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Abstract. Security is a critical concern for any information system. Security
properties such as confidentiality, integrity and availability need to be enforced
in order to make systems safe. In complex environments, where information sys-
tems are composed of a number of heterogeneous subsystems, each must partici-
pate in their achievement. Therefore, security integration mechanisms are needed
in order to 1) achieve the global security goal and 2) facilitate the analysis of
the security status of the whole system. For the specific case of access-control,
access-control policies may be found in several components (databases, networks
and applications) all, supposedly, working together in order to meet the high level
security property. In this work we propose an integration mechanism for access-
control policies to enable the analysis of the system security. We rely on model-
driven technologies and the XACML standard to achieve this goal.

1 Introduction

Nowadays systems are often composed of a number of interacting heterogeneous sub-
systems. Access-control is pervasive with respect to this architecture, so that we can
find access-control enforcement in different components placed in different architec-
tural levels, often following different AC models. However, these policies are not in-
dependent and relations exist between them, as relations exist between components
situated in different architecture layers. Concretely, dependency relations exist between
access-control policies, so that the decision established by rules in a policy will depend
on the decisions established in another policy.

Thus, ideally, a global policy representing the access-control of the whole system
should be available, as analysing a policy in isolation does not provide enough infor-
mation. However, normally, this global policy only exist in an implicit and not always
consistent manner. Consequently, integration mechanisms are needed in order to 1) fa-
cilitate the analysis of the security status of the whole system and 2) achieve the global
security goal of the security property.



In order to tackle the aforementioned problems, we propose here a model-driven
solution to integrate policies from different concrete components collaborating in an
information system in a single model representation. Two requirements need to be met
for achieving this goal: The use of a common access-control policy model for repre-
senting the policies of each component and the recovery/representation of the implicit
dependency relations between them.

Translating all the recovered access-control policies to the same policy language,
thus, representing them in a uniform way, eases the manipulation and reusability of
analysis operations. In our approach, the component policies will be translated to the
XACMLI[9] policy language while domain-specific information is added/kept by the
use of profiles. Then, we complete the integration framework with a semi-automatic
process for detecting the policy dependencies and to organize the policies within a sin-
gle XACML model. This enables us to see the policies in our information systems as a
whole. Finally, we provide a set of OCL[16] operations making use this global model
and an approach to detect inter-component anomalies.

Our framework relies on the existence of high-level model representations of the
policies implemented by concrete systems and on the use of model-driven tools and
techniques. Consequently, as a previous step, our solution requires to perform policy
recovery tasks. Concrete components often implement access-control policies by using
diverse, low-level mechanisms (low level languages, database tables) to represent the
rules, adding complexity to the analysis and manipulation tasks. Conversely, recover-
ing these implemented policies and representing them in form of higher-level, more ab-
stract models reduces the complexity and enables the reusability of a plethora of proved
model-driven tools and techniques. We rely on state of the art recovery approaches
[L1413112] for this task.

The rest of the paper is organized as follows. In Section [2| we present a running ex-
ample and motivation. Section[3is devoted to the presentation of the proposed approach
while in Sections [4] [5] and [6] we describe each of its steps. In Section [7] we provide de-
tails about the implementation. Finally, Section [§] discusses related work and Section [9]
presents conclusions and future work.

2 Motivation

In order to motivate our approach, we present here an information system (IS) example
that will be used through the rest of the paper.

In Figure |1} a simple, yet very common IS is depicted. This IS is composed of
several components working in different architecture layers, namely, a network layer,
providing networking services and enforcing access control through the firewalls (us-
ing Rule-based lists implementing Non-discretionary AC), a database layer, providing
storage services and implementing role-based access-control (RBAC)[18] through its
built-in permissions schema and an application level, where a Content Management
System (CMS) provides publication services. This CMS also enforces RBAC by using
a built-in permission schema.

