
Complete analysis of configuration rules to guarantee reliable
network security policies

J. G. Alfaro · N. Boulahia-Cuppens · F. Cuppens

© Springer-Verlag 2007

Abstract The use of different network security compo-
nents, such as firewalls and network intrusion detection
systems (NIDSs), is the dominant method to monitor and
guarantee the security policy in current corporate networks.
To properly configure these components, it is necessary to
use several sets of security rules. Nevertheless, the existence
of anomalies between those rules, particularly in distributed
multi-component scenarios, is very likely to degrade the net-
work security policy. The discovery and removal of these
anomalies is a serious and complex problem to solve. In this
paper, we present a complete set of mechanisms for such a
management.

Keywords Network security · Firewalls · Intrusion
Detection systems · Policy anomalies

1 Introduction

Generally, once a security administrator has specified a secu-
rity policy, he or she aims to enforce it in the information
system to be protected. This enforcement consists in distrib-
uting the security rules expressed in this policy over differ-
ent security components of the information system—such as
firewalls, intrusion detection systems (IDSs), intrusion pre-
vention systems (IPSs), proxies, etc.—both at application,

J. G. Alfaro · N. Boulahia-Cuppens · F. Cuppens
GET-ENST Bretagne, 02, rue de la Châtaigneraie, CS 17607,
35576 Cesson Sévigné Cedex, France
e-mail: nora.cuppens@enst-bretagne.fr

J. G. Alfaro (B)
UOC, Rambla Poble Nou 156, 08018 Barcelona, Spain
e-mail: joaquin.garcia-alfaro@acm.org

F. Cuppens
e-mail: frederic.cuppens@enst-bretagne.fr

system, and network level. This implies cohesion of the secu-
rity functions supplied by these components. In other words,
security rules deployed over the different components must
be consistent, not redundant and, as far as possible, optimal.

An approach based on a formal security policy refinement
mechanism (using for instance abstract machines grounded
on set theory and first order logic) ensures cohesion,
completeness and optimization as built-in properties. Unfor-
tunately, in most cases, such an approach has not a wide
following and the policy is more often than not empirically
deployed based on security administrator expertise and flair.
It is then advisable to analyze the security rules deployed
to detect and correct some policy anomalies—often referred
to in the literature as intra- and inter-configuration anoma-
lies [7]. These anomaliesmight be the origin of security holes
and/or difficulty of the intrusion prevention and detection
processes. Firewalls [11] and network intrusion detection
systems (NIDSs) [21] are the most commonly used secu-
rity components and, in this paper, we focus particularly on
their security rules.

Firewalls are prevention devices ensuring access control.
They manage the traffic between the public network and the
private network zones on one hand and between private zones
in the local network on the other hand. Undesirable traffic is
blocked or re-routed by such a component. NIDSs are detec-
tion devices ensuring a monitoring role. They are compo-
nents that monitor the traffic and generate alerts in the case
of suspicious traffic. The attributes used to block or to gen-
erate alerts are almost the same. The challenge, when these
two kinds of components coexist in the security architecture
of an information system is then to avoid inter-configuration
anomalies.

In [13,14], we presented an audit process to manage intra-
firewall policy anomalies, in order to detect and remove
anomalieswithin the set of rules of a givenfirewall. This audit

123

J. G. Alfaro et al.

process is based on the existence of relationships between
the condition attributes of the filtering rules—such as coin-
cidence, disjunction, and inclusion—and proposes a trans-
formation process which derives from an initial set of rules
(potentially misconfigured) to an equivalent one which is
completely free of errors. Furthermore, the resulting rules
are totally disjoint, i.e., the ordering of rules is no longer
relevant.

In this paper we extend our proposal for detecting and
removing intra-firewall policy anomalies to a distributed
setup where both firewalls and NIDSs might be in charge of
the network security policy. In this way, and assuming that
the role of both prevention and detection of network attacks
is assigned to several components, our objective is to avoid
intra and inter-component anomalies between filtering and
alerting rules. The proposed approach is based on the simi-
larity between the parameters of a filtering rule and those of
an alerting rule. We can therefore check whether there are
errors in those configurations regarding the policy deploy-
ment over each component which matches the same traffic.

The advantages of our approach are the following. First,
as opposite to the closest related work shown in Sect. 2,
our approach not only considers the analysis of relationships
between rules two by two but also a complete analysis of
the whole set of rules. This way, those conflicts due to the
union of rules that are not detected by other proposals (such
as [5,6,16]) are properly discovered by our intra- and inter-
component algorithms. Second, after applyingour intra-com-
ponent algorithms the resulting rules of each component are
totally disjoint, i.e., the ordering of rules is no longer rele-
vant. Hence, one can perform a second rewriting of rules in
a close or open manner, generating a configuration that only
contains deny (or alert) rules if the component default pol-
icy is open, and accept (or pass) rules if the default policy
is close (cf. Sect. 4.5). Third, the use of a network model to
determine topological properties better defines all the set of
anomalies studied in the related work. Furthermore the lack
of this model in other approaches, such as [5–7], may lead to
inappropriate decisions.

The rest of this paper is organized as follows. Section 2
starts with an analysis of some related work. Section 3 intro-
duces a network model that is further used in Sects. 4 and 5
when presenting, respectively, our intra and inter-component
anomaly classifications and algorithms. Section 6 overviews
a first implementation of our proposals in order to validate its
performance over real multi-component scenarios. Section 7
closes the paper giving some conclusions and further work.

2 Related work

A first approach to addressing our problem domain is the
use of refinement mechanisms. In this way, we can perform

a top-down deployment of rules by unfolding a global set
of security policies into the configurations of several com-
ponents and guaranteeing that those deployed configurations
are free of anomalies. In [8], for example, the authors pres-
ent a refinement mechanism that uses a formal model for the
generation of filtering rules by transforming general rules
into specific configuration rules. Indeed, the authors propose
the use of roles to better define network capabilities, and the
use of an inheritance mechanism through a hierarchy of enti-
ties to automatically generate permissions and prohibitions.
However, their work does not fix, from our point of view,
clear semantics; and their concept of role becomes, more-
over, ambiguous. A second refinement approach based on the
concept of roles is presented in [17]. However, and although
the authors claim that their work is based on the Role Base
Access Control (RBAC) model [25], their specification of
network entities, roles, and permission assignments are not
rigorous and does not fit any reality.Most of these limitations
are solved in the approach presented in [15], where a global
set of rules based on the Organization Based Access Control
(OrBAC)model [1] are further deployed into specific firewall
configuration files through a transformation process. Unfor-
tunately, and although we think this approach heads in the
right direction, we consider that the single use of refinement
mechanisms is not always enough. Generally, administrators
are reluctant to set up from scratch a whole network security
policy, and prefer recycling existing configurations.

A second manner to address our problem domain is
through the use of automatic network support tools intended
for the creation of configurations for security devices.
Firewall Builder [18], for example, provides a common inter-
face to specify a network access control policy and then this
policy is automatically translated into various firewall con-
figuration languages, such as netfilter [27], ipfilter [23], or
Cisco PIX [10]. Similarly, theCisco SecurityManager [12] is
a commercial support tool designed to manage security pol-
icy deployments on heterogeneous networks based on Cisco
devices. However, we consider that these two solutions do
not offer a semantic model rich enough to express complete
security policies; and, although they offer some routines for
the discovery of conflicts between rules, such functional-
ity requires the administrator’s assistance and only simple
redundancy that corresponds to trivial equality or inclusion
between zones is detected. A more complete taxonomy of
anomalies (as the one we present in this paper) should be
addressed by these tools.

The closest works to ours are those of [2,5–7,16,19,28]
which provide means to directly manage the discovery of
anomalies from the components’ configurations.The authors
in [2] consider that, in a configuration set, two rules are in
conflict when the first rule in order matches some packets
that match the second rule, and the second rule also matches
some of the packets that match the first rule. This approach is

123

Complete analysis of configuration rules to guarantee reliable network security policies

very limited since it just detects a particular case of ambigu-
ity within a single component configuration. Furthermore, it
does not provide detection in multiple-component configu-
rations. In [16], two cases of anomalies are considered. First,
a rule R j is defined as backward redundant iff there exists
another rule Ri with higher priority in order such that all
the packets that match rule R j also match rule Ri . Second,
a rule Ri is defined as forward redundant iff there exists
another rule R j with the same decision and less priority
in order such that the following conditions hold: (1) all the
packets that match Ri also match R j ; (2) for each rule Rk

between Ri and R j , and that matches all the packets that also
match rule Ri , Rk has the same decision as Ri . Although this
approach seems to head in the right direction, we consider it
as incomplete, since it does not detect all the possible cases
of intra-component anomalies (as we do in this paper). For
instance, given the following set offiltering rules (where each
rule is in the form Ri : conditioni → decisioni , being i the
relative position of the rule within the set of rules, decisioni

a boolean expression in {accept, deny}, and conditioni the
condition attribute source zone—szone for short):

R1 : szone ∈ [10, 50] → deny
R2 : szone ∈ [40, 70] → accept
R3 : szone ∈ [50, 80] → accept

and since R2 comes after R1, rule R2 only applies over
the interval [51, 70]—i.e., R2 is not necessary, since, if we
remove this rule from the configuration, the filtering pol-
icy does not change. The detection proposal defined in [16]
cannot detect the redundancy of rule R2 within the config-
uration of such a given firewall. A similar but more com-
plete approach to detect those anomalies is presented in [19].
However, neither [16] nor [19] provide detection onmultiple-
component configurations.

