
Semantic Analysis of Role Mining Results and

Shadowed Roles Detection

Safaà Hachanaa,c, Frédéric Cuppensb, Nora Cuppens-Boulahiaa,b, Joaquin
Garcia-Alfarob

aSwid Web Performance Service, Rennes, France, Email: safa@swid.fr
bInstitut Telecom-Mines/Telecom Bretagne, Dépt. LUSSI, Rennes, France

Emails: {frederic.cuppens; nora.cuppens; joaquin.garcia}@telecom-bretagne.eu
cÉcole Nationale Supérieure de Mécanique et d’Aérotechnique, LISI, Poitiers, France

Abstract

The use of role engineering has grown in importance with the expansion of
highly abstracted access control frameworks in organizations. In particular, the
use of role mining techniques for the discovery of roles from previously deployed
authorizations has facilitated the configuration of such frameworks. However,
the literature lacks from a clear basis for appraising and leveraging the learning
outcomes of the role mining process. In this paper, we provide such a formal
basis. We compare sets of roles by projecting roles from one set into the other
set. This approach is useful to measure how comparable the two configura-
tions of roles are, and to interpret each role. We formally define the problem of
comparing sets of roles, and prove that the problem is NP-complete. Then, we
propose an algorithm to map the inherent relationship between the sets based
on boolean expressions. We demonstrate the correctness and completeness of
our solution, and investigate some further issues that may benefit from our
approach, such as detection of unhandled perturbations or source misconfigu-
ration. In particular, we emphasize that the presence of shadowed roles in the
role configuration increases the time complexity of sets of roles comparison. We
provide a definition of the shadowed roles problem and propose a solution that
detects di↵erent cases of role shadowing.

Keywords: Access Control; Role Mining; IT Security; Boolean Logic;

1. Introduction

Access control is a security fundamental concern which covers a wide area
of applications including operating systems, database systems, enterprise re-
source planning systems, and workflow systems. Role Based Access Control
(RBAC) [1] [2] is the dominant model for access control in both commercial
and research fields. It structures into roles the concrete agents who have access
requirements to secured objects, such as employees, programs, or processors.

Preprint submitted to Information Security Technical Report October 7, 2012

A role can be viewed from two perspectives: a set of authorizations that are
recurrently assigned together, or a set of agents that are granted the same set of
authorizations. As RBAC platforms have become essential to large enterprises,
the major di�culty is still the configuration and establishment of the RBAC
model in the organization.

Role engineering is the practical discipline of implementing the RBAC model
into organizations. Essentially, role engineering is the process of structuring the
di↵erent agents of an organization into roles, and the association of the cor-
responding set of authorizations to every role. Top-down and bottom-up are
the two common strategies in order to apply role engineering. Under the top-
down approach, the roles are defined by carefully analyzing the business process
associated with the organization, and decomposing it into smaller units in a
functionally independent manner. Under the bottom-up approach, roles emerge
from existing configurations of authorizations already deployed over the orga-
nization. The role engineering task is extremely time consuming and costly [3].
For this reason, the use of ‘automatic’ bottom-up role engineering techniques
is growing in importance. These techniques get inspiration from data mining
techniques, hence, they are known as role mining (RM). Several e�cient role
mining algorithms have been proposed in the literature [4]. However, they still
require intensive human interpretation before leading to appropriate results. To
the best of our knowledge, no e�cient solutions have been proposed to assist a
security administrator in the task of leveraging the outcomes of a role mining
process. Moreover, as the years elapse since the wide adoption of RBAC in
organizations, a new requirement is strongly emerging. In addition to the tra-
ditional application of role engineering upon organizations where there is only
a direct user-permission assignment framework, we may also need to apply role
engineering in organizations where a pre-existing RBAC configuration exists
but is no longer optimized. This may happen because the RBAC configuration
is getting old and recurrently updated, or does not fit the dynamic nature of
the organization anymore. In such cases, keeping as close as possible to the
original RBAC configuration is the proper optimization criteria of existing role
mining strategies [5]. In this regard, the ability of mapping the outcomes of a
role mining process to the set of original authorizations may be highly beneficial
in order to understand and validate the discovery process, as well as to detect
unhandled perturbations over the deployed configurations, or misconfiguration
within the original ones. Similarly, we also rise the necessity of comparing the
outcomes of two di↵erent role mining processes. Indeed, several role mining
tools have been proposed in the literature. Each new role mining technique
needs to be tested and evaluated before being released and used in real config-
urations. The test stage usually consists of running the role mining algorithm
on real and synthetic concrete data, generated from already known consistent
RBAC state. The RBAC state obtained from the role mining is then compared
to the original RBAC state, in a reverse engineering manner. However, we do
not find any analytic comparison tool between two RBAC configurations of roles
in the literature. Thus, an automatic matching tool between roles from two sets
is obviously needed, either for the assessment of the role mining methods, or for

2

the interpretation of the mined roles.
In this paper, we formally define the problem of comparing two sets of roles

according to the underlined requirements extracted from the literature. We
demonstrate that the problem is NP-complete. We present a greedy solution
that handles the motivation problem. Then, we prove the correctness and com-
pleteness of the solution. We define a su�cient condition that guarantees pre-
ciseness of the comparison between the original set of roles and mined set of
roles. The experimental results confirm the validity of our approach, as a bene-
ficial solution to analyze and better understand the set of mined roles when an
original set of roles exists.

Paper organization. Section 2 reviews some technical definitions about the
RBAC model and role mining problem and its algebraic representation. Sec-
tion 3 presents the use cases considered in this paper, introduces an example of
motivation, and provides a comparison with related work. Section 4 formally
defines the problem to solve. Section 5 presents our solution to the problem, un-
derlines some of the properties of our solution, and elaborates on some heuristics
to enhance our approach. Section 6 presents the shadowed roles problem, links
it with the role set comparison problem, and proposes an algorithm for shadow-
ing detection. Section 7 presents experimental results. Section 8 concludes the
paper.

This paper is an extended version of the previous work presented at ARES
2012 [6]. In particular, the motivation use cases has been emphasized and
illustrated by an example in Section 3. The algorithmic complexity evaluation
in Section 5 has been revised and enhanced by the proposition of a Heuristic.
Section 6 has been added to handle the shadowed roles problem. Section 7 has
been upgraded with experimental results of tests with the shadowing detection
algorithm introduced in section 6.

2. Preliminaries

In this section, we present the background on the Role Based Access Control
(RBAC) model. In addition, we state a formulation of the role mining problem,
and introduce the algebraic presentation of the involved data in role mining.

2.1. Role Based Access Control Model
The RBAC model is a NIST standard [2]. It introduces the notion of “role”

in order to make the access control system more compact and comprehensive,
compared to the direct user-permission assignments. Definition 1 presents the
basic model RBAC0 [2] without considering sessions.

Definition 1. RBAC
An RBAC configuration, denoted as RC = (ROLES, UR, RP), is characterized
by:

• U , ROLES, OPS, and OBJ , which are the sets of users, roles, operations,
and objects

3

• UR ✓ U ⇥ ROLES, a many-to-many mapping user-to-role assignment
relation

• PRMS ✓ {(op, obj)|op 2 OPS ^ obj 2 OBJ}, a set of permissions, where
a permission is an operation over an object

• RP ✓ ROLES ⇥ PRMS, a many-to-many mapping of user-to-permission
assignment relation1

• assigned users(R) = {u 2 U |(u,R) 2 UR}, the mapping of role R onto a
set of users

• assigned permissions(R) = {p 2 PRMS|(R, p) 2 RP}, the mapping of
role R onto a set of permissions

2.2. The Role Mining Problem
Intuitively, role mining is the process of extracting a configuration of roles

from a discretionary user permission assignment relation. The users granted
with similar permissions are structured into similar roles. Symmetrically, per-
missions with common users are assigned together, so that they belong to the
same roles. Optionally, some information about the business process or the user
attributes may be provided, and the is called a hybrid role mining. Nevertheless,
there is no consensus about the formal role mining problem definition. Several
role mining techniques are proposed in the literature, with di↵erent assumptions
and optimization criteria leading to di↵erent solutions. For instance, the first
explicit formal definition for the role mining problem is given in [7]. Vaidya et
al. suggest the minimization of the number of generated roles as an optimiza-
tion criteria, and show that this problem is NP-complete. The inference role
mining problem presented by Frank et al. [8] focuses on the problem from a gen-
eral perspective. In all cases, role mining assumes implicitly that an underlying
RBAC configuration exists in the deployed authorizations, and aims to reveal
this underlying configuration.

Definition 2. Inference Role Mining Problem
Let U be a set of users, PRMS a set of permissions, UPA a user-permission

assignment relation, and, optionally, part of the top-down information TDI be
given. Infer the unknown RBAC configuration RC⇤ = (ROLES⇤, UR⇤, RP ⇤),
under the following assumptions:

1. An underlying RBAC configuration exists
2. Exceptions (may) exist
3. TDI (if given) influences RC⇤.

1In the original NIST standard RP is defined as RP ✓ PRMS ⇥ ROLES rather than
ROLES ⇥ PRMS.