As we can see, three different systems enforce access-control. These systems are not
isolated but collaborate to build up the functionality of a global system that encompasses
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them. Concretely, and in the case of subsystems located in different architecture layers,
the collaboration relation is a dependency relation where systems in higher layers de-
pend on services provided by lower layers. Access-control reproduces this behaviour.
Consider access-control rules as functions where a decision is taken w.r.t. to a subject
accessing a resource to perform a given action under certain conditions and having the
following form: R(Subject, Resource, Action, Condition) — Decision

Let us take a look to the following examples:

Example 1:

Rpp(RoleX,TableX, Write,8:00 —16:00) — accept
Rpw (Local, DBServer, Send/receive,8:00 —14:00) — accept

In this example, a given role is granted permission to access a table for modification
between 8:00 and 16:00. However, the access to the database server in constrained by
a firewall rule, that only allows local access to the server between 8:00 and 14:00. As
the database policy depends on the firewall policy, when the latter is more restrictive,
it prevails. When asking if the role can access the table under which conditions, both
policies need to be taken into account in order to provide a complete answer.

Example 2:

Rems(BlacklistedI Ps, Admin, Access) — deny
Rpa(CMSRole, CMSSchema, Write) — accept
Rrw (0.0.0.0, DBServer, Send/receive,) — accept

This example concerns the three subsystems in our IS. A rule in the CMS forbids the
access to the admin pages to users located in blacklisted countries as identified by its
IP address. However, the user the CMS uses to connect to the database has access for
modification to the CMS database backend as stated by the second rule. Moreover, the
third rule, that belongs to the firewall systems, allows to connect to the database to users
in any location. Combining these three rules, a user located in a blacklisted area may be
able to access the admin information on the CMS through the database backend.

From the examples, we can conclude that Access-control policies can not be re-
garded as isolated when they belong to systems situated in different architecture layers.
Analysing the AC rules of a component for the absence of anomalies requires infor-
mation from the AC policies of other components it depends on. However, this com-
prehensive analysis is hampered by two factors: 1) dependencies between component’s
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policies are not explicit 2) the AC information may be represented following a differ-
ent AC model and stored in different technical spaces requiring domain experts for its
analysis.

3 Approach

In order to tackle the problems we have shown in Section 2} we propose a model-driven
approach that integrates all the policies collaborating in the enforcement of access-
control in a single model. Our approach requires a previous step, namely the extraction
of abstract models from concrete components, and then is structured in three steps (see
Figure [2):

0. Policy recovery. AC policies are implemented in concrete systems using a diverse
set of mechanisms, often low level and proprietary, like ad-hoc rule languages, spe-
cific database dictionaries, etc. As a preliminary step for our approach we require
the policies of each component to be represented in the form of abstract models,
from where the complexity arising from the specificities of a given vendor or im-
plementation technology is eliminated and only the AC information is present. This
requirement is met by several previous work that investigate the recovery of access-
control policies from diverse components [1111312]]. The outputs of those works
are to be the inputs of our approach.

1. Policy Translation. Taking as input the models described in the preliminary step,
our approach proposes to translate all the policies to the same policy language. This
step includes the description of extensions of the target language to make it able to
represent component-specific information.

2. Policy Integration With all the models translated to the same language, the next
step is to integrate them all in a single model, along with the dependencies between
them. This step requires the discovery of such dependencies, normally implicit.

3. Policy Analysis Support. Having all the policies represented in the same model
and the dependencies between them made explicit enables the definition of com-
plex analysis tasks. Prior to that, the definition of a number of operations taking
advantage of the model organization is required to ease the building of those anal-
ysis tasks. The third step is meant to provide that set of operations.

The following sections are devoted to a detailed description of each of the steps.



4 Policy Translation

All the policies in the IS, potentially conforming to different access-control models and
containing domain specific information need to be translated into the same language as
a previous step for the integration in a single policy. In order to do so, first, we need
to chose a policy language able to represent policies following different policy models
and to represent multiple policies in the same resource.

4.1 XACML Policy Language

XACMLI[9] is an access control policy language and framework fulfilling these require-
ments. It follows the Attribute-based access-control model (ABAC)[7]] what, along with
its extensibility, provides to the language enough flexibility to represent policies follow-
ing different access-control models. Other approaches [15[19] describe languages and
tools able to produce flexible access-control models. However, several reason inclined
us to choose XACML. First of all, thanks to its ABAC philosophy, XACML is able
to represent a wider range of security policies (see [7] for the capabilities of ABAC
to cover other AC models), while other extensible languages like SecureUML[10] will
impose the use of RBAC. Secondly, being an standard language, we expect a wider
adoption and a more consistent maintenance and evolution of the language.