The authors of [5–7] propose in their work an efficient
set of algorithms to detect policy anomalies in both single-
andmulti-firewall configuration setups. Nonetheless, we also
consider their approach as incomplete. First, their intra- and
inter-component discovery approach is not complete since,
given a single- or multiple-component security policy, their
detection algorithms are based on the analysis of relation-
ships between rules two by two. This way, errors due to the
union of rules are not explicitly considered (as our approach
does). For example, the following set of rules:

R1 : szone ∈ [10, 50] → accept
R2 : szone ∈ [40, 90] → accept
R3 : szone ∈ [30, 80] → deny

may lead their discovery algorithms to inappropriate deci-
sions. The approach defined in [5] cannot detect that rule R3
will never be applied due to the union of rules R1 and R2.
Just a correlation signal—that is obviously a weaker signal
than a shadowing one—would be labeled.

Although in [6] the authors pointed out this problem,
claiming that they break down the initial set of rules into
an equivalent set of rules free of overlaps between rules, no
specific algorithms for solving it have been provided in [5–7].
From our point of view, the proposal presented in [28] best
addresses this limitation, although it also presents some lim-
itations. For instance, giving again the following set of rules:

R1 : szone ∈ [10, 50] → deny
R2 : szone ∈ [40, 70] → accept
R3 : szone ∈ [50, 80] → accept

the proposal presented in [28] reports two partial redundan-
cies (respectively, between rules R1,R2; and rules R2,R3),
instead of the full redundancy of rule R2.

The inter-component discovery presented in [5–7], more-
over, considers as anomalies some situations that, from our
point of view, must be tolerated to avoid inconsistent deci-
sions between components used in the same policy to control
or monitor the access to different zones. For instance, given
the following scenario (where the condition attributes of both
rule FW1{R1} and FW2{R1} are, respectively, (p)rotocol,
(s)ource zone, (d)estination zone, anddestinationport—dport
for short):

their algorithms will inappropriately report a redundancy
anomaly between filtering rules FW1{R1} and FW2{R1}.
This is because rule FW1{R1} matches every packet that
also FW2{R1} does. As a consequence, [5] considers rule
FW2{R1} as redundant since packets denied by this rule are
already denied by rule FW1{R1}. However, this conclusion
is not appropriate because rule FW1{R1} applies to pack-
ets from the external zone to the private zone whereas rule
FW2{R1} applies to packets from the DMZ zone to the pri-
vate zone. So, rule FW2{R1} is useful and cannot be removed.
Though in [5,6] the authors claim that their analysis tech-
nique marks every rule that is used on a network path, no
specific algorithms have been provided for doing so. The
main advantage of our proposal over their approach is that
it includes a model of the traffic which flows through each
component. We consider this is necessary to draw the right
conclusion in this case.

Finally, although in both [7,28] the authors consider their
work as sufficiently general to be used for verifying many
other filtering based security policies such as intrusion detec-
tion and prevention systems, no specific mechanisms have
been provided for doing so.

123

J. G. Alfaro et al.

3 Network model and topology properties

The purpose of our network model is to determine which
components within the network are traversed by a given
packet, knowing its source and destination. It is defined as
follows. First, and concerning the traffic flowing from two
different zones of the distributed policy scenario, we may
determine the set of components that are traversed by this
flow. Regarding the scenario shown in Fig. 1, for example,
the set of components traversed by the network traffic flow-
ing from zone external network to zone private3 equals
[C1, C2, C4], and the set of components traversed by the
network traffic flowing fromzone private3 to zone private2
equals [C4,C2,C3].

Let C be a set of components and let Z be a set of zones.
We assume that each pair of zones in Z are mutually disjoint,
i.e., if zi ∈ Z and z j ∈ Z then zi ∩ z j = ∅. We then define
the predicate connected(c1, c2) as a symmetric and anti-
reflexive function which becomes true when there exists, at
least, one interface connecting component c1 to component
c2. On the other hand,we define the predicate ad jacent (c, z)
as a relation between components and zones which becomes
true when the zone z is interfaced to component c. Referring
to Fig. 1, we can verify that predicates connected(C1, C2)

and connected(C1, C3), as well as ad jacent (C1, DM Z),
ad jacent (C2, private1), ad jacent (C3, DM Z), and so on,
become true. We then define the set of paths, P , as fol-
lows. If c ∈ C then [c] ∈ P is an atomic path. Similarly,
if [p . c1] ∈ P (be “.” a concatenation functor) and c2 ∈ C ,
such that c2 /∈ p and connected(c1, c2), then [p . c1 . c2]
∈ P . This way, we can notice that, concerning Fig. 1,
[C1, C2, C4] ∈ P and [C1, C3] ∈ P .

Let us now define a set of functions related to the order
between paths. We first define functions f irst , last , and the
order functor between paths. We define function f irst from
P in C such that if p is a path, then f irst (p) corresponds to
the first component in the path. Conversely, we define func-
tion last from P in C such that if p is a path, then last (p)

corresponds to the last component in the path.We then define
the order functor between paths as p1 ≤ p2, such that path p1
is shorter than p2, andwhere all the componentswithin p1 are
also within p2. We also define the predicates is Firewall(c)
and is N I DS(c) which become true when the component c
is, respectively, a firewall or a NIDS.

external
network DMZC1

C3

C2 private1

private2

private3C4

Fig. 1 Simple distributed policy setup

Two additional functions are route and minimal_route.
We first define function route from Z to Z in 2P , such that
p ∈ route(z1, z2) iff the path p connects zone z1 to zone z2.
Formally, we define that p ∈ route(z1, z2) iff the predicates
ad jacent (f irst (p), z1) andad jacent (last (p), z2)become
true. Similarly, we define minimal_route (or M R for short)
from Z to Z in 2P , such that p ∈ M R(z1, z2) iff the follow-
ing conditions hold: (1) p ∈ route(z1, z2); (2) there does not
exist p′ ∈ route(z1, z2) such that p′ < p. Regarding Fig. 1,
we can verify that the minimal route from zone private3
to zone private2 equals [C4, C2, C3], i.e., M R(private3,
private2) = {[C4, C2, C3]}. We finally conclude by defin-
ing thepredicateaffects(Z , Ac) as a boolean expressionwhich
becomes true when there is, at least, an element z ∈ Z such
that the configuration of z is vulnerable to the attack category
Ac ∈ V , where V is a vulnerability set built from a vulnera-
bility database, such as CVE/CAN [20] or OSVDB [22].

4 Intra-component classification and algorithms

In this section we present our set of intra-component audit
algorithms, whose main objective is the complete discovery
and removal of policy anomalies that could exist in a single
component policy, i.e., to discover and warn the security offi-
cer about potential anomalies within the configuration rules
of a given component.

For our work, we define the security rules of both firewalls
andNIDSs asfiltering and alerting rules, respectively. In turn,
both filtering and alerting rules are specific cases of a more
general configuration rule, which typically defines a decision
(such as deny, alert, accept, or pass) that applies over a set of
condition attributes, such as protocol, source zone (or szone),
destination zone (or dzone), classification, and so on. We
define a general configuration rule as follows:

Ri : {conditioni } → decisioni (1)

where i is the relative position of the rule within the set
of rules, {conditioni} is the conjunctive set of condition
attributes such that {conditioni} equals A1∧A2∧· · ·∧Ap—
being p the number of condition attributes of the given rule—
and decision is a boolean value in {true, false}.

We shall notice that, for ourwork, the decisionof afiltering
rule will be positive (true) when it applies to a specific value
related to deny (or filter) the traffic it matches, and will be
negative (false) when it applies to a specific value related
to accept (or ignore) the traffic it matches. Similarly, the
decision of an alerting rule will be positive (true) when it
applies to a specific value related to alert (or warn) about the
traffic it matches, and will be negative (false) when it applies
to a specific value related to pass (or ignore) the traffic it
matches.

123

Complete analysis of configuration rules to guarantee reliable network security policies

Fig. 2 Example of filtering and
alerting policies. a Example
scenario of a filtering policy. b
Example scenario of an alerting
policy

Let us continue this section by classifying the complete
set of anomalies that can occur within a single component
configuration. An example for each anomaly will be illus-
trated through the sample scenario shown in Fig. 2.
Intra-component shadowing A configuration rule Ri is
shadowed in a set of configuration rules R when such a rule
never applies because all the packets that Ri may match,
are previously matched by another rule, or combination of
rules, with higher priority. Regarding Fig. 2, rule C1{R6} is
shadowed by the overlapping of rules C1{R3} and C1{R5}.
Intra-component redundancy A configuration rule Ri is
redundant in a set of configuration rules R when the follow-
ing conditions hold: (1) Ri is not shadowed by any other rule
or set of rules; (2) when removing Ri from R, the security
policy does not change. For instance, referring to Fig. 2, rule
C1{R4} is redundant, since the overlapping between rules
C1{R3} andC1{R5} is equivalent to the policy of ruleC1{R4}.
Intra-component irrelevance A configuration rule Ri is
irrelevant in a set of configuration rules R if one of the fol-
lowing conditions holds:

(1) Both source and destination addresses are within the
same zone. For instance, rule C1{R1} is irrelevant since
the source of this address, external network, as well
as its destination, is the same.