4

Definition 2 provides a unified view of both bottom-up and hybrid role min-
ing. Unlike other definitions, it does not give the function to optimize, i.e.
the precise way to solve the problem. Therefore, to validate that the problem
is solved, we must know the underlying RBAC configuration RC⇤. We can
compare the set of mined roles with the set of original roles in experimental
scenarios, as well as in application scenarios where an old RBAC configuration
exists.

Algebraic Representation of the Problem. To unify the representation of
the inputs and outputs of role mining, the involved entities are represented
with boolean matrices as follows: given m users, n permissions and k roles
(i.e., |U | = m, |PRMS| = n, |ROLES| = k), the user-to-role mapping UR is
represented as an m⇥ k matrix where 1 in cell {ij} indicates the assignment of
role j to user i. Similarly, the role-to-permission mapping RP is represented as
a k ⇥ n matrix where 1 in cell {ij} indicates the assignment of permission j to
role i. Finally, the user-to-permission mapping UPA is represented as an m⇥ n
matrix where 1 in cell {ij} indicates the assignment of permission j to user i.
The relationship between UPA, UR and RP can be expressed with the boolean
matrix multiplication.

Definition 3. Boolean Matrix Multiplication
A Boolean matrix multiplication between Boolean matrices A 2 {0, 1}n⇥k and

B 2 {0, 1}k⇥m is A⌦B = C where C 2 {0, 1}n⇥m and c
ij

=
k

_
l=1
^a

il

b
lj

.

In an RBAC configuration, we have UPA = UR ⌦ RP . A user i is granted
permission j if, at least, one of its roles is assigned to this permission. The
role mining process approximates the above decomposition by extracting from
a given UPA the relations UR⇤ and RP ⇤ such that: UPA ⇡ UR⇤ ⌦RP ⇤.

3. Motivation

3.1. Use Cases for Comparing Two Sets of Roles
The requirement for comparing two sets of roles occurs in several use cases

related to role mining. The first use case is the assessment of role mining al-
gorithms. An algorithm designer usually evaluates the performance of its RM
algorithm with the reverse engineering technique: starting from an RBAC con-
figuration, apply role mining over the resulting UPA, and compare the obtained
roles with the original roles. Likewise, we can compare the outputs of several
role mining algorithms to test their performance under di↵erent constraints. The
second use case is the enforcement of role mining results. A security adminis-
trator can require assistance toward migrating to a new RBAC configuration
from an old RBAC configuration. A similar application is migrating from dis-
cretionary UPA to an RBAC configuration. Considering the set of permissions
of each user as a pseudo-role, the administrator may need assistance to assign
each user to the appropriate roles which guarantee the required permissions. A

5

mapping of the pseudo-roles with the obtained new RBAC roles may solve the
problem.

In almost all the above mentioned cases, we have typically a set of roles of
reference or original roles OR and a set of mined roles MR. The first set is a
set of mastered roles since they are well known by the security administrator,
in opposition to the set of new roles MR. The two configurations of roles are
defined for the same set of discretionary security rules UPA. However, they may
have been calculated with respect to di↵erent constraints. For instance, one
set can correspond to a hierarchical structure of roles whereas the other is flat.
Similarly, the roles of one set may be partially overlapping whereas the roles of
the other set are orthogonal.

Role mining algorithms usually output a list of roles, possibly overlapping
or even redundant which means that a role can be fully covered by a union of a
subset of other roles from the same list. When migrating to a new RBAC con-
figuration, the security administrator is confronted to such a list of new roles,
and he has to assign them to the users and manage them to suit the organi-
zation’s evolutive requirements. The administrator has to respect three access
control rules: provisioning, security and maintainability. For provisioning, each
user should have access in the new configuration of roles to all its privileges in
the old one. For that, the administrator needs to know how to optimally cover
the permissions provided by each role from OR using roles from MR. Security
consists of not allowing any user to access extra-privileges. For this purpose, the
administrator needs to ensure that the new assigned roles to the users do not ex-
ceed the privileges provided by their old roles. Finally, the maintainability aims
to make simple and safe the evolution of the structure of roles by adding and
retrieving permissions and users to the roles, according to the evolving require-
ments of the organization. One key characteristic to ensure the maintainability
is mastering the configuration of roles. Thus, the security administrator, who
masters the old roles or the old UPA, would be very interested in leveraging his
experience with the old roles in order to master the new configuration of roles
more quickly. Unfortunately, mapping the new roles with the old ones manually
is not a viable task. It is essential then to assist the security administrator
with automated tools to analytically understand the new roles. In particular,
assistance is needed to find where the permissions of an old role has been dis-
tributed in the new configuration of roles, especially when moving between a
flat role structure and a hierarchical role structure. In addition, such tool may
help to find how to optimally assign the permissions to the users without adding
extra-permissions using the new roles.

3.2. Motivating Example
We provide the following motivation example to illustrate the problems han-

dled in the paper. Table 1 shows two equivalent RBAC configurations of a hy-
pothetical financial department of an organization. They could be an old and a
new representations of a subset of the Access Control policy of the organization.
We imagine the following scenario. At some point of time, security experts have
defined the set of original roles in OR (see Table 1(a)). In this repartition of

6

Table 1: Motivating example: original and mined equivalent RBAC configurations

(a) Original Roles Matrix OR

Original Roles cTrans(p1) rP-order(p2) cP-order(p3) vTrans(p4)
Handle Order(r1) 1 1 0 0
Create Order(r2) 0 0 1 0

Supervise Transfer(r3) 0 1 0 1

(b) Mined Roles Matrix MR

Mined Roles cTrans(p1) rP-order(p2) cP-order(p3) vTrans(p4)
Manage Order(R1) 1 1 1 0

Validate Transfer(R2) 0 0 0 1

(c) Original User to Role Assign-
ment Matrix UR1

User-ORole r1 r2 r3
U1 1 1 0
U2 1 1 1
U3 0 0 0
U4 1 1 0
U5 1 1 0

(d) Mined User to Role As-
signment Matrix UR2

User-MRole R1 R2
U1 1 0
U2 1 1
U3 0 0
U4 1 0
U5 1 0

(e) Current User to Permission Assign-
ment Matrix UPA

User-Perm p1 p2 p3 p4
U1 1 1 1 0
U2 1 1 1 1
U3 0 0 0 0
U4 1 1 1 0
U5 1 1 1 0

roles, they have planned that any employee of the organization who needs to
make a purchase has to contact an employee from the financial department, who
will create a purchase-order. Some employees in the department are in charge
of reading all the existing purchase-orders and deciding to create cash transfers
for the relevant orders according to their priority. An employee with higher
responsibility has a reading access to all the purchase-orders and must validate
the cash transfers before they become e↵ective. We suppose that after some
time, the progress in the sta�ng of the organization has leaded to the user to
role assignments in UR1(see Table 1(c)). In the terminology of the RBAC Def-
inition 2.1, the operations are OPS = {create (c), read (r), validate (v)} and
the objects are OBJ ={purchase-order (p-Order), cash transfer (Trans)}. The
set of permissions is then: PRMS = {cTrans, rP-order, cP-order, vTrans}. The
first set of roles is Original ROLES ={ Handle Order(r1), Create Order(r2),
Supervise Transfer(r3)}. The combination of the role-to-permission and the
user-to-roles relations OR and UR1 gives the user-to-permission access control
relation UPA (see Table 1(e)): UR1⌦OR = UPA.

7

If we focus on the user-to-role assignment in the original RBAC configuration
UR1(in Table 1(c)), we notice that r1 and r2 are always assigned to the users
together, and that r3 is always assigned to the users with r1 and r2 which
means that the permission p3 in r3 does not have any impact on the UPA
since it is also provided by r2 to the same user. These remarks may warn that
the old configuration of roles is no more suitable to the new policy of access
control and to the current distribution of responsibilities over the employees.
In our scenario, we suppose that security administrator has decided to apply
some role mining technique on the current UPA matrix (see Table 1(e)), and
has obtained a new RBAC configuration with the new set of roles MR (see
Tab 1(b)). The set of mined roles is Mined ROLES ={ Manage Order(R1),
Validate Transfer(R2)}. It contains only two non overlapping roles R1 and R2.
The new user to role assignment relation is UR2 (in Table 1(d)). Actually, most
of role mining techniques calculate only the Role to permission matrix RP2 and
the security administrator has to assign the users to the new roles manually to
get UR2.

The two RBAC configurations in Table 1 are such that: UR2⌦OR = UR1⌦OR
= UPA, which means that the two sets of roles are equivalent according to the
following definition.

Definition 4. Equivalent Sets Of Roles
Two sets of roles RP1 and RP2 are equivalent if they may lead to a same

User-to-Permission-Assignment relation UPA i.e. there exists two respective
User-to-Role matrices UR1 and UR2 for RP1 and RP2 such that UR1⌦RP1 =
UR2⌦RP2 = UPA;

In order to understand and analyze the new set of roles, and to assign the
users to the new roles, the security administrator needs to compare the mined
roles with the original roles that he used to control. Comparing the mined roles
to the original roles should reveal that R1 is the combination of r1 and r2, i.e.
R1 = r1 [r2 and that R2 is r3 minus the permission p2 that was shadowed
in RP1, since it is also assigned through the role r1, so R2 = r3 \ ¬r1. It is
easy to establish manually such a relationship between the old roles and the
new roles in a simple example like in Table 1, but in real life applications, it is
very hard to handle a large number of roles manually, and automatic solutions
are required to perform this task. However, the existing solutions in literature
are unable to find a satisfactory comparison between two sets of roles.