XACML policies are composed of three main elements PolicySet, Policy and Rule.
A PolicySet can contain other PolicySets or a single Policy that is a container of Rules
(Policy and PolicySet also specify a rule-combining algorithm, in order to solve con-
flicts between their contained elements). These three elements can specify a Target that
establishes its applicability, i.e., to which combination of Subject, Resource and Action
the PolicySet, Policy and Rule applies. Subject, Resource and Action identifies subjects
accessing given resources to perform actions. These elements can hold Artribute ele-
ments, that represent additional characteristics (e.g., the role of the subject). Optionally,
a Rule element can hold a Condition that represents a boolean condition over a subject
resource or action. Upon an access request, these elements are used to get an answer of
the type: permit, deny or not applicable.

4.2 Translation to XACML and Profiles

Our goal is to translate all the existing policies of the system in hand to XACML
policies. However, the component-specific models will typically represent the access-
control information in a component-specific way, i.e., they will include concepts of the
domain for easing the comprehension and elaboration of policies by domain experts.
Those concepts should be preserved in order to keep the expressivity of the policy.
For that purpose, XACML profiles need to be defined. These profiles will basically
specialize the core concepts of the XACML policy language. In general, a profile will
contribute new attributes specializing the concepts of Subject, Resource and Action al-
though specializing other concepts may be necessary mostly when the profile needs
to reflects some special feature of the original policy model (take as an example the
XACML RBAC Profile E], where the concepts of PolicySet and Policy are extended as

3 http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf



well as describing how to arrange these elements in a specific way to achieve the desired
goal).

In order to demonstrate the process of defining a XACML profile, in the following,
we describe the development of a XACML profile for the domain of relational database
management systems (RDBMSs). The concepts of the domain are extracted from a
security database metamodel described in [11].

First of all, note that the domain of relational databases usually relies on a RBAC
model, what should be represented in the profile. There exists already a XACML profile
for RBAC. Therefore, our profile will complement the use of this profile by contributing
domain specific attributes for Subject, Resource and Action.

We start by defining the profile identifier that shall be used when an identifier in the
form of a URI is required:

urn:casis:names:tc:xacaml:3.0:rdoms

Regarding the Resources, we will describe the following attributes.

urn:oasis:names:tc:xacml: 3. 0:rdans: resource:database
urn:oasis:names:tc:xacml: 3. 0:rdoms: resource:schema
urn:casis:names:tc:xaanl:3.0:rdoms: resource:table
urn:oasis:names:tc:xacaml: 3. 0:rdoms: resource:colum
urn:oasis:names:tc:xacml:3.0:rdams:resource:view
urn:oasis:nanes:tc:xaamnl: 3.0 : rdams: resource:procedure
urn:oasis:nanes:tc:xacml: 3. 0:rdams:resource:trigger

As for the actions, we will describe the following attributes, being all of type string.

urn:oasis:names:tc:xacml:3.0:rdams:action:tableOpt:insert
urn:oasis:names:tc:xaanl:3.0:rdoms:action:tableOpt delete
urn:oasis:nanes:tc:xacml:3.0:rdams:action:tableOpt:select
urn:oasis:names:tc:xacml:3.0:rdams:action:tableOpt update
urn:oasis:names:tc:xacml:3.0:rdoms:action:doOpt alter
urn:oasis:names:tc:xaanl: 3. 0: rdoms:act ion:doOpt :drop
urn:oasis:nanes:tc:xacml: 3. 0:rdoms:act ion:doOpt :create
urn:oasis:nanes:tc:xacml: 3. 0:rdams:act ion:;permissionOpt:grant
urn:oasis:names:tc:xacml: 3. 0:rdams:act ion:;permissionOpt:revoke
urn:oasis:names:tc:xaaml:3.0:rdoms:action:sessionOpt:set
urn:oasis:nanes:tc:xacml: 3. 0:rdoms:act ion:sessionOpt:connect
urn:oasis:names:tc:xacml: 3. 0:rdams:action:codeOpt :execute

Finally, and regarding the subjects, the concept of role is already included in the
RBAC profile. We will only add an attribute to identify the database elements owned
by a subject, as this attribute influences the permissions (commonly, in RDBMS, the
owner of a resource has all the permissions and moreover, is allowed to delegate those

permissions to others).

urn:oasis:names:tc:xaanl: 3. 0:rdoms:subject :owner

Once the profile is available, a transformation between the metamodel of the model
recovered from the subsystem and the XACML (plus profiles) metamodel is defined,
providing as an output XACML instance models. Note that to reflect the access-control
model used in the RDBMS, we have to explicitly create a rule that in RDBMS is im-
plicit, i.e., the owner has all the rights on the owned element.