(2) The component is not within the minimal route that
connects the source zone, concerning the irrelevant rule

which causes the anomaly, to the destination zone.
Hence, the rule is irrelevant since it matches traffic
which does not flow through this component. Rule
C1{R2}, for example, is irrelevant since component C1
is not in the path which corresponds to the minimal
route between the source zone unix network to the
destination zone windows network.

(3) The component is a NIDSs, i.e., the predicate
is N I DS(c) (cf. Sect. 3) becomes true, and, at least, one
of the condition attributes in Ri is related with a classifi-
cation of attack Ac which does not affect the destination
zone of such a rule—i.e., the predicate affects (zd , Ac)

becomes f alse. Regarding Fig. 2, we can see that rule
C2{R2} is irrelevant since the nodes in the destination
zone unix network are not affected by vulnerabilities
classified as winworm.

4.1 Intra-component Algorithms

Our proposed audit process is a way of alerting the secu-
rity officer in charge of the network about these configu-
ration errors, as well as to remove all the useless rules in
the initial firewall configuration. The data to be used for the
detection process is the following. A set of rules R as a list
of initial size n, where n equals count (R), and where each
element is an associative array with the strings condition,

123

J. G. Alfaro et al.

decision, shadowing, redundancy, and irrelevance as
keys to access each necessary value.

For reasons of clarity, we assume one can access a linked-
list through the operator Ri , where i is the relative position
regarding the initial list size—count (R). We also assume
one can add new values to the list as any other normal vari-
able does (element ← value), as well as remove elements
through the addition of an empty set (element ← ∅). The
internal order of elements from the linked-list R keeps with
the relative ordering of rules.

Each element Ri [condition] is a boolean expression over
p possible attributes. To simplify, we only consider the fol-
lowing attributes: szone (source zone), dzone (destination
zone), sport (source port), dport (destination port),
protocol, and attack_class—or Ac for short—which will
be empty when the component is a firewall. In turn, each ele-
ment Ri [decision] is a boolean variable whose values are in
{true, f alse}. Each element Ri [t ype] is a boolean variable
whose values are in { f iltering, alerting}. Finally, elements
Ri [shadowing], Ri [redundancy], and Ri [irrelevance]
are boolean variables in {true, f alse}—which will be ini-
tialized to f alse by default.

We split the whole process into four different algorithms.
The first algorithm (cf. Algorithm 1) is an auxiliary func-
tion whose input are two rules, A and B. Once executed,
this auxiliary function returns a further rule, C , whose set of
condition attributes is the exclusion of the set of conditions
from A over B. In order to simplify the representation of this
algorithm, we use the notation Ai as an abbreviation of the
variable A[condition][i], and the notation Bi as an abbrevi-
ation of the variable B[condition][i]—where i in [1, p].

The second algorithm (cf. Algorithm 2) is a boolean
function in {true, f alse} which applies the necessary veri-
fications to decide whether a rule r is irrelevant for the con-
figuration of a component c. To properly execute such an

algorithm, let us define source(r) as a function in Z such
that source(r) = szone, and dest (r) as a function in Z such
that dest (r) = dzone.

The third algorithm (cf. Algorithm3) is a boolean function
in {true, f alse} which, in turn, applies the transformation
exclusion (cf. Algorithm1) over a set of configuration rules to
check whether the rule obtained as a parameter is potentially
redundant.

The last algorithm (cf. Algorithm 4) performs the whole
process of detecting and removing the complete set of intra-
component anomalies. This process is split into three differ-
ent phases. During the first phase, a set of shadowing rules
are detected and removed from a top-bottom scope, by itera-
tively applying Algorithm 1—when the decision field of the
two rules is different. Let us notice that this stage of detecting
and removing shadowed rules is applied before the detection
and removal of proper redundant and irrelevant rules.

The resulting set of rules is then used when applying the
second phase, also froma top-bottom scope. This stage is per-
formed to detect and remove proper redundant rules, through
an iterative call to Algorithm 3 (i.e., testRedundancy), as
well as to detect and remove all the further shadowed rules
remaining during the latter process. Finally, during a third
phase the whole set of non-empty rules is analyzed in order
to detect and remove irrelevance, through an iterative call to
Algorithm 2 (i.e., testIrrelevance).

We give in the following sections an outlook on applying
these four algorithms over some representative examples, as
well as a proof of their correctness, and an analysis of their
complexity.

123

Complete analysis of configuration rules to guarantee reliable network security policies

4.2 Applying the Intra-component Algorithms

Let us start this section by showing how can we apply func-
tion exclusion (Algorithm 1) over a set of two rules Ri and
R j , each one of them with two condition attributes (szone
and dzone), and where R j has less priority than Ri .

In this first example,

Ri [condition] = (szone ∈ [80, 100]) ∧ (dzone ∈ [1, 50])
R j [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])
since (szone ∈ [1, 50]) ∩ (szone ∈ [80, 100]) = ∅, the
condition attributes of rules Ri and R j are completely inde-
pendent. Thus, the applying of exclusion(R j , Ri) is equal
to R j [condition].

The following three examples show the same execution
over a set of condition attributes with different cases of con-
flict. A first case is the following:

Ri [condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [1, 30])
R j [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])
where there is a main overlap of attribute szone from
Ri [condition]which completely excludes the same attribute
on R j [condition]. Then, there is a second overlap of attri-
bute dzone from Ri [condition]which partially excludes the

range [1, 30] into attribute dzone of R j [condition], which
becomes dzone in [31, 50]. Thisway, exclusion(R j , Ri)←
{(s ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}. For reasons of clar-
ity, we do not show the first empty set corresponding to the
first overlap. If shown, the result should become as follows:
exclusion(R j , Ri) ← {∅, (szone ∈ [1, 50]) ∧ (dzone ∈
[31, 50])}. In the next example,
Ri [condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [20, 30])
R j [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])
there are two simple overlaps of both attributes szone and
dzone from Ri [condition] to R j [condition], such that
exclusion(R j , Ri) becomes {(szone ∈ [1, 50])∧ (dzone ∈
[1, 19]), (szone ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}.

A more complete example is the following,

Ri [condition] = (szone ∈ [10, 40]) ∧ (dzone ∈ [20, 30])
R j [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])
where exclusion(R j , Ri) becomes {(szone ∈ [1, 9]) ∧
(dzone ∈ [1, 50]), (szone ∈ [41, 50]) ∧ (dzone ∈ [1, 50]),
(szone ∈ [10, 40])∧(dzone∈ [1, 19]), (szone ∈ [10, 40])∧
(dzone ∈ [31, 50])}.

Regarding a full exclusion, let us show the following exam-
ple,

Ri [condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [1, 60])
R j [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])
where the set of condition attributes of rule Ri completely
excludes the ones of rule R j . Then, applying exclusion
(R j , Ri) returns an empty set (i.e., {∅,∅} = ∅). Hence, on a
further execution of Algorithm 4 (and assuming that the deci-
sion field of both rules were different) the shadowing field of
rule R j (initialized as f alse by default) would become true
(i.e., R j [shadowing] ← true).

In order to show the execution of Algorithm 4 over a more
complete set of rules, we sketch such an execution over the
following set of rules:

R1 : szone ∈ [10, 50] → true
R2 : szone ∈ [40, 90] → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : szone ∈ [30, 80] → true
R5 : szone ∈ [1, 70] → f alse

We start by showing the initial step within the first phase
of Algorithm 4, where i = 1, and applied over the previous
set of filtering rules. Let us notice that on this first step, the
execution of function exclusion, with rules R2 and R1, since
their decision is different, becomes the range [51, 90]. Simi-
larly, the execution of function exclusion, with rules R5 and
R1 becomes the range {[1, 9], [51, 70]}. The result of this
first step is the following:

123

J. G. Alfaro et al.

R1 : szone ∈ [10, 50] → true
R2 : szone ∈ [51, 90] → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : szone ∈ [30, 80] → true
R5 : szone ∈ {[1, 9], [51, 70]} → f alse

Let us now move to the second step, with i = 2. In this
step, the range of rule R4 decreases since the execution of
function exclusion, with rules R2 and R4, whose decision is
different, becomes the range [30, 50]:
R1 : szone ∈ [10, 50] → true
R2 : szone ∈ [51, 90] → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : szone ∈ [30, 50] → true
R5 : szone ∈ {[1, 9], [51, 70]} → f alse

At the end of the first phase, once executed both third and
fourth steps, the resulting rules remain as above:

R1 : szone ∈ [10, 50] → true
R2 : szone ∈ [51, 90] → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : szone ∈ [30, 50] → true
R5 : szone ∈ {[1, 9], [51, 70]} → f alse

