshop on Role-based access control,
RBAC ’00, pages 47-63. ACM, 2000.

7. R.S. Sandhu and P. Samarati. Access control: principle and practice. Communications Mag-
azine, IEEE, 32(9):40-48, 1994.

8. G. Vaidyanathan and S. Mautone. Security in dynamic web content management systems
applications. Communications of the ACM, 52(12):121-125, 2009.

http://drupal.org/

	Lecture Notes in Computer Science
	Authors' Instructions
	Introduction
	Background and Motivation
	WCMS Access-Control Metamodel
	Approach
	Applications
	Conclusions and Future Work