The definition of any other profile will follow a similar process. Concretely, for the
CMS we will define attributes extending the core concepts of XACML following the
types defined in [13] and then combining its use with the use of the RBAC profile. As
for the firewalls, several mappings to use as a basis for the profile exists, including the
use of roles [4] or not [12]]. We decide to extend the latter to include domain concepts
(as host, zone, protocol, etc), discarding the discovery/creation of implicit roles.



S Integration

Once we have all the policies represented within the same policy language, the next step
is to organize the policies in a single global model. A key issue in this step is to unveil
the implicit dependencies between policies situated at different architecture levels to
make them explicitly appear in the model.

First of all, we need to decide the structure we will follow to represent the policies
and their dependencies in a single XACML resource. The policy of each component
will be stored in single XACML PolicySet, so that we can use the PolicySetldRef to
link it (without inheritance semantics) to other policies in the system. Note that some
scenarios will require the policy of the component to be split in several PolicySet and
Policy elements as is the case when using the RBAC profile. For simplicity, in the rest of
the paper we will consider the policy of a component as the element containing its rules,
disregarding how they are internally organized using XACML structural elements. Note
also that the proposed structure is only intended to enable analysis capabilities and not
to mimic a structure suitable, for instance, for code-generation and system deployment.

Starting from the individual policies, we need a process to discover the dependen-
cies between them, so that the references can be properly set. We propose here a process
based on exploiting context information (e.g., IP address or database-backend user for
a CMS) that suggests relationships between subsystem. Note that we do not deal here
with the possible heterogeneity of the properties storing the context information (dif-
ferent names or types) by considering that the matching of such heterogeneities may
be performed, if needed, as a previous step. This context information is relevant not
only to unveil the dependencies but also for the analysis of the system, thus, it needs to
be stored along with the policy representation. As XACML does not provide a specific
place to store this kind of information and to minimize the language extension it may
require, we add this information in the description field of the PolicySet element. In
this field we store a string representing a key and value map with the corresponding
environment values for the Policy or PolicySet:

Context{dbUser Name : anonyme; IpAddress : 192.000.111.0}

With the context information available, the process to find the dependencies be-
tween policies is described in Algorithm [T} Basically, for each context parameter in a
given policy it searches if there is any rule using that attribute value in any of the other
policies. If this is the case, a dependency exists between both policies and as such it is
registered. Note that the algorithm has been optimized by considering that no circular
dependencies exist. The set of candidate policies for a Policy Pj (i.e., policies it may
depend on), initialized to all the other policies in line 3, is modified in line 13 to re-
move Policies Pt that already depend on it. This assumption stems from the nature of
multi-layer ISs where upper components depend only on components in lower layers.
This optimization can be dropped for other scenarios if needed.

Figure [3] shows the result of applying our approach to the IS example in Section
2l A policySet element has been created for each of the system components: firewall,
database and CMS. These policySets contain the translated to XACML access-control
policy of each component along with references to its dependencies as calculated by
algorithm
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13: Candidates|P;|+Candidates|P; P; . . . .

14 end if ) IR Fig. 3. Policy Organization
15: end for

16: end for

17: end for

Considering the following set of context attributes for each component: IpAddress :
111.222.1.10 for the database; dbUserName:anonyme and IpAddress:111.222.1.12 for
the CMS; the empty set for the firewall, the results is that the database policySet holds a
dependency on the firewall policySet (due to the IP address context attribute) while the
CMS policySet holds dependencies to the firewall and the database policySets (due to
the database user and IP address context attributes).

6 Global analysis of inter-component anomalies

We are now able to perform all kinds of security analysis and manipulation tasks un-
available when focusing only on individual policies. The implementation of such tasks
will benefit from the use of a common XACML representation which abstracts from
irrelevant technical details and facilitates their reusability regardless the specific com-
ponents those policies come from.

In this paper we focus on one of such analysis tasks that we believe is specially crit-
ical: the detection of inter-component anomalies. As a preparation, we will first present
a number of basic operations introduced with the purpose of easing the manipulation of
our integrated model (for this and other possible analysis).