Once the first phase is finished and running over the first
step of the second phase, i.e., i equals 1, we notice that:
(1) the result of applying function testRedundancy with rule
R1 as the second parameter becomes f alse; (2) the execu-
tion of function exclusion, with rules R4 and R1, completely
excludes the condition attribute of rule R4. Hence, rule R4, is
reported as shadowed by the combination of rules R1 and R2,
and its condition attribute becomes an empty set. Therefore,
the status field shadowing of rule R4, i.e., R4[shadowing],
switches its value to true:

R1 : szone ∈ [10, 50] → true
R2 : szone ∈ [51, 90] → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : ∅ → true
R5 : szone ∈ {[1, 9], [51, 70]} → f alse

Then, we proceed to the second step of the second phase,
i.e., i equals 2, and notice that rule R2 disappears since the
result of applying function testRedundancy with rule R2 as
the second parameter becomes true. Thus, the condition
attribute of rule R2 becomes an empty set, and its status
field redundancy, i.e., R2[redundancy], switches its value
to true:

R1 : szone ∈ [10, 50] → true
R2 : ∅ → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : ∅ → true
R5 : szone ∈ {[1, 9], [51, 70]} → f alse

At the end of the following step, where i equals 3, the
execution of function testRedundancy with rule R3 as the
second parameter becomes f alse. Thus, we apply function
exclusion, with rules R5 and R3 as parameters. As a result
of this execution, the second subrange of rule R5 scarcely
decreases from [51, 70] to [51, 59]:
R1 : szone ∈ [10, 50] → true
R2 : ∅ → f alse
R3 : szone ∈ [60, 100] → f alse
R4 : ∅ → true
R5 : szone ∈ {[1, 9], [51, 59]} → f alse

We do not show the rest of the execution, since the result-
ing set of filtering rules does not modify the previous one,
which is the following:

R1 : szone ∈ [10, 50] → true
R3 : szone ∈ [60, 100] → f alse
R5 : szone ∈ {[1, 9], [51, 59]} → f alse

Let us recall that the following two warnings will notify
the security officer of the discovery of both shadowing and
redundancy anomalies, in order to verify the correctness of
the whole detection and transformation process:

Shadowing on R4 with R2,R1
Redundancy on R2 with R3,R5

To conclude this section, let us finally show the warnings
reported when executing Algorithm 4 over the configuration
of the two components we showed in Fig. 2.

First case of irrelevance on C1{R1}
Second case of irrelevance on C1{R2}
Redundancy on C1{R4} with C1{R3},C1{R5}
Shadowing on C1{R6} with C1{R3},C1{R5}
Third case of irrelevance on C2{R2}

4.3 Correctness of the intra-component algorithms

Lemma 1 Let Ri : {conditioni } → decisioni and R j :
{condition j }→decision j be two configuration rules. Then
{Ri , R j } is equivalent to {Ri , R′j } where R′j ← exclusion
(R j , Ri).

Proof Let us assume that

Ri [condition] = A1 ∧ A2 ∧ · · · ∧ Ap, and
R j [condition] = B1 ∧ B2 ∧ · · · ∧ Bp.

If (A1∩B1) = ∅ or (A2∩B2) = ∅ or · · · or (Ap∩Bp) = ∅
then exclusion(R j , Ri)← R j . Hence, to prove the equiv-
alence between {Ri , R j } and {Ri , R′j } is trivial in this case.

Let us now assume that

(A1 ∩ B1) 	= ∅ and (A2 ∩ B2) 	= ∅ and . . .

and (Ap ∩ Bp) 	= ∅ .

123

Complete analysis of configuration rules to guarantee reliable network security policies

If we apply rules {Ri , R j } where Ri comes before R j ,
then rule R j applies to a given packet if this packet satis-
fies R j [condition] but not Ri [condition] (since Ri applies
first).Therefore, notice that R j [condition]−Ri [condition]
is equivalent to

(B1 − A1) ∧ B2 ∧ · · · ∧ Bp or
(A1 ∩ B1) ∧ (B2 − A2) ∧ · · · ∧ Bp or
(A1 ∩ B1) ∧ (A2 ∩ B2) ∧ (B3 − A3) ∧ · · · ∧ Bp or
· · ·
(A1 ∩ B1) ∧ · · · ∧ (Ap−1 ∩ Bp−1) ∧ (Bp − Ap)

which corresponds to R′j = exclusion(R j , Ri). This way,
if R j applies to a given packet in {Ri , R j }, then rule R′j also
applies to this packet in {Ri , R′j }. Conversely, if R′j applies
to a given packet in {Ri , R′j }, then this means this packet sat-
isfies R j [condition] but not Ri [condition]. So, it is clear
that rule R j also applies to this packet in {Ri , R j }. Since in
Algorithm 1 R′j [decision] becomes R j [decision], this ena-
bles us to conclude that {Ri , R j } is equivalent to {Ri , R′j }.
�
Theorem 1 Let R be a set of configuration rules and let
Tr(R) be the resulting rules obtained by applying Algorithm
4 to R. Then R and Tr(R) are equivalent.

Proof Let Tr′1(R) be the set of rules obtained after applying
the first phase of Algorithm 4.

Since Tr′1(R) is derived from rule R by applying
exclusion(R j , Ri) to some rules R j in R, it is straightfor-
ward, from Lemma 1, to conclude that Tr′1(R) is equivalent
to R.

Let us now move to the second phase, and let us consider
a rule Ri such that test Redundancy(Ri) (cf. Algorithm 3)
is true. This means that Ri [condition] can be derived by
conditions of a set of rules S with the same decision and that
come after in order than rule Ri .

Since every rule R j with a decision different from the one
of rules in S has already been excluded from rules of S in the
first phase of the algorithm, we can conclude that rule Ri is
definitely redundant and can be removed without changing
the component configuration.

This way, we conclude that Algorithm 4 preserves equiv-
alence in this case.

On the other hand, if test Redundancy(Ri) is f alse, then
the transformation consists in applying function exclusion
(R j , Ri) to some rules R j which also preserves equivalence.
Similarly, and once in the third phase, let us consider a rule Ri

such that test I rrelevance(c, Ri) is true. This means that
this rule matches traffic that will never traverse component
c, or that it is irrelevant for the component’s configuration.
So, we can remove Ri from R without changing such a con-
figuration.

Thus, in this third case, as in the other two cases, T r ′(R)

is equivalent to T r ′1(R) which, in turn, is equivalent to R.
�

Lemma 2 Let Ri : {conditioni } → decisioni and R j :
{condition j } → decision j be two configuration rules. Then
rules Ri and R′j , where R′j ← exclusion(R j , Ri) will never
simultaneously apply to any given packet.

Proof Notice that rule R′j only applies when rule Ri does
not apply. Thus, if rule R′j comes before rule Ri , this will
not change the final decision since rule R′j only applies to
packets that do not match rule Ri .
�
Theorem 2 Let R be a set of configuration rules and let
Tr(R) be the resulting rules obtained by applying Algorithm
4 to R. Then the following statements hold: (1) Ordering the
rules in Tr(R) is no longer relevant; (2) Tr(R) is completely
free of anomalies.

Proof For any pair of rules Ri and R j such that Ri comes
before R j , R j is replaced by a rule R′j obtained by recursively
replacing R j by exclusion(R j , Rk) for any k < j .

Then, by recursively applying Lemma 2, it is possible to
commute rules R′i and R′j in T r(R) without changing the
policy.

Regarding the second statement—Tr(R) is completely
free of anomalies—notice that, in T r(R), each rule is inde-
pendent of all other rules.

Thus, if we consider a rule Ri in T r(R) such that
Ri [condition] 	= ∅, then this rule will apply to any packet
that satisfies Ri [condition], i.e., it is not shadowed.

On the other hand, rule Ri is not redundant because if we
remove this rule, since this rule is the only one that applies to
packets that satisfy Ri [condition], then configuration of the
component will change if we remove rule Ri from Tr(R).

Finally, and after the execution of Algorithm 4 over the
initial set of configuration rules, one may verify that for each
rule Ri in Tr(R) the following conditions hold:

(1) szone = z1 ∩ source(r) 	= ∅ and dzone = z2 ∩
dest (r) 	= ∅ such that z1 	= z2 and component c is
in M R(z1, z2);

(2) if Ac = attack_category(Ri) 	= ∅, the predicate
a f f ects(Ac, z2) becomes true.
Thus, each rule Ri in T r(R) is not irrelevant.
�

4.4 Complexity of the intra-component algorithms

Let us discuss in this section the degree of computational
complexity of our approach’smain algorithm, i.e., Algorithm
1, with respect to the increase of the initial number of rules
due to the whole rewriting process of Algorithm 4. Indeed,
in a worst case scenario (e.g., Fig. 3b), Algorithm 1 may
generate a huge number of rules due to the exclusion routine
defined by Algorithm 1. For instance, if we have two rules

123

J. G. Alfaro et al.

Fig. 3 Normal and worst
ruleset examples. a Normal case
example b Worst case example

(a) (b)

3

43

2

2

4

1
1

szoneszone

dz
on

e

dz
on

e

with p attributes, the second rule can be replaced by p new
rules in the worst case, leading to p + 1 rules.

