
A model-driven approach for the extraction of network
access-control policies

Salvador Martínez, Jordi Cabot
ATLANMOD, & Ecole des Mines de Nantes,

INRIA, LINA
Nantes, France

{salvador.martinez _perez,
jordi.cabot}@inria.fr

Joaquin Garcia-Alfaro,
Frédéric Cuppens, Nora

Cuppens-Boulahia
Télécom Bretagne ; LUSSI Department

Université Européenne de Bretagne
Cesson Sévigné, France

forename.surname@telecom-
bretagne.eu

ABSTRACT
Network security constitutes a critical concern when devel-
oping and maintaining nowadays corporate information sys-
tems. Firewalls are a key element of network security by fil-
tering the traffic of the network in compliance with a number
of access control rules that enforce a given security policy.
Unfortunately, once implemented, and due to the complex-
ity of firewall configuration languages and the underlying
network topology, knowing which security policy is actually
being enforced by the network system is a complex and time
consuming task that requires low-level and, often, vendor-
specific expertise. In an always-evolving context, where se-
curity policies are often updated to respond to new security
requirements, this discovery phase becomes critical since it
could hamper the proper evolution of the system and com-
promise its security. To tackle this problem, our approach
generates an abstract model of the firewall configurations in
a network that facilitates the understanding and evolution
of network security policies.

Keywords
Model-driven, security, reverse-engineering

1. INTRODUCTION
Network security policies constitute a critical concern when
developing and maintaining corporate information systems.
Among them, access control policies which are often the
mechanism of choice to guarantee the confidentiality and
integrity of resources within a network, present, due its rel-
ative simplicity with respect to other techniques, like cryp-
tography, an special interest.

Access-control policies indicates which subjects are allowed
to interact with a given object. In the networking envi-
ronment, they indicate which hosts can send, under given

conditions (i.e., which protocol or port is used, etc) , mes-
sages to other host. In this context, firewalls, designed to
filter the traffic of a network with respect to a given num-
ber of filtering rules, are key elements in the enforcement of
security policies.

Although there exist approaches to derive firewall configura-
tions from high-level network policy specifications, this pro-
cess is still normally done by hand, using low level and, often,
vendor-specific rule filtering languages. Moreover, the net-
work topology, that may include several firewalls, may im-
pose the necessity of splitting the enforcement of the global
security policy among several elements. All this complexity,
could potentially introduce differences between the imple-
mented policy and the desired one.

Therefore, once implemented, knowing which access control
policy is actually being enforced by the firewalls in the net-
work system is a complex and time consuming task that re-
quires, again, low-level and vendor-specific expertise. Given
a network system consisting in several firewalls configured
with hundreds of rules, the feasibility of this manual ap-
proach could be seriously questioned. As a consequence, in
an always-evolving context, where security policies are often
updated to respond to new security requirements, this pol-
icy discovering task becomes critical as it could hamper the
proper evolution of the system and compromise its security.

We believe that, in order to tackle this problem, a first step is
to raise the level of abstraction of the information contained
in the firewall configurations files so that the access control
policy they implement is easier to understand, analyze and
manipulate.

Thus, we propose here a model-driven approach aimed at ex-
tracting a model of the access control policy enforced by the
firewalls within a network system. Our approach produces a
model that abstracts the information from the low-level fire-
wall configurations so that low-level, concrete language and
vendor-specific expertise is not longer needed to understand
which access control policy is being implemented. Moreover,
complexities due to the topology are also hidden as the in-
formation contributed by each firewall is combined into a
single model that only shows hosts, services and permissions
for connections that are relevant for the global access control

Figure 1: Network example

policy of the network, disregarding information only locally
relevant (i.e., information that is only relevant for the policy
of a single firewall but not for the global network). Once this
model is available, reasoning about the policy implemented
on the network is accessible for non-technical security ex-
perts. Moreover, a plethora of Model Driven Development
(MDD) tools, like query engines, graphic editors, etc., will
become automatically available.

We demonstrate the feasibility of our approach by providing
a prototype implementation working for firewalls using the
netfilter iptables rule filtering language.

The rest of the paper is organized as follows. Section 2
presents a motivating and running example. In section 3 we
present and describe our approach whereas in section 4 we
discuss a prototype implementation of it. Section 5 discuss
related works and finally the paper finish in section 6 with
some conclusions and future works.