6.1 Basic Operations

Our model can be easily queried to extract useful information by using the OCL [16]]
standard query language. However, there is a set of operations that will be commonly
used and as such, we consider worth it to define them as a reusable library. In that sense,
we present here a list of useful model manipulation operations implemented with OCL.

Table ] presents a description of this set of basic operations. Basically, we present
operations to work with the dependencies, getDependents, getDependencies, getAllDe-
pendencies resolveDependency and getDependencySource; operations to obtain the con-
text attributes of a policy, getContextAttributes; and operations to obtain the rules related
with context attributes in a dependency relation, getRelevantRules.



Operation Description

getDependents(p:Policy) : Sequence{Policy } Given a policy P, returns the sequence of policies having this
policy as dependency.

getDependencies(p:Policy) : Sequence{Dependency } Given a policy P, returns the sequence of direct dependencies.

getAllDependencies(p:Policy): Sequence{Dependency } Given a policy P, returns the sequence of ALL the dependen-
cies, direct and indirect.

resolveDependency(d:Dependency) : Policy Given a dependency D, returns its target Policy P.
getDependencySource(d:Dependency): Policy Given a dependency D, returns its source Policy P.
getContextAttributes(p:Policy) : Given a Policy P, returns a sequence of tu-
Sequence{ Tuple{key:String,val:String } } ples{key:String,Value:String}, representing the context
attributes
getRelevantRules(p:Policy,p2:Policy) : Given two policies, P¢ and Pj, with P7 dependent on Pj,
Sequence{Rule} returns the rules in P} related to the context attributes of P4,
i.e., the set of rules of Pj P4 depends on
Table 1. OCL Operations

6.2 Detection of rule anomalies

One important analysis task is the detection of anomalies that appear when several poli-
cies work together, as shown in the examples in Section [2] The problems these anoma-
lies cause vary from simply increasing the complexity of policies to the introduction of
unexpected behaviour of a component w.r.t. its defined policy.

Focusing on the undesired effects these anomalies may produce and considering
rule r; depending on 7; (as indicated by the policy dependency structure presented in
B), we identify the following risks (defining risk as a threat caused by an anomaly that
may lead to loses in terms of money and/or reputation):

Security Risk: The combination of r; and r; may cause a security hole. This hap-
pens when 7; allows requests for values r; does not allow. We consider the risk
partial when r; only allows some of the r; denied values. Example 2 in Section E]
belongs to this category, as the network layer, combined with the database layer,
allows request the CMS does not.

— Service Risk: The combination of 7; and r; may cause the component to which r;
provides access-control not to be able to provide the expected service. This happens
when r; denies requests for values r; allows. We consider the risk partial when r;
only denies some of the r; allowed values. Example 1 in Section [2| shows a partial
service risk.

— Redundancy: r; or r; may be eliminated without impact to the behaviour in the
system. This may happen when both rules deny requests for the same values. Poli-
cies containing those rules may be refactored to reduce complexity.

— No Risk: The combination of r; and r; does not generate any risk.

As we have seen, these anomalies depend on the relations that hold between the set
of request matched by a pair of rules. For determining that relation we need to compare
security rules. This comparison is done for the purpose of checking if 1) Conditions
in different rules hold for the same set of values 2) The rule effect when the conditions
hold are conflicting. This process, which we call rule similarity evaluation following the
terminology in [14]], can be performed following different approaches. Here, due to the
relative simplicity of the syntactical analysis they propose, we adapt the approach pro-
posed in [14] to the case of policies in different architectural layers. Other approaches
could however be also adapted to our specific case.
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Rule Similarity. For risk analysis purposes, the similarity of rules can be classified
in five values {Converges, Diverges, Restricts, Extends, Shuffles} with the following
definition (see the second column in Tabld2]for a graphical representation):

Converge: Two rules ’converge’ if the sets of values are equal with respect to which
their conditions hold.

Diverge: Two rules ’diverge’ if the sets of values do not intersect with respect to
which of their conditions hold.

Restrict and extend: A rule ’restricts’ (or ’extends’) another rule if the sets of values
with respect to which its conditions hold contain (or is contained in) the set of values
computed for the other rule.

Shuffle: Two rules ’shuffle’ if the sets of values for which their conditions hold
intersect, but no one is contained in the other.