If we now assume that we have n rules (n > 2) with p
attributes, then each rule except the first one can be replaced
by p new rules in the first rewriting step of the algorithm. In
the second step, the p rules that replace the second rule are
combined with the p rules that replace rules 3 to n. Thus,
each rule from 3 to n can be replaced by p2 new rules. In the
third step, the p2 rules corresponding to rule 3 are combined
with the p2 rules corresponding to rules 4 to n. We can show
that this may lead to p3 new rules. And so on. Hence, in the
worst case, if we have n rules (n > 2) with p attributes, then
we can obtain 1+ p+ p2+ · · ·+ pn−1 rules when applying
Algorithm 1 from Algorithm 4, that is pn−1

p−1 rules.
Although this complexity seemsveryhigh, in all the exper-

iments we have done (cf. Sect. 6), we were always very far
from this case. First, because only attributes szone and dzone
may significantly overlap and exert a bad influence on our
algorithm’s complexity. Other attributes, such as protocol,
sport, and/or dport, are generally equal or completely differ-
ent when combin- ing configuration rules. Second, adminis-
trators generally use overlapping rules in their configurations
to represent rules that may have exceptions [4]. This situation
is closer to the normal case presented in Fig. 3a than to the
worst case scenario shown in Fig. 3b. Third, when anomalies
are detected by our algorithms, some rules are removed—
which significantly reduces the theoretical complexity.

4.5 Default policies

We assume in our work that each component implements a
positive (i.e., close) or negative (i.e., open) policy. If it is
positive, the default decision is to alert or to deny a packet
when any configuration rule applies. By contrast, the negative
policy will accept or pass a packet when no rule applies.

After rewriting the rules with our intra-component-audit
algorithms, we can actually remove every rule whose deci-
sion is pass or accept if the policy of this component is nega-
tive (since this rule is redundant with the default policy); and
similarly we can remove every rule whose decision is deny or

alert if its policy is positive. Thus, we can consider that our
proposed intra-component-audit algorithm generates a con-
figuration that only contains positive rules if the component
default policy is negative, and negative rules if the default
policy is positive.

5 Inter-component classification and algorithms

The objective of the inter-component audit algorithms is
the complete detection of policy anomalies that could exist
in a multi-component policy, i.e., to discover and warn the
security officer about potential anomalies between policies
of different components.

The main hypotheses for applying our inter-component
algorithms assume the following:
1. An upstream traffic flows away from the closest compo-

nent to the origin of this traffic (i.e., the most-upstream
component [6]) towards the closest component to the
remote destination (i.e., the most-downstream compo-
nent [6]);

2. Every component’s policy in thenetworkhas been rewrit-
ten using the intra-component algorithms defined in
Sect. 4, i.e., it does not contain intra-component anom-
alies and the rules within such a policy are completely
independent between them.

5.1 Inter-component anomalies classification

In this section, we classify the complete set of anomalies that
can occur within a multi-component policy. Our classifica-
tion is based on the network model presented in Sect. 3. An
example for each anomaly is illustrated through the distrib-
uted multi-component policy setup shown in Fig. 4.
Inter-component shadowing A shadowing anomaly occurs
between two components when the following conditions
hold: (1) The most-upstream component is a firewall; (2)
The downstream component, where the anomaly is detected,
does not block or report (completely or partially) traffic that
is blocked (explicitly, by means of positive rules; or implic-

123

Complete analysis of configuration rules to guarantee reliable network security policies

Fig. 4 Example of a distributed
network security policy setup

itly, by means of its default policy), by the most-upstream
component.

The explicit shadowing as result of the union of rules
C6{R7} and C6{R8} to the traffic that the component C3
matches by means of rule C3{R1} is a proper example of
full shadowing between a firewall and a NIDS. Similarly,
the anomaly between C3{R2} and C6{R8} shows an example
of an explicit partial shadowing anomaly between a firewall
and a NIDS.

On the other hand, the implicit shadowingbetween the rule
C1{R5} and the default policy of component C2 is a proper
example of implicit full shadowing between two firewalls.
Finally, the anomaly between the rule C1{R6}, C2{R1}, and
the default policy of component C2 shows an example of an
implicit partial shadowing anomaly between two firewalls.

Inter-component redundancy A redundancy anomaly
occurs between two components when the following con-
ditions hold: (1) The most-upstream component is a fire-
wall; (2) The downstream component, where the anomaly is
detected, blocks or reports (completely or partially) traffic
that is blocked by the most-upstream component.

A proper example of full redundancy between two fire-
walls is shown by rules C5{R3} and C6{R1}; rules C4{R3}
andC6{R5}, on the other hand, showanexample of full redun-
dancy between afirewall and aNIDS. Similarly, rulesC5{R4}

and C6{R2} show a proper example of partial redundancy
between two firewalls, whereas rules C4{R4} and C6{R6}
show an example of partial redundancy between a firewall
and a NIDS.

Although this kind of redundancy is expressly introduced
by network administrators sometimes (e.g., to guarantee the
forbidden trafficwill not reach the destination), it is important
to discover it since, if such a rule is applied, we may con-
clude that at least one of the redundant components is work-
ing wrongly. For that reason, our proposal does not advise
the administrator to remove the redundant rule from the set of
rules; but it advises the administrator to give a differentmean-
ing to that rule—by adding, for instance, an extra attribute to
the rule (e.g., a log attribute pointing out to such a situation).
Inter-component misconnectionAmisconnection anomaly
occurs between two components when the most-upstream
component is a firewall that permits (explicitly, by means
of negative rules; or implicitly, through its default policy)
all the traffic—or just a part of it—that is then denied by a
downstream firewall. For example, we have a full explicit
misconnection between firewalls C5 and C2 due to rules
C5{R1} andC2{R2} (full misconnection); and apartial explicit
misconnectiondue to rulesC5{R2} andC2{R2}. Similarly,we
can observe a full implicit misconnection anomaly between
firewallsC1 andC2 due to ruleC2{R3} and the default policy
of firewall C1; and a partial implicit misconnection anomaly

123

J. G. Alfaro et al.

due to rules C1{R6} and C2{R1}, together with the default
policy of C2.

5.2 Inter-component analysis algorithms

For reasons of clarity, we split the whole analysis process
into four different algorithms. The input for the first algo-
rithm (cf. Algorithm 5) is the set of components C , such that
for all c ∈ C , we note c[rules] as the set of configuration
rules of component c, and c[policy] ∈ {true, f alse} as the
default policy of such a component c.

In turn, each rule r ∈ c[rules] consists of a conjunctive
set of condition attributes (i.e., szone, dzone, sport , dport ,
protocol, etc.) pointing out to a decision over the values
true or f alse.

Let us recall here the functions source(r) = szone and
dest (r) = dzone. Thus, we compute for each component
c ∈ C and for each rule r ∈ c[rules], each one of the source
zones z1 ∈ Zs and destination zones z2 ∈ Zd—whose inter-
section with respectively szone and dzone is not empty—
which become, together with a reference to each component
c and each rule r , the input for the second algorithm (i.e.,
Algorithm 6).

Once in Algorithm 6, we compute the minimal route of
components that connects zone z1 to z2, i.e., [C1, C2,

. . . , Cn] ∈ M R(z1, z2). Then, we decompose the set of
components inside each path in downstream path (pathd)
and upstream path (pathu). To do so, we use functions head
and tail (defined below). The first component cd ∈ pathd ,
and the last component cu ∈ pathu are passed, respectively,
as argument to the last two algorithms (i.e., Algorithms 7

and 8) in order to conclude the set of necessary checks that
guarantee the audit process.

Some other operators and routines called from these algo-
rithms are the following: (1) operator “�”, which denotes
that two rules ri and r j are correlated if every attribute in Ri

has a non-empty intersection with the corresponding attri-
bute in R j ; (2) routine tail(ci , path), which returns the
downstream path cointaining those components c j ∈ path
placed just after component ci ; (3) routine head(ci , path),
which returns the upstream path of components c j ∈ path
which are placed just before component ci ; and (4) rou-
tine f irst Firewall(path), which returns the first compo-
nent ci ∈ path such that predicate is Firewall(ci) becomes
true.

Let us conclude this section by giving in Fig. 5 an outlook
to the set of warnings sent to the security officer after the
execution of Algorithm 5 in the scenario of Fig. 4.

5.3 Correctness of the inter-component algorithms

To prove the correctness of our inter-component algorithms,
we first define what is a deployment of configuration rules

123

Complete analysis of configuration rules to guarantee reliable network security policies

C1{R3} − C6{R3, R4} : Full Shadowing
C1{R4} − C6{R4} : Partial Shadowing
C1{R5} − C2{pol.} : Full Shadowing
C1{R6} − C2{R1, pol.} : Partial Shadowing
C2{R3} − C1{pol.} : Full Misconnection
C2{R4} − C1{R7, pol.} : Partial Misconnection
C3{R1} − C6{R7, R8} : Full Shadowing
C3{R2} − C6{R8} : Partial Shadowing
C4{R3} − C6{R5} : Full Redundancy
C4{R4} − C6{R6} : Partial Redundancy
C5{R1} − C2{R2} : Full Misconnection
C5{R2} − C2{R2} : Partial Misconnection
C5{R3} − C6{R1} : Full Redundancy
C5{R4} − C6{R2} : Partial Redundancy
C5{R5} − C6{pol.} : Full Misconnection

Fig. 5 Execution of Algorithm 5 over the scenario of Fig. 4

without anomalies. For this purpose, let us consider a set
R of configuration rules to be deployed over a set C of
components that partitions a network into a set Z of zones.
We assume that the set of rules R has been rewritten by
Algorithm 9 into Tr(R), which, in turn, is equivalent to R,
but completely free of any possible relation between rules of
the same type (e.g., filtering or alerting rules).