3.3. Related Work
Research on role mining has revealed di↵erent requirements for the compar-

ison of roles. Several propositions in this field have been presented.
In [9], Kuhlmann et al. address the problem by counting how many of the

roles lying in the original reference set are exactly the same as those discovered
by their proposed role mining method. Similarly, Vaidya et al. in [10] consider
the average, instead of the total number, of original roles that are exactly dis-
covered by their role mining technique, as an evaluation metric for role mining.

8

Thus, their metric provides means to compare di↵erent role mining approaches,
being not influenced by the number of roles, and giving a similarity of one for
total coincidence, and zero for total di↵erence. The main drawback of these
two first metrics is that they discard roles that are very similar but not exactly
the same as roles in the original role set. For instance, if we compare the two
sets of roles OR and MR presented in the previous example (Table 1) using
either the method in [9] or [10], and since none of the original roles has been
discovered by the role mining algorithm, we will obtain Similarity(OR,MR) =
0, which suggests that the two sets of roles are not comparable, whereas they
are equivalent actually.

Hassan Takabi et al. in [11], consider the case in which an initial RBAC con-
figuration is upgraded during the role mining process. The similarity between
roles is one of the two optimization criteria used by their role mining approach,
the minimality of the resulting number of roles being the second criteria. In
order to address similar issues, Vaidya et al. propose in [5] a series of similarity
and dissimilarity metrics based on the Jaccard Coe�cient and Jaccard Dis-
tance2. Their metrics have been recurrently used in the literature to compare
roles and sets of roles; and to evaluate role mining algorithms [4]. Applied to
our motivation example, Similarity(MR,OR)= (Jacc(R1, r1) + Jacc(R2, r3))/2
= (0.66 + 0.5)/2 = 0.58. However, these Jaccard-based measurements still
su↵er from several important limitations. First, it computes role similarity for
one role from one set with respect to only one role in the compared set. In
the motivation example, we get Jacc(R1,r1) = 0.66 whereas it would be more
accurate to calculate Jacc(R1, r1 [r2) = 1. Second, the same role may be
used to be compared with several roles from the other set. Thus, as a qual-
ity performance criteria, it may artificially be a↵ected by reference sets with a
high number of closely similar roles. For instance, if we suppose that the role
mining algorithm has produced another role R3 = {p1, p2, p4}, the similarity
becomes Similarity(MR,OR) = (Jacc(R1,r1) + Jacc(R2,r3) + Jacc(R3,r1))/3 =
0.61>0.58. Thus, the role r2 is used twice, and the similarity metric is enhanced
by the role R3 that is not useful at all.

Alternatively, P. Streich et al. [12] propose a one-to-one matching for the
comparison of two sets, based on the average Hamming distance3. Their method
outputs a single permutation of all roles for the second set, that gives a one-
to-one mapping between the same number of roles kept in the first set. This
avoids the drawback of the previous proposition of mapping independently many
discovered roles to the same original role. However, the method is not specifically
designed for role mining applications, but for clustering in general. We think

2The Jaccard Coe�cient and the Jaccard Distance are well-known measurements on the
asymmetric information field. For non-binary data, the Jaccard Coe�cient corresponds to

JCAB = |A\B|
|A[B| , and the Jaccard Distance to JDAB = 1� JCAB .

3The Hamming distance between two vectors of n elements from an alphabet A: a =
(ai)i2[1,n] and b = (bi)i2[1,n] is the number of elements in a that are di↵erent from the
elements in b at the same positions: Hamming Distance(a, b) = |{i, ai 6= bi}| .

9

that the Hamming distance is not appropriate for role-to-role distance measure.
In fact, it does not take into account the similarity of the roles, but only the
di↵erence (e.g., Hamming(r2,R1) = Hamming(r2,R2) = 2; but in reality r2
shares a permission with R1 and has nothing to do with R2).

More recently, Molloy et al. [13] has proposed a one-to-one mapping between
the roles from two sets, also based on the Jaccard Coe�cient. In order to evalu-
ate the role stability in the presence of noise as defined in [14], they compare the
two sets of roles generated by role mining over noisy data, and clean data. They
assimilate the role mapping problem to a bipartite matching optimization prob-
lem known as The Minimum Weighted Bipartite Matching Problem (MWBM).
Given two sets of roles SR1 and SR2, they create one vertex in V1 for each
role in SR1 and one vertex in V2 for each role in SR2. For each pair of roles
(R1,R2), such that R1 is included in V1, and R2 is included in V2, they add an
edge (R1,R2) with weight Jaccard(R1,R2). Then, they run an algorithm solv-
ing the maximum weighted bipartite matching problem. The solution contains
the closest pairwise matching by maximizing the global similarity metric. Each
role in SR1 is matched with only one role in SR2, such that the sum of the
distances is minimized. Finally, the metric is the sum of the distances between
the matched roles. Applied to the motivation example proposed in section 3.2,
this method will match the role R1 with r1 and R2 with r3, with a similarity
metric value of 0.58. This method has addressed the problem of matching the
same role in one set several times while other interesting roles are discarded.
But the similarity measure is still straightforward. In general, we may wish to
define similarity between sets of roles in a much more sophisticated fashion. For
example, note that all the above measures still assume that a role can only be
mapped to another role. Usually, this is not true. For instance, in the motiva-
tion example, it would be much more interesting for a security administrator to
know that R1 is the union of r1 and r2, and that R2 is equal to r3 minus the
permission shared with r1.

The previous work only focuses on the issue of comparing two sets of roles
from the perspective of finding a similarity metric for the assessment of a set
of roles with reference to another set of roles, and do not care about provid-
ing assistance to the administrator to analyze and leverage role mining results.
In this paper, we consider the problem of comparing two sets of roles from a
new perspective. Our approach allows a semantic analysis of the resulting set
of mined roles in comparison with the preexisting set of roles, and the detec-
tion of misconfiguration of roles. We provide a tool that can assist a security
administrator in the comprehension of the mined roles and how to enforce them.

4. Role Set Comparison Problem

We propose a new approach to the problem of comparing two sets of roles.
Our approach targets to leverage all the relationships between roles from the
two sets: merged roles, partitioned roles, hierarchical relationships, exceptions,
etc. These relationships allow to analytically understand the new set of roles
while leveraging the experience with the set of roles of reference. Our method to

10

reach this target is to express each role from one set as an algebraic formula of
the roles from the other set. We find that the Disjunctive Normal Form (DNF)
is a natural choice to structure this formula.

4.1. Problem Statement
The problem addressed in this paper is formally stated as follows:

Definition 5. Role Set Comparison Problem
Given two sets of roles OR and MR, both defined onto the same set of permis-
sions PRMS, find for each role R in OR a minimal Disjunctive Normal Form
DNF of roles in MR, such that DNF is included in R, and DNF maximally
covers the permissions of R. By minimal DNF we mean that the size then the
number of conjunctive clauses in the DNF are minimized.

Definition 5 proposes to express each role from OR with an algebraic for-
mula of mined roles. The formula is presented as a disjunction of conjunctions
of mined roles, i.e. a Disjunctive Normal Form (DNF) expression. The struc-
ture of a DNF fits naturally the requirement of projecting a role R from OR
in MR. The permissions of the role R are divided into several roles in MR or
gathered with other roles in a larger role, or both. Thus R may be expressed by
a combination of unions of roles and/or intersections of roles. The conjunctions
express hierarchical relationships: when the role R becomes an intersection of
roles in the new configuration MR, this means that the projection in MR of
R or of a subset of it is a super role. Moreover, the use of negation of roles
in combination with conjunction aims to retrieve a role from a role expressing
exceptions. The disjunctions accumulate and cover the permissions of R when
they are spread in MR. The problem also states that the DNF should still be
included in R. This condition guarantees the security rule, and avoid assigning
extra-privileges to the users. Symmetrically, the problem states that the cover-
age of the permissions should be maximized since the purpose is to understand
the projection of the role in the new configuration. This is an approximation
problem since the exact DNF can not always be found because of role mining
errors, exceptions and shadowed roles. This issue is handled in the next section
more in depth. The existence of the exact DNF matching, and the complex-
ity of the DNF, are good indications about whether the two sets of roles are
comparable or not. Besides, there may be di↵erent possibilities of DNF from
MR to maximally cover a given role R. In such case, we find the DNF which
involves less conjunctions of roles in order to reduce the size of the obtained
hierarchical relationships. In a second stage, we also minimize the number of
clauses. Finally, we note that the comparison is intended to be from original
roles to mined roles, but it obviously can be done in the opposite way.

4.2. Complexity
We demonstrate that the problem stated in Definition 5 is NP-complete. We

first decompose the problem considering the comparison of one role to a set of
roles, and then we reformulate it as a decision problem, in order to apply the
NP Completeness theory.

11

Definition 6. Role-to-Role Set Comparison Decision Problem
Given a role R and a set of roles MR, defined onto the same set of permissions
PRMS, and given two integers k and l, is there a Disjunctive Normal Form DNF
of roles from MR, with less than l literals per clause and less than k clauses,
such that DNF equals R?