These values are calculated by a similarity calculation algorithm presented in [14].
We instantiate the Rule similarity types for the case of rules situated in different archi-
tectural layers by assigning them the previously defined risk types.

Risk calculation. The assignment of risk types to rule similarity types depends on their
effect (deny, accept) and matched request sets. Table 2] shows the assignment for all the
possible combinations. Notice that the actual presence of anomalies between two rules
depends on the nature of the involved systems and how they interact.

Algorithm [2] describes the process of instantiating the risks of rules over our infras-
tructure given a rule and an attribute to check. Basically, the algorithm iterates over the
policies the policy containing the rule depends on, retrieving relevant rules (lines 9 and
13) and retrieving the similarity value (line 18) to produce an anomaly report (line 19).
It is important to note that when the dependency is indirect, i.e., the dependency rela-
tionship is established through another policy, we need to get the relevant rules w.r.t.
this latter policy having the direct dependency (line 11 to 15). This is specially impor-
tant because a given policy may have both, a direct and an indirect dependency with



Algorithm 2 Risk evaluation

1: r< Initialrule, a<— Initialattribute
2: P+ P/r € P, D+ getAllDependencies(P), S< getDependencies(P)
3: foreach D; € D do

4: P; <+ resolveDependency(D;)

5: if D; in S then

6: R+ getRelevantRules(P, P;)

7: tagRules(R, P)

8: else

9: Pj+ getDependencySource(D;)

10: R+ getRelevantRules(Pj, P;)

11: tagRules(R, Pj)

12: end if

13: for each r; € R do

14: if a € r; then

15: stm<— calculateSimilarity(r;,r, a)
16: report AnomalyCheck(sim,r;,r,)
17: end if

18: end for

19: end for

another policy, each one yielding a different set of relevant rules. As this information is
relevant for performing further analysis, each rule is tagged with its dependent policy
(lines 10 and 14).

Let us take a look of how the risk types instantiation is calculated for the exam-
ples presented in Section 2] Regarding the first example, we want to know if given the
database rule Rpp and its time attribute there exists an anomaly:

Rpp(RoleX,TableX, Write,8:00 —16:00) — accept

Following the proposed algorithm, the policy dependencies are retrieved, that in
this case consists only in a dependency towards the firewall policy. Using the context
attributes, the rules in the firewall policy related to the database are retrieved. Finally,
from this set of rules, the ones containing the time attribute are checked for similarity
with the database rule and tagged in consequence. We can then show only those hav-
ing a similarity implying an anomaly. In that subset we will have the second rule in
the example, Rryy, as it uses a context attribute, the time attribute, and the calculated
similarity has the value of extend, which may cause an anomaly of partial service risk,
as shown in the Table 2]

Rpw (Local, DBServer, Send/receive,8:00 —14:00) — accept

As for the second example, the process starts in a similar way, by retrieving the
dependencies of the CMS policy containing the rule Rcass and the attribute to be
checked, in this case, the source IP address.

Rcvs(BlacklistedI Ps, Admin, Access) — deny

However, now we will have two kinds of dependencies. The CMS policy depends
directly on the database and firewall policies, but it also holds an indirect dependency to
the firewall policy through the database one. Thus, three sets of rules are retrieved, those
of the firewall and database policies related to the CMS context attributes (IP address
and database user) and those of the firewall related with the context attributes of the
database (IP address of the server).
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The risk type instantiation calculated on the set of retrieved rules will exhibit not
only the possible anomalies the policy of the CMS has with respect to the database and
the firewall directly, but also those anomalies arising from the combination of the effects
of rules in the database and firewall together. Thus, among other possible anomalies
present in the firewall or database configuration we will retrieve the one associated with
the following rule:

Rrw (0.0.0.0, DBServer, Send/receive, ) — accept

It gives access to the database server (back-end of the CMS) to users in a location
forbidden by the CMS policy. This rule retrieved from the database dependency and
tagged that way, informs us about an anomaly (shadowing) between the CMS and the
firewall involving the database system. The security expert will only need to retrieve the
database relevant rules w.r.t. the CMS policy to have a complete picture of the problem.

Rems(BlacklistedI Ps, Admin, Access) — deny
Rp(CMSRole, CMSSchema, Write) — accept
Rpw (0.0.0.0, DBServer, Send/receive, ) — accept

Obtaining this information would not have been possible without the integration of the
policies and the discovery of their dependencies.