Algorithm9 is a simplified version ofAlgorithm4. It auto-
matically fixes any dependency between rules of the same
type (e.g., filtering or alerting rules). Like Algorithm 4, the
rewriting process defined in Algorithm 9 relies on a iterative
execution of the auxiliary function exclusion defined inAlgo-
rithm 1 (cf. Sect. 4). Therefore, similar reasonings as used to
prove the correctness of Algorithm 4 allow us to prove the
correctness of Algorithm 9.

Let us now consider a rule r ∈ Tr(R) and let us assume
that r applies to a source zone z1 and a destination zone
z2, i.e., szone = z1 ∩ source(r) 	= ∅ and dzone = z2 ∩
dest (r) 	= ∅. Let r ′ be a rule identical to r except that
source(r ′) = szone and dest (r ′) = dzone. Let us also
assume that [C1, C2, . . . , Ck] ∈ M R(z1, z2). We then define
our deployment principle as follows.

Definition 1 Any rule r ∈ T r(R) will be deployed over
the set C of components. There are two different cases:
r [decision] = “ f alse” or r [decision] = “true”.

If r [decision] = “ f alse” then, on every component on
the minimal route from source szone to destination dzone,
deploy a negative rule r ′ (i.e., an accept filtering rule r ′ if
the component is a firewall, or a pass alerting rule r ′ if the
component is a NIDS).

Conversely, if r [decision] = “true”, then the two fol-
lowing possibilities hold:

(1) if r is a filtering rule, then deploy a deny filtering rule r ′
on the most-upstream firewall of the minimal route (if
such a firewall does not exist, then generate a deploy-
ment error message);

(2) if r is an alerting rule, then deploy an alert rule r ′ on the
first NIDS located before the most-upstream firewall of
the minimal route (if such a NIDS does not exist, then
generate a deployment error message).

Having defined our deployment principle, let us now con-
sider the aggregation process shown in Algorithm 10, which
is intended for the aggregation of configurations rules from
a set of components C into a global set of rules R. (An ear-
lier version of this algorithm is presented in [3].) The input
data of our aggregation process are the set C of components
whose configurationswewant to fold up. As we can notice in
line 3 of Algorithm 10, the configuration of each component
ci ∈ C if first fixed by applying the intra-component-audit
algorithm presented in Sect. 4.

The gathering of configuration rules is according to the
deployment principle stated in Definition 1. In this way, for
each negative rule configured in a component, we expect to
find an open flow of permissions within every component
in the minimal route from the source zone to the destination
zone of such a rule. Otherwise, an aggregation error message
is generated. On the other hand, for each positive rule, if it
is a filtering rule, we expect to find such a prohibition on the
first firewall of the minimal route from the source zone to
the destination zone; otherwise, an aggregation error mes-
sage is generated; if such a rule is an alerting rule, we expect
to not find an upstream firewall on the minimal route from
the source zone to the destination zone blocking its traffic;
otherwise, an aggregation error message is generated.

Based on the deployment and aggregation processes
defined above, we can now prove the following theorem:

Theorem 3 Let C[rules] be the set of component config-
urations obtained by applying Definition 1 over the set R
of configuration rules obtained, in turn, by applying
Algorithm 10 over C. Then, the audit process of Algorithm 5
does not detect any inter-component anomaly in the config-
urations of C[rules].

Proof Let C be a set of components that partitions the net-
work into a set Z of zones, and whose component configu-
rations are aggregated into R by applying Algorithm 10.

Let us first prove that if there exists, at least, one rule
ri ∈ C[rules] such that it presents an inter-component anom-
aly (as defined in Sect. 5.1), then the aggregation of rules
R← aggregation(C) through the use ofAlgorithm10 does

123

J. G. Alfaro et al.

not generate a consistent set of rules R that can be further
deployed over the network by using the deployment principle
stated in Definition 1.

For instance, let us assume that ri ∈ C[rules] presents
an inter-component shadowing. If so, ri is a negative rule
(i.e., either accept or pass) that applies to a source zone z1
and a destination zone z2 such that szone = z1 ∩ source(ri)

	= ∅, dzone = z2∩dest (ri) 	= ∅; ri belongs to a component
Ci ∈ C which is in the path [C1, C2, . . . , Ck] ∈ M R(z1, z2);
and it exists at least one component C j such that the follow-
ing conditions hold: (1) component C j is an upstream fire-
wall, i.e.,C j ∈ head(Ci , M R(z1, z2))∧ is Firewall(C j)=
true; (2) component C j explicitly or implicitly blocks the
traffic that ri matches, i.e., either there exists a rule r j ∈
C j [rules] such that r j � ri ∧ r j [decision] = “true”; or

C j [policy] = “true” and there is not r j ∈ C j [rules] such
that r j � ri ∧ r j [decision] = “ f alse”.

If this situation applies, we can observe that during the
aggregation process specified by Algorithm 10, rule ri

matches statement 10 , i.e., ri [decision]= “f alse′′ becomes
true. Then, the process analyzes through statements 12–18
whether there exists at least an upstream firewall C j such
that it blocks the traffic that ri also matches, i.e., it does not
contain negative filtering rules accepting that traffic (state-
ment 14 becomes true) and either it explicitly blocks that
traffic through a positivefiltering rule (first condition of state-
ment 16 becomes true), or it implicitly blocks that traffic
through its default policy (second condition of statement 16
becomes true). If so, the process finishes with an error and
returns an empty set of rules (cf. statements 17 and 18).

123

Complete analysis of configuration rules to guarantee reliable network security policies

Let us now assume that ri ∈ C[rules] presents an inter-
component redundancy. If so, ri is a positive rule (i.e., either
deny or alert) that applies to a source zone z1 and a desti-
nation zone z2 (such that szone = z1 ∩ source(ri) 	= ∅,
dzone = z2 ∩ dest (ri) 	= ∅); ri belongs to a component
Ci ∈ C which is in the path [C1, C2, . . . , Ck] ∈ M R(z1, z2);
and one of the following conditions hold: (1) component
Ci is a firewall and there exists, at least, an upstream fire-
wall C j that either explicitly or implicitly blocks the traffic
that ri already blocks (without justifying ri such a redun-
dancy by means of an additional attribute like, for example,
an attribute for logs); (2) component Ci is a NIDS located
after an upstream firewall on the minimal route which blocks
the traffic of ri (without justifying ri such a redundancy by
means of an additional attribute like, for example, an attribute
for logs). If condition (1) of this situation applies, we can
observe that during the folding process specified by Algo-
rithm 10, rule ri matches statement 19, i.e., ri [decision] =
“true” becomes true, and the two conditions of statement 20,
i.e., ri is placed within a firewall and such a firewall is not
the most-upstream component of the minimal route from z1
to z2. Thus, the process finishes with an error and returns an
empty set of rules (cf. statements 21 and 22).

Similarly, if condition (2) of this situation applies, we
can observe that during the folding process specified by
Algorithm 10 rule ri matches both statement 19, i.e.,
ri [decision] =“true”, and statement 23, i.e., predicate
is N I DS(Ci) = true. Then, the process analyzes through
statements 25 –31 whether there exists at least an upstream
firewall C j that blocks the traffic that ri also matches, i.e., it
does not contain negative filtering rules accepting that traffic
(statement 27 becomes true) and either it explicitly blocks
that traffic through a positive filtering rule (first condition
of statement 29 becomes true), or it implicitly blocks that
traffic through its default policy (second condition of state-
ment 29 becomes true). If so, the process finishes with an
error and returns an empty set of rules (cf. statements 30
and 31).

Let us finally assume that ri ∈ C[rules] presents an inter-
component misconnection. If so, ri is a positive filtering rule
(i.e., deny) that applies to a source zone z1 and a desti-
nation zone z2 such that szone = z1 ∩ source(ri) 	= ∅,
dzone = z2 ∩ dest (ri) 	= ∅; ri belongs to a firewall Ci ∈ C
which is in the path [C1, C2, . . . , Ck] ∈ M R(z1, z2); and
there exists, at least, an upstream firewall C j that either
explicitly or implicitly accepts the traffic that ri blocks. In
order to avoid this situation it suffices to detect whether fire-
wall Ci is not the most-upstream firewall. As we have shown
in the previous case, this situation is handled by the aggrega-
tion process specified by Algorithm 10 through statement 19
and the two conditions of statement 20. So, if ri is placed
within a firewall and such a firewall is not the most-upstream
component of the minimal route from z1 to z2, the aggrega-

tion process finishes with an error and returns an empty set
of rules (cf. statements 30 and 31).