To prove that the problem is NP-complete, we show that:

1. The problem is NP.
2. There exists another known NP-complete problem, any instance of which

can be reduced in a polynomial time to an instance of our problem, such
that resolving our problem infers resolving the other problem.

Definition 7. Set Covering Problem
Given a universe U , a family of subsets S of U and an integer k. A cover is a
subfamily C ✓ S of sets whose union is U . Is there a cover of size at most k?

Theorem 1. The Role-to-Role Set Comparison Decision Problem is NP-complete.

Proof. First, the problem is NP since checking the validity of a solution, i.e.
calculating the set of permissions of a DNF and comparing it with R and count-
ing the number of clauses and the number of literals in each clause, can be done
in polynomial time. Second, the set covering problem can be reduced to our
problem. The universe U is assimilated to the role R. The family of subsets
S is projected to the set of roles MR, which are sets of permissions. The size
of the cover k is the same as the size of the DNF k, and we set l to 1. We
get a special case of the Role-to-Role Set Comparison Problem, where all the
roles of MR are included in R. Resolving this instance of the Role-to-Role Set
Comparison Problem implies finding a DNF in MR, that maximally covers R
with the minimal number of clauses and no conjunction at all. It infers finding a
minimal cover for the universe U in S if such a cover exists. The transformation
is obviously polynomial since it is a one to one mapping.

5. Role Set Comparison Solution

In this section we provide an algorithm to solve the Role Set Comparison
Problem. Afterwards, we analyze some important properties of our algorithm,
and show its relevance in the context of role mining.

5.1. The Algorithm
Algorithm 1 is a greedy algorithm which solves the Role Set Comparison

Problem. The algorithm takes as input two sets of roles, and gives as output,
for each role R in the first set setR1, an algebraic expression formulated as a
generalized union of intersections of roles taken in the second set of roles setR2
and their negations. The obtained expression, denoted DNF, is equal to R if
any possibility to construct such an expression exists among setR2. Otherwise,
it is the best approximation of R included in it

12

Algorithm 1 Compare(setR1,setR2)
Input: nRoles1⇥nPerms reference role-permission relation setR1
Input: nRoles2⇥nPerms compared role-permission relation setR2
Output: a DNF of roles from setR2 for each role in setR1. The DNF is equal

to the role, or the closest included possible one if equality is not possible.
1: CandidateRoles setR2 [¬setR2
2: for each role R in setR1 do
3: UncoveredPerms R
4: DNF {}
5: CandidateClauses CandidateRoles
6: DiscardedClauses {}
7: RIsCovered False
8: ConjunctiveClauseLevel 1
9: while ¬RIsCovered and CandidateClauses 6= ; do

10: for each clause C in CandidateClauses do
11: if ¬RIsCovered then
12: if C ✓ R then
13: if C \ UncoveredPerms 6= ; then
14: DNF DNF [C
15: UncoveredPerms UncoveredPerms\¬C
16: if UncoveredPerms == ; then
17: RIsCovered True
18: end if
19: for each clause C’ in DNF do
20: if C’ ⇢ (DNF - C’) then
21: remove C’ from DNF
22: end if
23: end for
24: end if
25: DiscardedClauses DiscardedClauses[C
26: end if
27: end if
28: end for
29: if ¬RIsCovered then
30: ConjunctiveClauseLevel +1
31: CandidateClauses GenerateConjunctiveClauses(CandidateRoles,

DiscardedClauses, ConjunctiveClauseLevel)
32: end if
33: end while
34: end for
35: return DNF for role R

The universe of literals which can be used to build the DNF is Candi-
dateRoles, containing all the roles in setR2 in addition to the negation of each

13

Algorithm 2 GenerateConjunctiveClauses(CandidateRoles, Discarded-
Clauses,k)
Input: CandidateRoles: a role-permission relation representing the literals

from which we build conjunctive clauses
Input: DiscardedClauses: a role-permission relation representing the set of

clauses of less than k literals to discard from the resulting clauses
Input: k: the number of literals in each resulting clause
Output: a set of conjunctive clauses of k literals each
1: GeneratedClauses all the combinations of k roles from the Candi-

dateRoles
2: for each clause C in DiscardedClauses do
3: for each clause C’ in GeneratedClauses do
4: if C ⇢ C’ then
5: remove C’ from GeneratedClauses
6: end if
7: end for
8: end for
9: return GeneratedClauses

of them (line1). The algorithm is structured in two main nested loops. The first
one is a for loop which handles the roles of setR1 sequentially. For each role,
we create a variable DNF which will contain the solution and a vector called
UncoveredPerms initialized to the whole set of permissions of R (line 3–4). This
vector indicates the current coverage of the permissions of the role R gradually
with the temporary values of DNF during the progress of Algorithm 1. The
second main loop is a while loop (line 9–33). It checks all the possibilities of
disjunctive clauses from CandidateRoles until the role R is totally covered where
the obtained DNF exactly matches R, or until all the combination of clauses are
tested, where the obtained DNF is the best approximation of R. Since a DNF
is a disjunction of conjunctions, the DNF is built by adding each time a new
conjunctive clause to the main disjunction. A clause is a conjunction of 1 to
nRoles2 literals from CandidateRoles. For this purpose, the clauses are tested
one by one. The number of literals in the disjunctive clauses called Conjunc-
tiveClauseLevel is increased gradually. If the role is not covered by the current
ConjunctiveClauseLevel, Algorithm 2 is called to calculate all the combinations
of conjunctive clauses of a higher ConjunctiveClauseLevel. DiscardedClauses
are the clauses which are included in R and do not contribute in covering the
UncoveredPerms more than the current DNF, or are already included in the
DNF. The following running example illustrates the algorithm.

5.2. Running Example
We consider the configurations of roles in Table 2. We run the Algorithm 1

with the inputs (MR,OR).
Algorithm 1 projects the roles R1 and R2 in the set of roles OR sequentially.

We handle only on the projection of role R1in this demonstration, thus, we

14

Table 2: Running Example

(a) Original Roles Matrix OR.

Original Roles p1 p2 p3 p4 p5 p6 p7
r1 1 1 0 0 0 0 0
r2 1 0 1 0 0 0 0
r3 0 0 1 0 1 1 1

(b) Mined Roles Matrix MR.

Mined Roles p1 p2 p3 p4 p5 p6 p7
R1 1 1 0 0 1 1 1
R2 0 0 1 0 0 0 0

will run the main for loop (line 2–35) only one time. So we focus on the rest
of Algorithm 1. First of all, the candidate literals are CandidateRoles = {r1,
r2, r3, ¬r1, ¬r2, ¬r3} (line 1). After the initialization step (line 3–8), we
get: UncoveredPerms = R; DNF = {}; CandidateClauses = CandidateRoles;
DiscardedClauses = {}; RIsCovered = False; and ConjunctiveClauseLevel =
1, which means that we will first try to cover R using disjunctions of roles
from setR2. In the first iteration of the while loop (line 9–33) of Algorithm 1:
We enter the for loop (line 10–28) which tests the clauses in CandidateClauses
one by one. Only the clause r1 is included in R, and satisfies the conditions
of line 12 and line 13. Thus, {r1} is added to DNF, and UncoveredPerms is
updated to {p5, p6, p7} (line 14–15). At the end of the for loop (line 10–28),
since the value of RIsCovered is still False, the number of literals per clause
ConjunctiveClauseLevel is increased to 2, meaning that we will test the clauses
of disjunctions of two literals next. Algorithm 2 is called to generate a new set
of clauses (line 30–31) . The result of this call is CandidateClauses={r2 \ r3,
r2 \ ¬r1, r2 \ ¬r3, r3 \ ¬r1, r3 \ ¬r2, ¬r1 \ ¬r2, ¬r1 \ ¬r3, ¬r2 \ ¬r3}. It
is all the combinations of conjunction of two roles from CandidateRoles, minus
the clauses involving DiscardedClauses. We notice that r1 does not take part in
any of the candidate clauses, since it is a discarded clause now. We also exclude
the clauses involving a role and its negation because it is the empty set. In the
second iteration of the while loop (line 9–33) of Algorithm 1: the for loop (line
10–28) tests the new set of CandidateClauses one by one again. The first clause
to pass the test in line 12 (inclusion in R) is r3\¬r2. This clause covers all the
remaining UncoveredPerms. So DNF is updated to {{r1}, {r3, ¬r2}} which
is interpreted: DNF = r1 [(r3 \ ¬r2). UncoveredPerms is updated to ; (line
15), and so RIsCovered is set to true (line 17). The for loop (line 19–23) checks
that the new added clause does not cover the previously added clauses to DNF,
in order to remove the obsolete clauses. There will be no further loops and no
further generation of clauses of conjunction of higher number of literals because
RIsCovered is set to true.

15

5.3. Properties of Algorithm 1
Theorem 2. Correctness. For each role R in OR, the returned DNF is
included or equal to R.

Proof. Lines 12 and 13 of Algorithm 1 guarantee that the DNF is always a
subset of or equal to R.