2. MOTIVATING EXAMPLE
In order to illustrate the problem and simplify the discus-
sion, we introduce here a running example that will be used
all along the present work.

The example consist in a network system and the corre-
sponding firewall configurations. The network system is
based in the well-known network system described in [2] and
depicted in figure 1. This network system contains the fol-
lowing elements:

• An intranet composed by a number of private hosts
where one of the private hosts acts as an administrator
of certain services provided by the network system.

• A DMZ (demilitarized zone) that contains two servers.
A DNS server and a multiserver providing the following
services: HTTP/HTTPS (web), FTP, SMTP (email)
and SSH.

• Two firewalls controlling the traffic towards and from
the DMZ. The first firewall controls the traffic between
the public hosts (the Internet) and the services pro-
vided by the DMZ. The second firewall controls the
traffic between the intranet and the DMZ.

The firewalls in the exemplary network control the traffic
from and towards the services provided in the DMZ. In the
following, we show the configuration excerpts of these fire-
walls with respect to two of the provided services, HTTP
and SMTP. These sample configurations use the netfilter

iptables [12] rule language. Note that although these con-
figurations files are written using the iptables custom chain
feature, which allow the user to define exclusions to rules
without using drop or deny rules, the concrete rule language
and coding style does not affect our approach as we will show
in section 3.

First, we will consider here that the global policy for both
firewalls states the rejection of any connection not explicitly
allowed as shown by the rules in listing 1.

Listing 1: Global policy netfilter configuration
iptables −P INPUT DROP
iptables −P FORWARD DROP
iptables −P OUTPUT DROP

Listing 2: Firewall 1 netfilter configuration
iptables −N Out_SMTP
iptables −A FORWARD −s 111 . 222 . 1 . 17 −d 0 . 0 . 0 . 0 / 0 −p tcp −−

dport 25 −j Out_SMTP
iptables −A Out_SMTP −d 111 .222 . 0 . 0/16 −j RETURN
iptables −A Out_SMTP −j ACCEPT

iptables −N In_SMPT
iptables −A FORWARD −s 0 . 0 . 0 . 0 / 0 −d 111 . 222 . 1 . 17 −p tcp −−

dport 25 −j Out_SMTP
iptables −A Out_SMTP −s 111 .222 . 0 . 0/16 −j RETURN
iptables −A Out_SMTP −j ACCEPT

iptables −N NetWeb_HTTP
iptables −A FORWARD −s 0 . 0 . 0 . 0 / 0 −d 111 . 222 . 1 . 17 −p tcp −−

dport 80 −j NetWeb_HTTP
iptables −A NetWeb_HTTP −s 111 .222 . 0 . 0/16 −j RETURN
iptables −A NetWeb_HTTP −j ACCEPT

The firewall number 1 controls the traffic from the public
hosts to the services provided in the DMZ. The listing 2
shows the rules that control the access to the SMTP and
HTTP services.

The first chain controls the outcoming SMTP messages to-
wards the public host. It allows them for every hosts but
for the host in the local network. The second chain controls
the incoming SMPT messages to the server. If the request
is done through one machine belonging to the local network,
it is rejected while it is allowed for any other machine. The
third rule controls the HTTP requests from the public hosts.
Again, connections are allowed for any host but for the local
ones.

Listing 3: Firewall 2 netfilter configuration
iptables −N IntraMail_SMTP
iptables −A FORWARD −s 111 .222 . 2 . 0/24 −d 111 . 222 . 1 . 17 −p

tcp −−dport 25 −j IntraMail_SMTP
iptables −A IntraMail_SMTP −s 111 . 2 22 . 2 . 1 −j RETURN
iptables −A IntraMail_SMTP −s 111 . 222 . 2 . 54 −j RETURN
iptables −A IntraMail_SMTP −j ACCEPT

iptables −N IntraWeb_HTTP
iptables −A FORWARD −s 111 .222 . 2 . 0/24 −d 111 . 222 . 1 . 17 −p

tcp −−dport 80 −j IntraWeb_HTTP
iptables −A IntraWeb_HTTP −s 111 . 2 22 . 2 . 1 −j RETURN
iptables −A IntraWeb_HTTP −s 111 . 222 . 2 . 54 −j RETURN
iptables −A IntraWeb_HTTP −j ACCEPT

The firewall number 2 controls the traffic from the private
hosts to the services provided in the DMZ. Listing 3 shows
the rules that control the access to the SMTP and HTTP
services.