It is straightforward, then, to conclude that when no
inter-component anomalies apply to the set of component
configurations C[rules], the aggregating process specified
by Algorithm 10 returns a global set of filtering rules R
with the union of all the configuration rules (cf. statements
32–35 of Algorithm 10) previously deployed over the set of
components C .

Let us notice that we apply in line 36 of Algorithm 10 the
rewriting process defined in Algorithm 9. In this way, we can
guarantee that there are no dependencies between rules of
the same type (i.e., alerting and filtering rules) in the set of
rules aggregated during the folding process of Algorithm 10.
As stated above, and similarly to Algorithm 4 (cf. Sect. 4),
Algorithm 9 relies on a iterative execution of the auxiliary
function exclusion defined inAlgorithm1 (cf. Sect. 4). There-
fore, similar reasonings as used to prove the correctness of
Algorithm 4 (cf. Sect. 4.3) enables us to prove that the set
of rules returned by Algorithm 10 is free of intra-component
anomalies.

If we now deploy the set of rules R obtained from
Algorithm 10 by using the deployment principle stated in
Definition 1, and since we agree that R belongs to a set
of configuration rules C[rules] that is free of inter-
component anomalies, we can then guarantee that the
deployed set of configurations is also free of inter-component
anomalies, i.e., the audit process of Algorithm 5 does not
detect any inter-component anomaly in the configurations
already deployed.
�

6 Implementation and performance evaluation

We implemented the complete set of algorithms and pro-
cesses presented in this paper in a software prototype called
MIRAGE (which stands for MIsconfiguRAtion manaGEr).
MIRAGE has been developed using PHP, a general purpose
scripting language that is especially suited for web services
development and can be embedded into HTML for the con-
struction of client-sideGUI based applications [9].MIRAGE
can be locally or remotely executed by using a HTTP server
(e.g., Apache server over UNIX or Windows setups) and a
web browser. The user interface of MIRAGE not only allows
the whole management of those processes described in this
paper, but also the management of the network properties
described in Sect. 3. In order to do so,MIRAGE extracts such
information from SKYBOX [26], an automatic network tool
that allows us to properly manage the set of components, the
set of configurations rules of each component, the set of zones
of the system, and so on. In fact, both the network properties
and the whole policies are derived from—and represented
into—SKYBOX-based XML files.

123

J. G. Alfaro et al.

Fig. 6 Samples of the graphical environment of MIRAGE. a Main interface of MIRAGE. b Intra-component analysis results. c Inter-component
analysis results. d Rule aggregation results. e Rule deployment results (1/2). f Rule deployment results (2/2)

We show in Fig. 6 some screenshots of the graphical
environment of MIRAGE. We first see in Fig. 6a the main
interface of our tool. The top-left panel allows the load of
SKYBOX-based XML files, from which one can supply the
topology of the system and the set of security rules already
deployed over the network from a single XML file based
on SKYBOX. Through a set of transformations, MIRAGE

derives the specific instances of the networkmodel described
in Sect. 3, and remains ready to perform the complete set of
processes defined in this paper.

Figure 6 also shows some other options placed in its mid-
dle panel, such as the selection of components, and buttons
to call its main functions/routines, which are the following:
(1) intra-component analysis of rules; (2) inter-component

123

Complete analysis of configuration rules to guarantee reliable network security policies

Fig. 7 Intra-component
analysis evaluations. a CPU
evaluation; b Memory
evaluation

0

2

4

6

8

 10

 12

 14

 10 20 30 40 50 60 70

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

Number of rules

15% of overlaps
75% of overlaps
90% of overlaps

(a)

0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70

M
em

or
y

sp
ac

e
(k

b)

Number of rules

15% of overlaps
75% of overlaps
90% of overlaps

(b)

analysis of rules; (3) aggregation of existing rules into a sin-
gle global policy; (4) deployment of the resulting global set
of rules into a different set of components. These four pro-
cedures can work in two different modes: (a) results mode,
which is a quick mode that only reports warnings and proper
results of a given process; (b) logs mode, which is a more
detailed mode that not only reports warnings and results,
but also those information generated and exchanged between
functions during the whole execution of a given process.

We can see in Fig. 6b the output view of MIRAGE when
performing the intra-component audit process to the set of
rules of a given component. In this case, the set of filter-
ing rules of a firewall are analyzed, and two intra-component
anomalies are detected. Furthermore, the prototype leaves the
option to the administrator to fix those anomalies by updating
the network model. Similarly, we can see in Fig. 6c the result
of applying our inter-component audit process to the com-
plete set of components’ rules. Finally, we show in Fig. 6d–f
the output view after applying, respectively, the aggregation
and deploying processes defined in Sect. 5.3.

In the following section, we show some experimental
results carried out by using the graphical user interface of
MIRAGE.

6.1 Performance evaluation

We evaluated the implementation of MIRAGE through a
set of experiments over different IPv4-based security com-
ponents and networks, and through the use of the results
mode of its four main routines. The experiments were car-
ried out on an Intel-Pentium M 1.4 GHz processor with
512 MB RAM, running Debian GNU/Linux 2.6, and using
Apache/1.3 with PHP/4.3 configured. We did not measure in
our evaluations the performance for parsing and constructing
the topological descriptions derived from the XML files
loaded into MIRAGE. This process was performed just once
at the beginning of each evaluation, and we do not consider
it as relevant.

Wefirst evaluated the performance of our intra-component
audit algorithms by analyzing the average time and memory
space utilized when processing different set of security rules
for three different components. We created the configuration
of each component based on the security policy characteris-
tics of our real institutional network. More specifically, the
set of components utilized for this first evaluation consisted
of two firewalls based on netfilter [27] and ipfilter [23], and
a NIDS based on snort [24].

Each component was configured towards three different
zones with more than 50 hosts in each zone. The config-
uration rules of those components consisted of the follow-
ing main attribute fields: source IP address, destination IP
address, source port number, destination port number, and
protocol type. The configuration rules of the NIDS included,
moreover, two additional values to take into account, the
payload and the attack classification associated to each
rule.

Figure 7a shows the average execution times (in seconds)
for performing the intra-component analysis of those three
components versus the total number of rules of their configu-
rations. Three different curves are shown, one for each of the
following cases: (1) netfilter firewall rules, ofwhich 15%pre-
sented overlaps between their attributes; (2) ipfilter firewall
rules, of which 75% presented overlaps between their attri-
butes; and (3) snort-based alerting rules, of which 90% pre-
sented overlaps between their attributes. The horizontal axis
indicates the total number of rules and the vertical axis indi-
cates the average process time. Similarly, Fig. 7b indicates the
associated space memory consumption during the same exe-
cutions,where its horizontal axis indicates the total number of
rules and its vertical axis the memory space consumption (in
kilobytes).

As expected, according to the complexity analyzed in
Sect. 4.4, the first case scenario showed the least process-
ing time and memory space consumption (it took less than
2s and almost 27 kilobytes ofmemory the analysis of 70 rules
with 15% of overlaps); and the third case scenario presented
the highest processing time and memory space consumption

123

J. G. Alfaro et al.

Fig. 8 Inter-component
analysis evaluations. a CPU
evaluation; b Memory
evaluation

 10 20 30 40 50 60 70

Number of rules

 10 20 30 40 50 60 70

Number of rules

(a) (b)

0

1

2

3

4

5

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

3 components / 2 zones
5 components / 4 zones
6 components / 6 zones

0

 50

 100

 150

 200

 250

 300

M
em

or
y

sp
ac

e
(k

b)

3 components / 2 zones
5 components / 4 zones
6 components / 6 zones

Fig. 9 Aggregation process
evaluations. a CPU evaluation.
b Memory evaluation

 10 20 30 40 50 60 70

Number of rules

 10 20 30 40 50 60 70

Number of rules

0

1

2

3

4

5

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

3 components / 2 zones
5 components / 4 zones
6 components / 6 zones

(a)

0

 50

 100

 150

 200

 250

 300

M
em

or
y

sp
ac

e
(k

b)

3 components / 2 zones
5 components / 4 zones
6 components / 6 zones

(b)

(it took more than 15s and almost 150 kilobytes of memory
for the analysis of 70 rules with 90% of overlaps).

We can notice, however, that even if the theoretical com-
plexity of the third case should bound close to O(pn), where
p is the number of attributes, and n the number of rules,
we were far from this complexity, and our implementation
scaled well with the increase of rules.We further verified that
although the complexity of Algorithm 4 is determined by the
complexity of splitting rules, the dynamic removal of anom-
alies, and the distribution of overlaps between rule attributes,
significantly reduces the execution complexity.

We measured, in a second phase of our evaluations, the
average time and memory space consumption when pro-
cessing our inter-component audit algorithms through a
progressive increment of security rules, components and
networks. The configuration of every component was previ-
ously analyzed with our intra-component audit process, and
any possible anomaly and/or overlap between rule attributes
was previously removed.

The results of these measurements are plotted in Fig. 8a
and b as three different curves, according to the three follow-
ing topologies: (1) two subnetworks with two firewalls and
one NIDS; (2) four subnetworks with three firewalls and two
NIDSs; and (3) six subnetworks with four firewalls and two

NIDSs. These same three topologies were also utilized for
measuring the average time and memory space when per-
forming the aggregation process defined in Sect. 5.3. The
results of these last measurements are plotted in Figs. 9a
and b, respectively.