Theorem 3. Completeness. For each role R in OR, if a disjunctive normal
form of roles from MR equal to R exists, Algorithm 1 returns an exact matching
DNF for R. If no exact matching DNF exists for the role R, Algorithm 1 returns
a maximal DNF of roles from MR included in R (with respect to set inclusion).

Proof. Algorithm 1 tests exhaustively all the possible configurations in the worst
case, enhancing the covering of R gradually. Thus the returned DNF maximally
covers R.

Theorem 4. Compactness. For each role R in OR, if several di↵erent dis-
junctive normal forms of roles from MR with the maximum coverage of R exist,
Algorithm 1 returns a DNF with a minimal level of conjunctions and a minimal
number of clauses with respect to that level.

Proof. The proof derives from the structure of the algorithm in two nested loops.
The ConjunctiveClauseLevel is increased gradually, after all the clauses in the
lower conjunctive levels are tested. If no enhancement of the coverage can be
achieved in a conjunctive level, no clauses are picked in that level. Besides,
the number of clauses is minimal because a clause is added only if it enhances
the coverage. Each time a new clause is added to the DNF, the for loop (line
19–23) in Algorithm 1 checks if any other clause previously added has became
redundant and retrieves it from the DNF to keep the number of clauses minimal.
A clause is redundant if all the permissions it covers are already covered by one
or multiple other clauses.

A Similarity Metric. The result of Algorithm 1 can be leveraged to obtain
a similarity metric between two sets of roles. Indeed, we can sum the distances
between each role from setR1 and its DNF in setR2, and then divide the sum by
the number of roles in setR1 to get the distance between the two sets of roles:

similarity(R,DNF) =
coveredPerms(R,DNF)

Assigned Perms(R)

and

similarity(setR1, setR2) =
1

|setR1| ⇥
X

Ri2setR1

similarity(R
i

, DNF (R
i

))

It should be noted that this similarity metric is not a ‘metric’ in the mathemat-
ical sense because it does not fill the symmetry property. Indeed, we can have
similarity(setR1, setR2) 6= similarity(setR2, setR1). Still, the obtained dis-
tance is a good indicator of how well the setR1 is represented in the setR2, and
may be considered as more accurate than the metrics presented in the related
work.

16

5.4. Time Complexity of Algorithm 1
The time complexity of Algorithm 1 depends on both the size and the nature

of the input data. If the inputs are two sets of roles of size n and m respectively,
then the worst case complexity is O(n ⇥ 4m). The worst case is when the two
sets of roles are not comparable, meaning that for each role in setR1 there
exist no DNF of roles from setR2 that exactly matches with it. The algorithm
will test, for each of the n roles of the first set, all the possible configurations
of disjunction of conjunction of the m roles in setR2, increasing gradually the
number of roles in the conjunction from one to 2m, and the outputted DNFs
will be only approximations of the roles. Thus, we calculate the worst case

complexity as O(n⇥
2mP
k=1

Ck

2m

) = O(n⇥ 4m) , with Ck

n

= n!
k!⇥(n�k)! .

The best case complexity is O(n ⇥ 2m), when the two sets of roles are
identical. In such case, for each of the n roles from the first set, Algorithm 1
glances through the set of m roles and their negations only once and finds the
exact match. We note that the complexity is independent from the number of
permissions and users.

5.5. Heuristic to Reduce the Complexity
Algorithm 1 solves an NP-complete problem. The worst case time complex-

ity is high. However, more than the size of the input data, the time complexity
depends on the nature of this data. Indeed, the complexity is exponential on
the number of roles from the second set when the compared sets of roles are
incomparable, whereas the complexity is much lower when the sets of roles are
comparable. Since we intend to use the algorithm in a context of role mining
where the roles are comparable, we expect that the exact matching for each role
exists and will be found. In addition, it will be generally found at a low level
of ConjunctiveClauseLevel. Otherwise, we can guess that no matching DNF
can be found for the handled role, and stop exploring further combinations of
roles prematurely. An intuitive heuristic to reduce the time complexity of the
algorithm is to set a limit for the ConjunctiveClauseLevel. We provide the pos-
sibility for the user of the algorithm to set a threshold, in order to avoid that the
algorithm explores all the combinations involving clauses of cardinality beyond
this threshold. Besides, such option may be required by the user. Indeed, a se-
curity administrator may prefer that the obtained DNFs keep simple and short
for easier management than more complex and accurate. The threshold can be
given as input to the algorithm and taken into account with a minor modifica-
tion of Algorithm 1 by adding the condition (ConjunctiveLevel  threshold) to
the line 9. Algorithm 3 is a new version of Algorithm 1 where we show only the
modified lines. To enhance the accuracy of matching between each role and its
approximated DNF, the user can increase the threshold gradually.

For n mined roles, m original roles, and a threshold t of the maximal number

of roles in a conjunction, the worst case complexity becomes O(n ⇥
2tP

k=1

Ck

2m

)=

O(n⇥ 4m ⇥ t

m

). The heuristic slightly decreases the execution time since t will

17

Algorithm 3 Compare(setR1,setR2,threshold)
Input: nRoles1⇥nPerms reference role-permission relation setR1
Input: nRoles2⇥nPerms compared role-permission relation setR2
Input: threshold is an integer that represents the maximum supported number

of roles in a conjunctive clause in the returned DNF
Output: a DNF of roles from setR2 for each role in setR1. The DNF is equal

to the role, or the closest included possible, with no more than threshold
roles in each conjunctive clause of the DNF.
. . .
9: while ¬RIsCovered and CandidateClauses 6= ; and ConjunctiveClause-
Level  threshold
. . .
35: return DNF for role R

be generally set much lower than m, and the complexity is still high. But this
heuristic is applicable in the general case, to any sets of roles provided as input.
To enhance the time complexity more significantly, we have to focus on the input
data characteristics. We have to formally study the notion of comparable sets
of roles, and its impact on the time complexity of the algorithm. In particular,
since our intended context of application is role mining, we need to characterize
more specifically the use cases related with role mining, where the exact match
DNFs could or could not be found. Then we will be able to preprocess the input
data accordingly, with the objective to avoid providing roles with no exact match
DNFs to Algorithm 1. This approach is detailed in the following section.

6. Shadowed Roles Detection

In this section, we first investigate the characteristics of the input data and
their impact on Algorithm 1 of role set comparison. We characterize, under
realistic assumptions related to role mining context, some properties of roles
that guarantee the existence of the exact matching DNFs. We demonstrate
that there is a correlation between the misconfiguration problem of shadowed
roles and the complexity of execution of Algorithm 1. Second, we focus on
shadowed roles detection as a standalone problem. We provide a definition of
the problem of shadowing. Finally we propose an algorithm that detects and
reports shadowed roles in a given configuration of roles.

6.1. Detecting Shadowed Roles with the Role Set Comparison Algorithm
Based on our analysis of the the time complexity of the Algorithm 1, the

execution time is expected to be low when the exact matching DNFs exists
for all the roles. We are interested in characterizing the input data properties
that guarantee the existence of the exact matching DNFs. Besides, though
Algorithm 1 can compare two arbitrary sets of roles defined over the same set of
permissions, it is intended to be used in the context of role mining. Hence, we

18

focus on the cases related to role mining, where the two sets of roles provided
as input to Algorithm 1 are equivalent.

Theorem 5. Constrained Completeness Guarantees. Given two equiva-
lent sets of roles RP1 and RP2; For any role R from RP1, if there exists a subset

of k users such that
k

\
i=1

assigned perms(U
i

) = R, then there exists at least a
Disjunctive Normal Form DNF of roles from RP2 that exactly matches with R.

Proof. Since the two configurations of roles are equivalent according to Defini-
tion 4 , the k users which have exactly the permissions of the role R in common,
must have exactly the same permissions in the two equivalent RBAC configu-
rations. Let the roles assigned to user U

i

in RP2 be referred as r
ij

, j from 1
to l

i

, where l
i

is the number of roles assigned to the user U
i

in RP2. Then we

have: assigned perms(U
i

) =
li[

j=1
r
ij

. R is the intersection of the permissions of

the users U
i

, i from 1 to k, thus it can be denoted R =
kT

i=1

li[
j=1

r
ij

, which is a

Conjunctive Normal Form (CNF) of roles from RP2. Using the generalization
of the Morgan’s law [15], we can transform the obtained CNF to a DNF.

Theorem 5, in combination with the Completeness Theorem 3, states a suf-
ficient condition that guarantees the existence of exact matching DNFs for the
roles. In the case of role mining without errors, the original and the mined
sets of roles are equivalent. Algorithm 1 finds for each role from one set, that
satisfies the condition mentioned in Theorem 5 (there exists a subset of k users

such that
k

\
i=1

assigned perms(U
i

) = R) a DNF of roles from the other set which
exactly matches with it. We note that this condition is independent of the role
mining technique used to calculate the sets of roles. Moreover, this condition is
closely related with the concept of role. Indeed, a role can be viewed as a set of
permissions assigned together to a set of users.

The following corollary states that the aforementioned condition is satisfied
by the roles belonging to a non overlapping configuration of roles:

Corollary 1. Completeness Guarantees for Non Overlapping Roles.
Given two “equivalent” sets of roles RP1 and RP2; If the roles of the set RP1
are not overlapping, then, for any role R in RP1, if R is assigned at least to
a user, and there is no other role R0 2 RP1 such that assigned users(R) ✓
assigned users(R0), there exists at least a Disjunctive Normal Form DNF of
roles from RP2 that exactly matches with R.