The first chain controls the SMTP requests to the server.
They are all allowed for the hosts in the private zone dis-
carding only the administrator host, identified by the IP ad-

Figure 2: Access-control model

dress 111.222.2.54, and for the firewall interface, identified
by IP address 111.222.2.1. The second chain does the same
for the HTTP requests. Again, they are allowed for all the
hosts in the private zone discarding only the administrator
host and the firewall interface.

Example evaluation:

The task of extracting the global access control policy en-
forced by the set of rules in these two firewalls (that are
just minimal excerpts of what a full configuration policy
would be) requires expert knowledge about netfilter ipta-
bles. Its syntax along with its execution semantics would
have to be mastered to properly interpret the meaning of
the configuration files. Moreover, the information from the
two configuration files and the global policy for the default
iptables chains would have to be combined as they collabo-
rate to enforce the global policy and can not be regarded as
isolated.

In networks composed by several firewalls, configured by
hundreds of rules and potentially from different vendors us-
ing different configuration languages and execution seman-
tics, the task of manually extracting the enforced access con-
trol policy would become too complex and expensive to be
feasible.

Conversely, after applying our approach, a security expert
willing to analyze the security policy would face a simple
model, showing the hosts and their allowed connections, i.e.,
directly the access control model of the network. In the
diagram in figure 2, we show such a network access control
model for the examplary firewall configurations. Note that
the connection to and from the host 111.222.0.0/16 does not
appear, as they are only relevant in the local context of the
firewall 1. Indeed, the derivation of global to local exceptions
is a highly error-prone task [6]. Our approach aims at easing
and handling this problem as well.

3. EXTRACTION APPROACH
We believe the level of abstraction of firewall configurations
has to be raised in order to facilitate the understanding and
manipulation of the access control policy of a network sys-
tem. Thus, we describe here a model-driven approach that
extracts a model of the global access control policy from the
set of configuration files of the firewalls enforcing that policy.
The approach, depicted in figure 3 consist in the following
steps:

1. Parsing/injecting firewall configuration files into plat-
form specific models (PSMs).

Figure 3: Model-driven process

2. Transforming the obtained PSMs into Platform inde-
pendent models (PIMs), conforming to a metamodel
able to represent network access-control policies.

3. Aggregating the individual PIM models (all conform-
ing to the same metamodel) into a global model con-
forming to the same metamodel.

4. Additionally, a further step aiming to reach formalisms
focused in general access control and not network access-
control can be performed by transforming the aggre-
gated model into access-control models like RBAC[13]
and OrBac [1].

Before starting a detailed description of the approach, we
have to remark that firewall configuration files may contain
anomalies and inconsistencies. Rule shadowing, rule redun-
dancy and rule irrelevance are well known problems that
may appear in firewall configuration files. However, in the
present work we consider either the configuration files are
correct and free from this kind of errors or that algorithms
to detect and correct such errors, as the ones presented in
[5] and [14], has been applied before starting the extraction
process. Discussing whether to perform this step directly on
the models is better or worse than doing it in the configu-
ration files falls out of the scope of the present paper. Note
however that model checking techniques have been proved
useful to perform this rule fixing step as mentioned in [9].

Step1. Parsing and Injection.

The first step of our approach constitutes a mere trans-
lation between technical spaces where the information in
the configuration files is expressed in terms of models. A
platform-specific metamodel (PSM) and a parser recognizing
the grammar of each concrete firewall rule-filtering language
involved in the process (as the one presented in section 4 for
Iptables) is required. Note that this step is performed with-
out loosing any information and that the obtained models
rest at the same abstraction level as the configuration files.

Step2. PIM2PSM.

In the second step, the PSMs obtained in the first step are
translated into PIM models able to represent access-control
policies. For this purpose, we propose here a simple network-

connection metamodel that is further explained in the last
part of this section.

At this point, the information is already independent from
the concrete firewall vendor, filtering language and rule or-
ganization (e.g., in iptables we can use negative logic to ex-
plicitly drop and deny connections or do the same by using
custom chains that will accept certain connections and sim-
ply let not accepted ones be managed by other chains or
by the custom policy. This two coding styles would lead to
the same PIM model). Each model will represent the local
access-control policy enforced by a firewall so that it would
be possible to be analyzed easily than using the configura-
tion file.