7 Implementation

In order to validate the feasibility of our approach, a proof-of-concept prototype imple-
mentation has been developed under the Eclipse environmentﬂ by using Model-driven
tools and techniques. Concretely, our implementation is based on two features:

Model Representation. Our approach takes as input domain-specific access-control
models extracted from different components in order to translate them to XACML mod-
els. To be able to do that, a XACML policy metamodel (models conform to metamod-
els, which define the main concepts and relationships of the domain) is required, so that
models conforming to it can be created. We have used, EMF, the de-facto modeling
framework for that purpose.

Providing the XACML XSD schemzﬂ as an input to EMF, the framework allowed
us to generate the XACML policy metamodel, and in turn, to generate Java code plugins
for the manipulation of model instances, including a tree-based editor. Note that these
models instances can be, in turn, serialized using a XML syntax. XACML identifiers,
datatypes, etc, are integrated in a similar way i.e., by extracting a metamodel through
EMF and linking it to the XACML metamodel.

Model Query&Transformations. Once the means to represent XACML models are
available, we can perform the transformations from the domain models and the opera-
tions and algorithms described in Sections [5] and [6} We have used the ATL[8] model-
to-model transformation language for that purpose. ATL is a hybrid (declarative with

® https://www.eclipse.org/
7 http://docs.oasis-open.org/xacml/3.0/XSD/cs-xacml-schema-policy-01.xsd
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imperative facilities) language and framework that provides the means to easily specify
the way to produce target models from source models. The following model-to-model
transformation have been created:

1) A model transformation for each component model to a XACML model.

2) A library of helpers, an ATL mechanism to factorize OCL operations, represent-
ing the basic operations in section [6]

3) A model transformation for the integration algorithm in

4) A model query for the detection of anomalies, following the algorithm

8 Related Work

The integration of security policies is a research problem that has attired the attention of
the security research community in the recent years. Consequently, different approaches
to tackle the problem have been proposed.

From a formal perspective, in [3] the authors provide the foundations of a formal
framework to represent policies in different architectural layers. Similarly, in [2] the au-
thors analyze different combination operations for AC policies. Among them, the com-
bination of heterogeneous policies and the integration of hierarchical policies through
refinement. [1]] provides a logical framework to encode multiple authorization policies
into a proof-carrying authorization formalism. In [17] Method-B is used to formalize the
deployment of AC policies on systems composed of several (network) components. Fi-
nally, by using model-driven techniques, in [5] the authors formalize the policy contin-
uum model, that represent policies at different inter-related abstraction layers although
it does not tackle the problem of inter-related architectural layers.

The aforementioned works are valuable contributions that could be eventually used
to enforce a forward engineering process to generate correct policies. However, none
of these formalization works provide the bridges necessary to fill the gap between real
deployed policies and the proposed formalisms as they mostly aim at providing a formal
framework to deploy/analyse/manipulate synthetic policies. Conversely, our approach
works the other way round by proposing a more pragmatic approach, aimed at providing
a solution for the integration of real, already deployed policies.

More similar to us and working on XACML policies, in [[6] the authors describe ap-
proaches to detect anomalies while in [[14]] integration analysis for policies belonging to
different authorization entities is proposed. However, they do not deal with dependen-
cies between policies. Finally, we have adapted the similarity process in [14]] to compare
rules and policies for the case of inter-dependent access control policies.

9 Conclusions and Future Work

We have presented an approach to integrate the Access-control policies collaborating
in an Information System. It translates all the policies to the XACML policy language
and organizes them in an unique model by unveiling the implicit dependencies between
them. Finally, we have presented useful operations taking advantage of the proposed
infrastructure that lead to detect possible anomalies between the policies.
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As a future work, we plan to extend our approach to include other sources of infor-
mation. Concretely, we would like to integrate in our approach the information provided
by the audit and logging systems of IS components. So far, we can point the security
experts to possible anomalies. By analysing the audits together with them, we believe
we can determine whether the anomaly is taking place/being exploited or not. Finally,
we also intend to extend our approach to integrate different kinds of policies. Privacy,
Integrity and Secrecy policies may collaborate between them and thus, we believe they
may benefit of an integration approach as the one we have presented here.
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