Proof. reductio ad absurdum:
Assume that \

Ui2assigned users(R)
assigned perms(U

i

) = R [P with P a set of

permissions such that P \ R = ; and P 6= ;. Then P is the intersection of the
permissions assigned to all the roles assigned to the users assigned to R, minus
the permissions assigned to R.
Formally: P = \

Ui2assigned users(R)
([
Rj2assigned roles(Ui)\R

assigned perms(R
j

)).

19

However, there is no role shared by all the users assigned to R other than R.
Since the roles are non overlapping. Then, P = ;.
Consequently, \

Ui2assigned users(R)
assigned perms(U

i

) = R, and R satisfies the

condition of Theorem 5.

Thus, if Algorithm 1 does not find an exact matching DNF for a given role
in a context of role mining, this means that the conditions of Theorem 5 or
Corollary 1 are not filled, and can be interpreted as a possible misconfiguration
of that role in its original set of roles. The first possibility is that the User-
to-Role assignment is incomplete, and that this role has not been assigned to
any user yet. For instance, a job position has been created but the assigned
employees are not hired yet. The second possibility is that the role is always
assigned to the users simultaneously with another role, so the two roles can
be merged in a single role. Another possibility is that the role is overlapping
with other roles in the set, and some permissions of the role are shadowed by
other roles. This can happen if the role is always assigned to users who receive
the shadowed permissions from their other assigned roles simultaneously. The
shared permissions can thus underline a misconfiguration of the role or a non
optimal hierarchy in the structure of roles. To summarize, when used to compare
two sets of equivalent roles, Algorithm 1 can warn about shadowed roles in the
configuration of roles when an exact matching DNF for a certain role is not
found.

But, the conditions of Theorem 5 or Corollary 1 are still restrictive, and they
do not exhaustively specify when exact matching DNFS exists. For instance,
they can not tell about overlapping roles. Besides Algorithm 1 can not exhaus-
tively detect all the shadowed roles. Indeed, if the conditions are satisfied, then
the algorithm will find exact matching DNFs for the roles, but if the Algorithm
finds an exact matching DNFs this does not mean that the conditions are satis-
fied by the role. There may be still some undetected shadowed roles. Moreover,
the detection of shadowed roles with Algorithm 1 is very costly in time. And
the algorithm cannot tell if the role is entirely or partially shadowed. It would
be more interesting to detect shadowed roles separately from the comparison al-
gorithm, and then, handle the misconfiguration cause or discard the shadowed
roles from their configuration, before comparing it with another configuration of
roles. This would enhance the e�ciency of the comparison algorithm. Besides,
independently from the comparison of roles, exploring the shadowed roles in
a given configuration of roles could be a useful application for a security ad-
ministrator. For all these reasons, we now show how to handle the shadowing
problem separately from the role set comparison problem.

6.2. Definition of Shadowed Roles
Towards handling the problem of shadowed roles detection, we have first

to provide our formal definition of shadowed roles in a given role based access
control configuration.

20

Definition 8. Shadowed Role
A role R is shadowed in a given RBAC configuration RC = (ROLES,UR, RP)
if it matches one or several of the following cases:

1. R is not assigned to any user in UR: i.e. assigned users(R) = ;.
or

2. There exists (at least) another role R0 in ROLES that has always similar
user assignment as R: i.e. assigned users(R) = assigned users(R’).
or

3. R is overlapping with one or several roles in ROLES, and there exists (at
least) a permission p 2 assigned perms(R) such that the users assigned to
R have always p in their other assigned roles.

The idea behind Definition 8 is that a role is considered as shadowed in a
given access control configuration if we cannot find it in the user-to-permission
assignment relation UPA. Typically, a role mining algorithm is not likely to
calculate such a role since it is based on the UPA relation to extract the roles.
The first case of shadowing is when the role has not been assigned to any
user. The second case of shadowing is when the role is always assigned together
with another role, which may indicate that it may be merged with another role.
Finally, the third case of shadowing may occur only in RBAC configuration with
overlapping roles. Di↵erent roles may share a subset of permissions. Shadowing
happens when one or several permissions of a given role are never assigned to
a user who is not already assigned these permission through his other roles.
In this case, removing the permission from the role will not a↵ect the UPA
relation. An example of this situation is provided in the Table1(a) of the afore
presented motivation example. The permission p2 is shared by the roles r1 and
r3. However, the role r3 is never assigned to a user who has not also the role
r1. So the permission p2 is actually shadowed in role r3.

6.3. Shadowed Roles Detection Algorithm
We define a new algorithm that examines an RBAC configuration and detects

the shadowed roles.
Algorithm 4 takes as input the matrices of user-to-role assignment UserRole

and role-to-permission assignment RolePermission of an RBAC configuration.
We Consider that a role is characterized by the set of permissions assigned to
it, since the user-to-roles assignment is more dynamic and changes more often.
The set of roles is then the raws of the matrix RolePermission. The algorithm
checks the roles in the RolePermission matrix for the three cases of shadowing
presented in Definition 8 and reports for each role if it is shadowed or not.
For partially shadowed roles, the algorithm also reports which are the a↵ected
permissions.

First of all, Algorithm 4 calls the function Check For Partitions Of Roles
(line 1). This function checks all the roles of the configuration for the second
case of shadowing stated in Definition 8. It detects the roles with similar sets
of assigned users. These roles are partitions of a larger role. Each column in

21

Algorithm 4 Detect Shadowed Roles(UserRole, RolePermission)
Input: UserRole: a user to role assignment matrix
Input: RolePermission: a role to permission assignment matrix
Output: A specification for each role in UserRole matrix: whether it is “not

shadowed”, “not assigned”, or “shadowed” with the specification of the
“shadowed permissions”.

1: CandidateRoles Check For Partitions Of Roles(UserRole)
2: NBUPA UserRole ⇥ RolePermission
3: RecurrentPerms permissions assigned to a user more than once in

NBUPA
4: if RecurrentPerms 6= ; then
5: for each role R in CandidateRoles do
6: RIsShadowed False
7: ShadowedPerms {}
8: if assigned users(R) 6= ; then
9: Report: “The role <R> is not assigned to any user.”

10: else
11: ProblematicPerms assigned perms(R) \ RecurrentPerms
12: for each permission p in ProblematicPerms do
13: OnceUsers assigned users(R) \ assigned users only once(p)
14: if OnceUsers == ; then
15: RIsShadowed True
16: ShadowedPerms ShadowedPerms [{p}
17: end if
18: end for
19: if RIsShadowed then
20: Report: “The role <R> is shadowed. The shadowed permissions

are <ShadowedPerms>.”
21: else
22: Report: “The role <R> is not shadowed.”
23: end if
24: end if
25: end for
26: else
27: for each role R in CandidateRoles do
28: if assigned users(R) 6= ; then
29: Report: “The role <R> is not assigned to any user.”
30: else
31: Report: “The role <R> is not shadowed.”
32: end if
33: end for
34: end if

the matrix UserRole represents the set of assigned users of a role. The function

22

Algorithm 5 Check For Partitions Of Roles (UserRole)
Input: RolePermission: a role to permission assignment matrix
Output: NonPartitionsRoles
Output: This algorithm should check for Roles that are always assigned to-

gether to the same users and report them as shadowed roles.
1: Apply a Hash function on each column of RolePermission
2: Sort the columns of RolePermission according to the Hash values
3: NonPartitionsRoles Roles with a unique instance of Hash Value
4: Report: “The roles in <RolePermission[NonPartitionsRoles> are shad-

owed. They are partitions of roles.”
5: return NonPartitionsRoles

Check For Partitions Of Roles, which pseudocode is presented in Algorithm 5
applies a hash function to each column in the matrix, then it sorts the columns
based on the hash values. Thus roles that share exactly the same set of as-
signed users are gathered since they have the same hash value. Each subset of
roles that share the same users are reported as partitions of a single role. They
are reported as Shadowed roles. The function returns the remaining roles, that
present unique hash value, because they do not fit the second case of shadowing
considered in Definition 8. They become CandidateRoles to be checked for the
two other cases (1 and 3) of shadowing in Definition 8.

The CandidateRoles may be totally shadowed if they are not assigned to
any user, and this is easy to check. By contrast, the third case of shadowing,
is more complex to be verified because a role may be partially shadowed by
one or several roles. Only overlapping roles are potentially a↵ected by this
case. The partially shadowed roles involve necessarily overlapping roles that
have been assigned simultaneously to a set of users. Consequently, a subset of
permissions are assigned multiple times to the same users. This is why we use
the algebraic multiplication instead of the boolean multiplication traditionally
used in role mining issues: the algebraic multiplication gives how many times
the same permission has been assigned to a user. We calculate the non boolean
user to permission assignment matrix NBUPA (line 2). In this matrix, each
column represents a permission, each row represents a user, and the cell c

ij

represents how many times the permissions p
j

has been assigned to the user u
i

.
Then, from this new matrix NBUPA, we deduce the set RecurrentPerms (line 3)
that contains the permissions that have been assigned to a user, through more
than one role. This set represents the only potentially shadowed permissions.