Step3. PIM aggregation.

The first two steps have helped to obtain a higher-level view
of the filtering rules in a firewall configuration file. How-
ever, a network system usually consists in more than one
firewall so that having the network-connection model of one
unique firewall only provides a partial view of the access
control policy. As an example, in the network system pre-
sented as a motivating example is section 2, two firewalls are
present, one managing the connections from the intranet and
the other managing connection from the Internet. In that
schema, a host can be accessed using same port and same
protocol from any of this two zones. Thus, to really repre-
sent the access control policy of a network system in an easy
to read and manage way, the individual network-connection
models of each firewall would have to be combined in a single
network-connection model. This model combination is per-
formed in the third step giving as a result the desired global
network-connection model (note that this combination pro-
cess could include operations to eliminate information only
locally relevant, as it was done for the example sin section
2 and shown in figure 2).

With this third step we have succeeded to obtain a higher-
level, less complex to understand and manage representa-
tion of the information provided by the firewall configuration
files. This representation isolates us from the specificities of
the firewall vendor and languages and even from some as-
pects of the topology as only access-control information is
shown.

Step4. Translation to other formalisms.

The fourth and last step consist in transforming our network-
connection model into a higher-level or less network specific
model representation suitable to be analysed by security pol-
icy experts without network knowledge. This step depends
of the target formalism the process is targeting so that no
further discussion is pertinent for the present work.

Network-connection metamodel

To represent the information contained in the firewall config-
uration files in a higher abstraction and less complex level we
propose here a simple network-connection metamodel that
keeps all the relevant information contained in the configu-
ration files while eliminating the redundancy and readability
problems that low level filter rule languages present.

Figure 4: Network-connection metamodel

Our proposed metamodel contains only two entities, Host,
that represent network host as they are represented in the
configuration files, i.e., as IP addresses and IP ranges and
Connection that represent connections between hosts spec-
ifying the port used to make the connection, the protocol
and if the connection is allowed or denied (depending of the
global policy set for the firewall, all the possible connections
that do not appear in the model are either all forbidden or
all allowed). This metamodel is depicted in figure 4.

4. IMPLEMENTATION
In order to demonstrate the feasibility of our approach, a
prototype tool has been developed under the Eclipse1 en-
vironment focused in extracting access-control information
out of one of the most popular firewall languages, the net-
filter iptables.

As our approach states, the first step implies parsing the
firewall configuration files to inject their information into a
PSM. To perform this step we have used Xtext 2, an eclipse
tool for building domain specific languages. First, we have
written the simple yet usable iptables grammar that is sum-
marized (only the rules relevant for the example provided in
section 2 are shown) in listing 4. Note that as we consider
we are parsing configuration files of working firewalls, the
grammar can be simplified as no language constraints (e.g,
checking that a chain name in a rule target has been defined)
need to be defined.

This grammar has been then used as an input for the Xtext
tool that generates from it an ecore metamodel for iptables,
depicted in figure 5, a parser and an editor. All these gen-
erated artifacts allow us to inject iptables configuration files
into iptables models.

Listing 4: Iptables sample grammar

Model : rules += Rule ∗ ;

Rule : declaration=ChainDeclaration | filter=
FilterDeclaration

;

ChainDeclaration : ’iptables ’ ’−N ’ ChainName
;

ChainName : name=ID
;

FilterDeclaration : filter=FilteringSpec
;

FilteringSpec : FilterSpec | StateFilterSpec
;

1http://www.eclipse.org/
2http://www.eclipse.org/Xtext/

Figure 5: iptables metamodel

FilterSpec :
’iptables ’ option=(’−A ’ | ’−D ’ | ’−P ’) chain=Chain

((’−src ’ | ’−s ’) ip=IPExpr) ? (’−i ’ interface=
Interface) ? (’−d ’ ipDst=IPExpr) ? (’−p ’ protocol=
Protocol) ? (’−m ’ matches=Protocol) ? (’−−sport ’
sourcePort=INT) ? (’−−dport ’ destinationPort=INT) ?
(’−j ’) ? target=Target

;

IPExpr :
ipByteExpr ’ . ’ ipByteExpr ’ . ’ ipByteExpr ’ . ’

ipByteExpr (IpRangeExpr) ?
;

ipByteExpr : INT
;

IpRangeExpr : ’/ ’ INT
;

For the second step the implementation is as follows. The
network-connection metamodel has been implemented as an
ecore model. Then, for the transformation from iptables
models to models conforming to this metamodel, we have
defined ATL [7] model-to-model transformations. As the se-
mantic distance between the iptables models and the network-
connection models is big, the transformation has been de-
composed in two steps, to simplify its definition.