From Figs. 8a and b we see that it took less than 2s and
200 kilobytes of memory for the analysis of 70 security rules
distributed between three components and two subnetworks;
and almost 5 s and 260 kilobytes of memory for the analysis
of the same number of rules distributed between six com-
ponents and six subnetworks. The analysis of those same
scenarios, but through the aggregation process specified in
Sect. 5.3 increased both processing time and memory space
consumption. More specifically, it took almost 7 s and 310
kilobytes of memory the aggregation of the 70 security rules
distributed between six components and six subnetworks.
We consider this increase reasonable, since it is due to the
rewriting of policies performed at the beginning and ending
stages of the aggregation process—specified in lines 3 and
36 of Algorithm 10.

Clearly, the results presented in this section indicate strong
requirements of both processing time and space memory.
However, we consider that these requirements are acceptable
considering that all our approaches are performed off-line

123

Complete analysis of configuration rules to guarantee reliable network security policies

and they do not affect the performance of any component or
network. Furthermore, we want to recall that the implemen-
tation of our proposal has been done by using a high level
scripting language. We expect that the use of a more efficient
language will considerably improve these results.

7 Conclusions

We presented in this paper a set of mechanisms for the man-
aging of anomalies on distributed network security policies.
More precisely, our proposal is intended for the discovery of
anomalies in network security policies deployed over
f irewalls and network intrusion detection systems
(NIDSs). Our approach was presented in two main blocks.
We first presented, in Sect. 4, a set of algorithms for the
management of anomalies within the configuration of sin-
gle security components. We then presented, in Sect. 5, a set
of algorithms for the management of anomalies between the
configuration of different security components implement-
ing a single, but distributed, security policy.

The advantages of our proposal are the following. First,
our intra-component transformation process verifies that the
resulting rules are completely independent between them.
Otherwise, each rule considered as useless during the pro-
cess is reported to the security officer, in order to verify the
correctness of the whole process. Second, we can perform
a second rewriting of rules, generating a configuration that
only contains positive rules if the component default policy
is negative, and negative rules if the default policy is positive.
Third, the network model presented in Sect. 3 allows us to
determine which components are crossed by a given packet
knowing its source and destination, as well as other network
properties. Thanks to this model, our approach better defines
all the set of anomalies studied in the related work, and it
reports, moreover, two new anomalies (irrelevance and mis-
connection) not reported, as defined in our work, in none of
the other approaches.

The implementation of our approach in a software proto-
type, moreover, demonstrates the applicability of our work.
We discussed this implementation, based on a scripting lan-
guage [9], and presented an evaluation of its performance.
Although the results of our experiments showed strong pro-
cessing time and memory space requirements, we consider
them reasonable and expect that the use of a more efficient
implementation language will improve our initial evaluation.

As further work, we are currently working on an extension
of our proposals in the case where the security architecture
will also include virtual private network (VPN) tunnels and
IPv6 devices, as well as those scenarios where there exist a
cooperation between routing and tunneling policies. In par-
allel to this work, we are also studying how to extend our
approach to the analysis of stateful policies.

Acknowledgements This work was supported by funding from the
French Ministry of Research, under the ACI DESIRS project; and the
Spanish Ministry of Science and Education, under the project CON-
SOLIDER CSD2007-00004 “ARES”.

References

1. Abou el Kalam, A., Baida, R.E., Balbiani, P., Benferhat, S.,
Cuppens, F., Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.:
Organization based access control. In: IEEE 4th International
Workshop on Policies for Distributed Systems and Networks,
pp. 120–131 Lake Come, (2003)

2. Adiseshu, H., Suri, S., Parulkar, G.: Detecting and resolving
packetfilter conflicts. In: 19thAnnual JointConference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1203–1212,
Tel-Aviv, (2000)

3. Alfaro, J.G., Cuppens, F., Cuppens-Boulahia, N.: Aggregating and
deploying network access control policies. In: 1st Symposium on
Frontiers in Availability, Reliability and Security (FARES), 2nd
International Conference on Availability, Reliability and Security
(ARES2007), Vienna, pp 532–539 (2007)

4. Alfaro, J.G., Cuppens, F., Cuppens-Boulahia, N.: Management of
exceptions on access control policies. In: 22nd IFIP TC-11 Inter-
national Information Security Conference (IFIPsec2007), South
Africa, May 2007, pp. 97–108. IFIP, Springer, Kluwer (2007)

5. Al-Shaer, E.S., Hamed, H.H.: Discovery of policy anomalies in
distributed firewalls. In: IEEE INFOCOM’04, vol. 4, pp. 2605–
2616, Hong Kong (2004)

6. Al-Shaer, E.S., Hamed, H.H., Masum, H.: Conflict classification
and analysis of distributed firewall policies. IEEE J. Select. Areas
Commun. 23(10), 2069–2084 (2005)

7. Al-Shaer, E.S., Hamed, H.H.: Taxonomy of conflicts in network
security policies. IEEECommun.Magazine44(3), 134–141 (2006)

8. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: a novel
firewall management toolkit. In: IEEE Symposium on Security
and Privacy, pp. 17–31, Oakland (1999)

9. Castagnetto, J., et al.: Professional PHP Programming.Wrox Press
Inc, ISBN 1-86100-296-3 (1999)

10. Chapman, D., Fox, A.: Cisco Secure PIX Firewalls. Cisco Press,
Dublin (2001)

11. Cheswick, W.R., Bellovin, S.M., Rubin, A.D.: Firewalls and
Internet Security: Repelling the Wily Hacker, 2nd edn. Addison-
Wesley, (2003)

12. Cisco Systems, Inc.: Cisco SecurityManager Product Information.
[Online]. Available from: http://cisco.com/go/csmanager

13. Cuppens, F., Cuppens-Boulahia, N., Alfaro, J.G.: Detection and
removal of firewall misconfiguration. In: Proceedings of the 2005
IASTED International Conference on Communication, Network
and Information Security, vol. 1, pp. 154–162, (2005)

14. Cuppens, F., Cuppens-Boulahia, N., Alfaro, J.G.:Misconfiguration
management of network security components. In: Proceedings of
the 7th International Symposium on System and Information Secu-
rity, Sao Paulo (2005)

15. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miege, A.: A for-
mal approach to specify and deploy a network security policy.
In: Second Workshop on Formal Aspects in Security and Trust,
pp. 203–218, Toulouse (2004)

16. Gupta, P.: Algorithms for routing lookups and packet classifi-
cation. PhD Thesis. Department of Computer Science, Stanford
University (2000)

17. Hassan, A., Hudec, L.: Role based network security model: a for-
ward step towards firewall management. In: Workshop on Security
of Information Technologies, Algiers (2003)

18. Kurland, V.: Firewall builder. White Paper (2003)

123

http://cisco.com/go/csmanager

J. G. Alfaro et al.

19. Liu, A.X., Gouda, M.G.: Complete redundancy detection in fire-
walls. In: 19th Annual IFIP Conference on Data and Applications
Security (DBSec-05), pp. 196–209, Storrs, (2005)

20. MITRE Corp.: Common Vulnerabilities and Exposures. [Online].
Available from: http://cve.mitre.org/

21. Northcutt, S.: Network Intrusion Detection: An analyst’s Hand
Book, 3rd edn. New Riders Publishing (2002)

22. Open Security Foundation.: Open Source Vulnerability Database.
[Online]. Available from: http://osvdb.org/

23. Reed, D.: IP Filter. [Online]. Available from: http://coombs.anu.
edu.au/~avalon/ip-filter.html

24. Roesch,M.: Snort: lightweight intrusion detection for networks. In:
13th USENIX Systems Administration Conference, Seattle (1999)

25. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-
based access control models. IEEE Comput. 29(2), 38–47 (1996)

26. Skybox Security, Inc.: Security Risk Management and Network
Change Management Solution from Skybox Security

27. Welte, H., Kadlecsik, J., Josefsson,M.,McHardy, P., et al.: The net-
filter project: firewalling, nat and packet mangling for linux 2.4x
and 2.6.x. [Online]. Available from: http://www.netfilter.org/

28. Yuan, L.,Mai, J., Su, Z., Chen, H., Chuah, C.,Mohapatra, P.: FIRE-
MAN: a toolkit for FIREwall Modeling and ANalysis. In: IEEE
Symposium on Security and Privacy, pp. 199–213, Oakland (2006)

123

http://cve.mitre.org/
http://osvdb.org/
http://coombs.anu.edu.au/~avalon/ip-filter.html
http://coombs.anu.edu.au/~avalon/ip-filter.html
http://www.netfilter.org/

	Complete analysis of configuration rules to guarantee reliablenetwork security policies
	Abstract
	Introduction
	Related work
	Network model and topology properties
	Intra-component classification and algorithms
	Intra-component Algorithms
	Applying the Intra-component Algorithms
	Correctness of the intra-component algorithms
	Complexity of the intra-component algorithms
	Default policies
	Inter-component classification and algorithms
	Inter-component anomalies classification
	Inter-component analysis algorithms
	Correctness of the inter-component algorithms
	Implementation and performance evaluation
	Performance evaluation
	Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