If the set RecurrentPerms is empty, then there exist no overlapping roles
assigned simultaneously to the users, and consequently, there are no roles af-
fected by the third case of shadowing in the Definition 8. We move to lines
26 to 34 where we check if each role has been assigned at least to a user. If
RecurrentPerms is not empty (line 8), then there are overlapping roles which
are assigned together to users in the input RBAC configuration. So there is a
risk of partially shadowed roles. Algorithm 4 handles the CandidateRoles one

23

by one in the for loop in line 5. First, it checks if the role has been assigned at
least to a user. The algorithm simply looks at the column correspondent to the
role in the UserRole matrix to get the assigned users(R). If the column is null,
then the role is not assigned to, and is considered shadowed and we move to the
next role. If there is a non null value in this column the role is assigned to one
or several users, and we need to check if some of the assigned permissions(R)
are shadowed. We have to handle the permissions assigned to the current role
one by one to ensure that each permission has been assigned at least to one user
only from the role R. This proves that the permission is not shadowed in the
role. The role is not shadowed only if all its permissions assigned to R are not
shadowed in it. Otherwise, the role is shadowed, and the current permission is
one of the shadowed permissions. But hopefully, we do not need to check all the
permissions assigned to a role since only the set of RecurrentPerms are poten-
tially shadowed permissions. So, for each role R, we calculate the intersection
between its assigned roles(R) and the RecurrentPerms, and we call it the Prob-
lematicPerms (line 11). Finally, for each problematic permission, we calculate
the intersection between the set of users assigned to the role, and the set of the
users to whom the permission has been assigned from only one role, which we
can find directly in the matrix NBUPA (see line 13). If the set is empty then
the role is shadowed, and we add this permission to the set of ShadowedPerms
in the current role, before we move to exploring the remaining permissions in
ProblematicPerms, to get the exhaustive set of shadowed permissions in this
role. Otherwise, the current permission is not shadowed in this role, and the
algorithm continues testing the other roles in ProblematicPerms. The role is
reported to be unshadowed only if all the ProblematicPerms are not shadowed
in it.

Theorem 6. Completeness. Given two matrices UR and RP ; For any role R
from RP , if R fills one or several of the shadowing cases specified in Definition
8 then Algorithm 4 will report it as a shadowed role.

Proof. The function Check For Partitions Of Roles (Algorithm5) checks all the
roles for the case 2 of shadowing. All the roles that are not in the case 2 of
shadowing are set to CandidateRoles. In Algorithm 4, all the CandidateRoles are
checked for the case of shadowing, either in the for loop (lines 5 to 9) if the roles
are overlapping or in the for loop (lines 27 to 30) if the roles are not overlapping.
The case 3 of shadowing is possible only in overlapping configurations of roles,
and only overlapping roles are assigned together to the same users. Then, the
If condition (line 8) ensures that all the CandidateRoles are checked for this
case of shadowing only if there exist permissions assigned more than once to
a user. These roles that are not concerned with the case 1 of shadowing are
tested for the case 3 of shadowing. For each of these roles, the algorithm verifies
that each permission of the role has been assigned at least once to a user whose
other roles does not grant this permission. Otherwise the role is reported to be
shadowed.

24

Time Complexity. Algorithm 4 is a light application that permits to detect
and report the shadowed roles in a given RBAC configuration. Its time com-
plexity is polynomial since it is O(n⇥m⇥k) with n the number of users, m the
number of permissions and k the number of roles in the input RBAC config-
uration. We are much far from the exponential complexity of Algorithm 1.
Moreover, we can avoid the worst case complexity of Algorithm 1 if we prepro-
cess its input with Algorithm 4.

7. Experimental Results

7.1. RBAC State Generator
We have implemented a random RBAC configuration generator to obtain

the synthetic data input for our experiments. This tool takes as input the char-
acteristics of an RBAC configuration, notably the number of users, the number
of permissions and the number of roles. In addition, it uses two parameters:
the density of the user-role relation UR, and the density of the role-permission
relation RP . The outputs are the three boolean matrices UR, RP , and UPA
where UPA = UR ⌦ RP . The matrices UR and RP are randomly generated
based on the provided densities which determine the probability to get 1 in a
particular cell. The obtained configuration may contain partially overlapping
roles, and may assign multiples roles to a user. We have implemented the plate-
form of test in MATLAB R2011a. All the experiments have been made with a
2.26 GHz Intel Core 2 Duo processor on Mac OS X V 10.7.2.

7.2. Experiment with the Role Set Comparison Algorithm
For this section, we generate eight data sets with di↵erent sizes described in

Table 3 with the density parameter set to 0.1. The results of the experiments
are summarized in Figure 1.

Table 3: Size of the Original RBAC Data Sets Used for the Role Set Comparison Algorithm
Experiemnts

n nUsers nPerms nOR
1 10 15 4
2 18 25 8
3 25 30 12
4 35 40 16
5 200 350 20
6 400 500 30
7 500 800 40
8 600 1000 50

First, we use the data sets 1, 2, 3 and 4 in Table 3 for role mining tests.
We provide the UPA matrix of each data set as input to a given role mining
algorithm, and we compare the original roles in UR with the mined roles in
UR⇤ using the Algorithm 1. We test three di↵erent role mining algorithms.

25

4 5 8 11 13 14 19 21
0

0.5

1

1.5

2

number of mined roles

exec time (s)

Role Mining with NNMF
Role Mining with BNOF

(a) Execution time when comparing roles of the

RBAC data sets 1, 2, 3 and 4 with the mined roles

by NNMF and BNOF

4 5 8 11 13 14 19 21
0.5

1

1.5

2

number of mined roles

avg DNF size

Role Mining with NNMF
Role Mining with BNOF

(b) Average DNF size with NNMF and BNOF

7 29 64 123
0

1

2

3

4

5

6

7

number of mined roles

exec time (s)

Role Mining with FCA

(c) Execution time when comparing roles of the

RBAC data sets 1, 2, 3 and 4 with the mined roles

by FCA

7 29 64 123
0.5

1

1.5

2

number of mined roles

avg DNF size

Role Mining with FCA

(d) Average DNF size with FCA

20 30 40 50
0

1

2

3

4

5

6

7

8

9

number of roles

exec time (s)

User to role assignment

(e) Execution time when comparing UPA with RP

in RBAC data sets 5, 6, 7 and 8.

20 30 40 50
2

3

4

5

6

7

8

9

10

11

number of roles

avg DNF size

User to role assignment

(f) Average number of assigned roles to each user

Figure 1: Experimental Results with the Role Set Comparison Algorithm

26

We adapt two techniques of matrix compression usually used in data mining,
namely the Non Negative Matrix Factorization (NNMF) [16] and the Binary
Non-Orthogonal Decomposition (BNOF) [17]. Both techniques take an UPA
matrix from a data set and give an approximate decomposition of the matrix
into the product of two matrices of lower rank, namely UR and RP . This is
done by emphasizing the frequent patterns in the original matrix, which can
be interpreted as roles in the context of role mining. However, the two tech-
niques di↵er in their constraints and optimization objective. NNMF gives a
factorization into two matrices of non negative integers, while minimizing the
root-mean-squared. We transform the obtained positive matrices into boolean
matrices. BNOF uses another decomposition technique which gives a boolean
decomposition of overlapping roles, but a user can be assigned to only one role.
The results of this first series of tests with NNMF and BNOF are given in Fig-
ure 1 (a) and (b). The purpose is to observe the behavior of Algorithm 1 when
comparing two sets of roles which have been configured with di↵erent objectives.
All role mining processes presented in this paper have finished without approx-
imation errors. The number of original roles rise from 4 to 16, but the number
of mined roles with NNMF and BNOF is slightly di↵erent from the number of
original roles. In Figure 1 (a), we plot the execution time of Algorithm 1 in
function of the number of mined roles because, as stated in the section 5.4, the
complexity of the algorithm mainly depends on this latter parameter. The exe-
cution time increases with the number of mined roles. Besides, the curve of the
role mined with BNOF shows an exponential increase in the fourth data set (19
mined roles, 253 s). This is because there is an original role for which no exact
DNF can be calculated. This role is shadowed in the original configuration of
roles. Thus, Algorithm 1 reaches the worst complexity case for this data set.
The execution time does not only depend on the number of mined roles, but it
is mostly dependent of the nature of the compared roles and how similar they
are. In Figure 1 (b), we plot the average size of the obtained DNFs for each
data set. By size of DNF we mean here the number of involved roles, no matter
if in conjunctive or disjunctive clauses. The figure shows that the average size
of the DNFs also increases with the number of mined roles. We notice a corre-
lation between the size of the DNFs and the execution time. In particular, the
execution time grows with the maximum number of conjunctions in the DNFs,
which increases from one to three in this series of tests.