In listing 5, we show the ATL rule that transforms the excep-
tions in a iptables chain into deny connections in a network-
connection model.

Listing 5: ATL transformation example
rule createDestinationConnectionFromChain{

from
chainInit : IPTABLES ! FilterSpec ,
chainFollow : IPTABLES ! FilterSpec (chainInit . target

= chainFollow . chain . chainName and (not
chainFollow . ipDst . oclIsUndefined ()) and
chainFollow . target = ’RETURN ’)

to
connection : NETWORK ! Connection (
desHost <− thisModule . createHost (thisModule .

findHost (chainFollow . ipDst . debug (’dst ’))) ,
srcHost <− thisModule . createHost (thisModule .

findHost (chainInit . ip . debug (’src ’))) ,
service <− chainInit . destinationPort ,
kind <− #deny
)

}

The third step, the combination of the individual PIMs ob-
tained in the previous step has been also implemented as
ATL transformations. Again, decomposed in steps so that
the definition is easier.

Finally, some operations needed to be defined on the network-
connection global model, as the one that finds and elimi-
nates only locally-relevant information. For that, an in-place
transformation, e.g., a transformation where the changes

are directly performed on the input model, has been im-
plemented in ATL.

5. RELATED WORKS
Regarding the extraction of security policies out of firewalls
and networks, there are already several works tackling the
problem. However, these works do not reach a high abstrac-
tion level or not provide an usable policy representation as
they are more focused in the automatic analysis of the policy.
[15] proposes a technique that aims to infer the high-level
security policy from the rules on firewalls using a merging
algorithm to extract classes (types) of services hosts and pro-
tocols. The result however is a set of more abstract rules,
still too near to the implementation level. Moreover, it takes
only one firewall into account for the process. [8] proposes
a method and tool to discover and test the global firewall
policy. It collects and reads all the relevant configuration
files, and builds an internal representation of the implied
policy and network topology that can be known by the user
through queries. Unfortunately, no explicit model of the re-
covered security policy is provided so that the extracted pol-
icy can be globally inspected. [3] proposes a bi-directional
method to enforced and reverse engineer firewall configura-
tions. Basically it promotes the use of an intermediate policy
representation but does not provide a model for such repre-
sentation nor specific processes to perform the enforcement
and the discovery tasks. In other efforts more focused in
the automatic analysis, [14] represent single firewall rules as
trees in order to detect anomalies and check conflicts during
rule insertion whereas [16] present a framework that rep-
resent rules from multi-firewall systems as binary decision
trees to detect miscofigurations. Both approaches remain
quite close to the implementation details instead of provid-
ing a less complex and higher level representation of the
policy to the security expert.

The other way round, i.e., producing firewall rules from high
level representations has been also studied. In [10] the au-
thors present a firewall PIM and PSM for IPtables. Then, an
ATL transformation PIM2PSM and a model-to-text trans-
formation to configuration files are provided. Out of the
modelling community, [2] presents a firewall management
toolkit consisting in a global policy representation if the form
of entity-relationship paradigm and a compiler to generate
firewall configuration files. Similar to this approach, in [4,
11], firewall configuration rules are derived from network
security policies expressed in OrBac by using xslt transfor-
mations. These approaches could be complemented by the
approach we are proposing in the present work.

6. CONCLUSIONS AND FUTURE WORK
We have presented a model-driven approach to extract access-
control policy models out of the configuration files of the
firewalls enforcing that policy in a network. We have shown
that this process isolates the policy from the low-level imple-
mentation details facilitating its understanding and manip-
ulation. We have then implemented a prototype of the ap-
proach for the Netfilter Iptables language. As further works
we envision to investigate the following challenges:

• Our network access-control metamodel shows hosts and
connections. Hosts could play different roles within a

network. Automatically identifying the role of a host
(a host can be a server, an interface, etc.) through
analysing the firewall configuration files would facili-
tate the understanding of the policy by non-technical
personnel. We would work in an extended version of
our approach and implementation to tackle this prob-
lem.