The third role mining algorithm we use is a Formal Concept Analysis (FCA)
algorithm [18]. Considering the users as objects, and the permissions as their
attributes, FCA calculates a lattice of all the possible formal concepts. We con-
sider each Formal concept as a mined role. Role Mining algorithms in literature
usually process to a pruning of the lattice to discard a subset of the concepts
with regard to some optimization criteria, but in this paper, we keep all the
concepts. This explains the high number of mined roles increasing from 7 to
123 in Figure 1 (c) and (d), corresponding to sets of original roles of only 4 to 16
roles. Our purpose is to test the ability of Algorithm 1 to compare a hierarchical
configuration of roles with a flat configuration of roles. We aim also at testing
the scalability of Algorithm 1 in such cases. The results in Figure 1 (c) and (d)

27

show that the algorithm execution time scales well with the number of mined
roles, where all the roles can match their exact DNFs. This is also explained
by the fact that the average size of the obtained DNFs is still between 1 and
2, meaning that Algorithm 1 succeeds in matching the original roles with the
appropriate roles in the hierarchical configuration of roles. Actually, the size
of the DNFs varies between 1 to 6, and the number of conjunctions does not
exceed three roles, which is an intelligible amount of data that can be managed
by a security administrator.

Finally, we use the remaining last four sets of data in Table 3, to test the
ability of Algorithm 1 to perform a user to role assignment. We provide as
input both the UPA (which may be considered as pseudo-roles as explained
previously), and the set of roles generated by the random generator. The results
are given in Figure 1 (e) and (f). Figure 1 (e) shows that the algorithm scales
well with large data sets, since the execution time does not exceed 9 seconds.
All the users are assigned to their appropriate roles, and the average size of
the DNFs presented in Figure 1 (f) going up to 11 roles is simply the average
number of roles assigned to each user, since no conjunctions has been involved
in the generated DNFs in all the four tests.

7.3. Experiments with the Shadowed Roles Detection Algorithm
To test the Shadowed Role detection tool described in Algorithm 4, we have

generated a set of RBAC configurations. The sizes of these configurations are
presented in Table 4. For each size, we have generated a series of RBAC config-
uration with di↵erent values of the density parameter, namely: 0.1, 0.3, 0.5 and
0.7. Figure 2 summarizes the results from these experiments. In Figure 2(a), we
show the execution time of the algorithm with each of the data size in function
of the number of roles in the RBAC configuration. We see that the execution
time increases with the number of roles, but it is still low (few seconds) even in
the higher case of 800 Roles. In real application, the number of roles is not ex-
ecuted to exceed one thousand. Moreover, since we have generated sets of roles
with similar sizes but di↵erent densities, we can notice in Figure 2(a) that the
execution time is higher for sets of roles with higher density. By increasing the
density, the number of shadowed roles increases in the configuration, especially
the number of partially shadowed roles. The random decision of the genera-
tor in the assignment of the permissions to the roles is likely to result in more
misconfiguration of roles than in real configurations. Algorithm 4 is sensitive
to the existence of overlapping roles because it performs an additional process-
ing in this case (see Algorithm 4 - line 8). Figure 2(b) presents the number of
shadowed roles detected by the Algorithm 4, and confirms that the number of
shadowed roles increases when the density increases.

8. Conclusion

Despite the importance of RBAC systems in today organizations, security
administrators still lack for automated tools to assist them in the tasks related

28

Table 4: Size of RBAC Data Sets Used for the Shadowing Detection Algorithm

n nUsers nPerms nRoles
9 800 1000 300
10 1000 1200 600
11 1500 2000 800

100 200 300 600 800
0

10

20

30

40

50

60

number of roles

exec time (s)

density 0.7
density 0.5
density 0.3
density 0.1

(a) Execution time as function of the number of roles

100 200 300 600 800

100

200

300

600

800

number of roles

number of shadowed roles

density 0.7
density 0.5
density 0.3
density 0.1

(b) Number of shadowed roles in the data sets

Figure 2: Experimental Results with the Shadowed Roles Detection Algorithm

to the evaluation and management of roles. Such tasks are very sensitive for
the security of the organization system, and it is hard and risky to handle them
manually. In this paper, we have addressed two important issues related to role
management.

First, we have focused on the comparison of two configurations of roles, which
is an important issue in the research and the application of Role Based Access
Control, particularly with the accession of the role mining techniques. In this
paper, we have provided a formal approach to handle the problem of comparing
two sets of roles. We have stated the Role Set Comparison Problem (RSCP)
as the problem of finding for each role in one set an expression of a disjunctive
normal form of roles from the other set. We have demonstrated that RSCP is
NP-complete. Afterwards, we have presented a greedy algorithm which solves
it. We have proved the correctness and the completeness of the comparison
algorithm. We have evaluated the time complexity of our algorithm. Finally,
we have presented some experimental results which validate the e�ciency of our
algorithm in comparing configurations of roles defined with di↵erent criteria,
such as structured and non structured hierarchies of roles. We have also tested
the algorithm skills in deploying an RBAC policy by assigning the mined roles
to the users.

Second, we are interested in the problem of detecting shadowed roles in an

29

RBAC configuration. Shadowing is usually due to a misconfiguration of roles.
We have formally defined the shadowing cases. We have provided a solution to
detect shadowed roles. And, we have formally linked the problem of shadowed
roles to the problem of comparing sets of roles. Indeed, in most cases related to
role mining, preprocessing the compared sets of roles by eliminating shadowing
from the set of roles significantly lowers the complexity of the RSCP solution.
We have finally presented the experimental results that show the e�ciency and
the scalability of the shadowing detection solution. As perspective of this work,
we plan to integrate these algorithms in RBAC administration tools.

Acknowledgment

For this research, Safaa Hachana was partially supported by the ITEA2 Role-
ID (Grant agreement no.08007) and Nora Cuppens-Boulahia, Frédéric Cuppens
and Joaquin Garcia-Alfaro are partially supported by the ITEA2 Predykot
project (Grant agreement no.10035).

References

[1] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, Role-based
access control model, IEEE Computer 29 (1996) 38–47.

[2] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R. Chandramouli,
Proposed NIST Standard for Role-Based Access Control, standard, NIST,
2001.

[3] M. P. Gallaher, A. C. O’Connor, B. Kropp, The Economic Impact of Role-
Based Access Control, Technical Report, RIT for NIST (National Institute
of Standards and Technology), 2002.

[4] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, J. Lobo, Evaluating role mining
algorithms, in: Proceedings of the 14th ACM symposium on Access control
models and technologies SACMAT ’09, ACM, 2009, pp. 95–104.

[5] J. Vaidya, V. Atluri, Q. Guo, N. R. Adam, Migrating to optimal RBAC
with minimal perturbation, in: Proceedings of the 13th ACM Symposium
on Access Control Models and Technologies Proceedings SACMAT ’08,
ACM, 2008, pp. 11–20.

[6] S. Hachana, F. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro, in: In
Proceedings of the 7th International Conference on Availability, Reliability
and Security ARES’12.

[7] J. Vaidya, V. Atluri, Q. Guo, The role mining problem: finding a minimal
descriptive set of roles, in: Proceedings of the 12th ACM Symposium on
Access Control Models and Technologies SACMAT’07, ACM, 2007, pp.
175–184.

30

[8] M. Frank, J. M. Buhmann, D. Basin, On the definition of role mining,
in: Proceeding of the 15th ACM symposium on Access control models and
technologies SACMAT ’10, ACM, 2010, pp. 35–44.

[9] M. Kuhlmann, D. Shohat, G. Schimpf, Role mining - revealing business
roles for security administration using data mining technology, in: Proceed-
ings of the 8th ACM symposium on Access control models and technologies
SACMAT ’03, ACM, 2003, pp. 179–186.

[10] J. Vaidya, V. Atluri, J. Warner, Roleminer: mining roles using subset
enumeration, in: Proceedings of the 13th ACM Conference on Computer
and Communications Security CCS’06, ACM, 2006, pp. 144–153.

[11] H. Takabi, J. B. Joshi, Stateminer: An e�cient similarity-based approach
for optimal mining of role hierarchy, in: Proceedings of the 15th ACM
symposium on Access control models and technologies SACMAT ’10, ACM,
2010, pp. 55–64.

[12] A. P. Streich, M. Frank, J. M. Buhmann, Multi-assignment clustering for
boolean data, in: Proceedings of the 26th Annual International Conference
on Machine Learning, ACM, 2009, pp. 969–976.

[13] I. Molloy, N. Li, Y. A. Qi, J. Lobo, L. Dickens, Mining roles with noisy data,
in: Proceedings of the 15th ACM symposium on Access control models and
technologies SACMAT ’10, ACM, 2010, pp. 45–54.

[14] A. Colantonio, R. D. Pietro, A. Ocello, N. V. Verde, Mining stable roles
in RBAC, in: Proceedings of the 24th International Information Security
Conference IFIP SEC’09, Springer, 2009.

[15] R. L. Goodstein, “Boolean Algebra”, Dover Publications, 2007.

[16] D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization,
in: Neural Information Processing Systems (NIPS), pp. 556–562.

[17] M. Koyuturk, A. Grama, N. Ramakrishnan, Nonorthogonal decomposition
of binary matrices for bounded-error data compression and analysis, ACM
Transactions on Mathematical Software 32 (2006) 33–69.

[18] A. Colantonio, R. D. Pietro, A. Ocello, Leveraging lattices to improve role
mining, in: Proceedings of the 23rd International Information Security
Conference IFIP SEC’08, Springer, 2008, pp. 333–347.

31