• Firewalls are the main component used to enforce access-
control policies in network systems. However, other el-
ements can also contribute to this enforcement. Thus,
we plan to extend our extraction approach to include
other network components such as MPLS routers, VPN
tunnels, intrusion detection systems, etc.

• Our extraction approach produces network access-control
models that conform to our own defined metamodel.
Nevertheless, the actual trend in access-control policies
is to use contextual models like RBAC and OrBAC as
they facilitate the administration of the policy. We
plan to study the translations from our model to such
models.

7. REFERENCES
[1] A. Abou El Kalam, R. E. Baida, P. Balbiani,

S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel, and G. Trouessin. Organization Based
Access Control. In 4th IEEE International Workshop
on Policies for Distributed Systems and Networks
(Policy’03), pages 120 – 131, June 2003.

[2] Y. Bartal, A. Mayer, K. Nissim, and A. Wool.
Firmato: A novel firewall management toolkit. ACM
Trans. Comput. Syst., 22(4):381–420, Nov. 2004.

[3] M. Bishop and S. Peisert. Your security policy is
what?? Technical report, 2006.

[4] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and
A. Miège. A formal approach to specify and deploy a
network security policy. In Formal Aspects in Security
and Trust’04, pages 203–218, 2004.

[5] J. Garcia-Alfaro, N. Boulahia-Cuppens, and
F. Cuppens. Complete analysis of configuration rules
to guarantee reliable network security policies. Int. J.
Inf. Secur., 7(2):103–122, Mar. 2008.

[6] J. Garcia-Alfaro, F. Cuppens, and
N. Cuppens-Boulahia. Management of exceptions on
access control policies. In H. S. Venter, M. M. Eloff,
L. Labuschagne, J. H. P. Eloff, and R. von Solms,
editors, SEC, volume 232 of IFIP, pages 97–108.
Springer, 2007.

[7] F. Jouault and I. Kurtev. Transforming models with
atl. In MoDELS Satellite Events, pages 128–138, 2005.

[8] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall
analysis engine. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, SP ’00, pages
177–, Washington, DC, USA, 2000. IEEE Computer
Society.

[9] S. Pozo, R. Ceballos, and R. M. Gasca. Model-based
development of firewall rule sets: Diagnosing model
inconsistencies. Inf. Softw. Technol., 51(5):894–915,
May 2009.

[10] S. Pozo, R. Gasca, A. Reina-Quintero, and
A. Varela-Vaca. Confiddent: A model-driven

consistent and non-redundant layer-3 firewall acl
design, development and maintenance framework.
Journal of Systems and Software, 85(2):425 – 457,
2012.

[11] S. Preda, F. Cuppens, N. Cuppens-Boulahia,
J. Alfaro, L. Toutain, and Y. Elrakaiby. Semantic
context aware security policy deployment. In
Proceedings of the 4th International Symposium on
Information, Computer, and Communications
Security, pages 251–261. ACM, 2009.

[12] R. Russell. Linux 2.4 packet filtering howto.
http://www.netfilter.org/documentation/HOWTO/packet-
filtering-HOWTO.html,
2002.

[13] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model
for role-based access control: towards a unified
standard. In Proceedings of the fifth ACM workshop on
Role-based access control, RBAC ’00, pages 47–63,
New York, NY, USA, 2000. ACM.

[14] E. A. Shaer and H. Hamed. Modeling and
management of firewall policies. IEEE Trans. Network
and Service Management, pages 2 – 10, Apr. 2004.

[15] A. Tongaonkar, N. Inamdar, and R. Sekar. Inferring
higher level policies from firewall rules. In Proceedings
of the 21st conference on Large Installation System
Administration Conference, LISA’07, pages 2:1–2:10,
Berkeley, CA, USA, 2007. USENIX Association.

[16] L. Yuan and H. Chen. Fireman: a toolkit for firewall
modeling and analysis. In In Proceedings of IEEE
Symposium on Security and Privacy, pages 199–213,
2006.

	Introduction
	Motivating Example
	Extraction approach
	Implementation
	Related works
	Conclusions and future work
	References

