
Management of Exceptions on Access Control Policies∗

J. Garcia-Alfaro1,2, F. Cuppens1, and N. Cuppens-Boulahia1

1 GET/ENST-Bretagne, 35576 Cesson Sévigné - France,
{frederic.cuppens,nora.cuppens}@enst-bretagne.fr

2 Universitat Oberta de Catalunya, 08018 Barcelona - Spain,
joaquin.garcia-alfaro@uoc.edu

Abstract. The use of languages based on positive or negative expres-
siveness is very common for the deployment of security policies (i.e.,
deployment of permissions and prohibitions on firewalls through single-
handed positive or negative condition attributes). Although these lan-
guages may allow us to specify any policy, the single use of positive
or negative statements alone leads to complex configurations when ex-
cluding some specific cases of general rules that should always apply. In
this paper we survey such a management and study existing solutions,
such as ordering of rules and segmentation of condition attributes, in
order to settle this lack of expressiveness. We then point out to the ne-
cessity of full expressiveness for combining both negative and positive
conditions on firewall languages in order to improve this management
of exceptions on access control policies. This strategy offers us a more
efficient deployment of policies, even using fewer rules.

1 Introduction

Current firewalls are still being configured by security officers in a manual fashion.
Each firewall usually provides, moreover, its own configuration language that, most
of the times, present a lack of expressiveness and semantics. For instance, most fire-
wall languages are based on rules in the form Ri : {conditioni} → decisioni,
where i is the relative position of the rule within the set of rules, decisioni is a
boolean expression in {accept, deny}, and {conditioni} is a conjunctive set of con-
dition attributes, such as protocol (p), source (s), destination (d), source port (sport),
destination port (dport), and so on. This conjunctive set of conditions attributes, i.e.,
{conditioni}, is mainly composed of either positive (e.g., A) or negative (e.g., ¬A)
statements for each attribute, but does not allow us to combine both positive and neg-
ative statements (e.g., A ∧ ¬B) for a single attribute, as many other languages with
∗ This work was supported by funding from the French ministry of research, under the ACI

DESIRS project; and the Spanish Government (CICYT) project SEG2004-04352-C04-04.

2 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

full expressive power, such as SQL-like languages [9], do. The use of more general
access control languages, such as the eXtensible Access Control Markup Language
(XACML) [11], also present such a lack of expressiveness. This fact leads to complex
administration tasks when dealing with exclusion issues on access control scenarios,
i.e., when some cases must be excluded of general rules that should always apply.

Let us suppose, for instance, the policy of a hospital where, in general, all doctors
are allowed to consult patient’s medical records. Later, the policy changes and doc-
tors going on strike are not allowed to consult medical records; but, as an exception
to the previous one, and for emergencies purposes, doctors going on strike are still
allowed to consult the records. Regarding the use of a language with expressiveness
enough to combine both positive and negative statements, one may deploy the pre-
vious example as follows. We first assume the following definitions: (A) “Doctors”;
(B) “Doctors going on strike”; (C) “Doctors working on emergencies”. We then de-
ploy the hospital’s policy goals, i.e., (1) “In Hospital, doctors can access patient’s
medical records.”; (2) “In Hospital, and only for emergency purposes, doctors going
on strike can access patient’s medical records.”; through the following statement:
“In Hospital, (A ∧ (¬B ∨ C)) can access patient’s medical records”.

The use of languages based on partial expressiveness may lead us to very compli-
cated situations when managing this kind of configurations on firewalls and filtering
routers. In this paper, we focus on this problem and survey current solutions, such
as first and last matching strategies, segmentation of condition attributes, and partial
ordering of rules. We then discuss how the combination of both negative and positive
expressiveness on configuration languages may help us to improve those solutions.
This strategy allows to perform a more efficient deployment of network access con-
trol policies, even using fewer rules, and properly manage exceptions and exclusion
of attributes on firewall and filtering router configurations.

The rest of this paper is organized as follows. Section 2 recalls our motivation
problem, by showing some representative examples, surveying related solutions, and
overviewing their advantages and drawbacks. Section 3 then discusses our approach.
Section 4 overviews some related work, and, finally, Section 5 closes the paper.

2 Management of Exceptions via Partial Expressiveness

Before going further in this section, let us start with an example to illustrate our mo-
tivation problem. We first consider the network setup shown in Figure 1(a), together
with the following general premise: “In Private, all hosts can access web resources
on the Internet”. We assume, moreover, that firewall FW1 implements a closed de-
fault policy, specified in its set of rules at the last entry, in the form Rn : deny. Then,
we deploy the premise over firewall FW1 with the following rule:

R1 : (s ∈ Private∧d ∈ any∧p = tcp∧dport = 80)→ accept

Regarding the exclusion issues pointed out above, and according to the extended
setup shown in Figure 1(b), let us assume that we must now apply the following three
exceptions over the general security policy:

Management of Exceptions on Access Control Policies 3

1. The interfaces of firewall FW1 (i.e., Interf-fw = {111.222.1.1, 111.222.100.1})
are not allowed to access web resources on the Internet.

2. The hosts in Admin are not allowed to access web resources.
3. The hosts in Corporate do not belong to the zone Internet.

(a) Simple access control policy.

(b) Same policy with some excluded zones.

(c) Extended access control policy.

Fig. 1. Sample access control policy setups.

According to the first exception, we should exclude the IP address 111.222.1.1
from the hosts of Private. Similarly, we must exclude the whole set of hosts in zone
Admin from the zone Private, and the whole set of hosts in zone Corporate, i.e., the
range 111.222.∗ .∗, from Internet. The use of a language with expressiveness enough
to combine both positive and negative statements may allow us to deploy the previous
policy goal, i.e., “All the hosts in (Private ∧ ¬Admin ∧ ¬Interf-fw) are allowed to
access web resources on (Internet ∧ ¬Corporate)”, as the following single rule:

R1 : (s ∈ (Private ∧ ¬Admin ∧ ¬Interf-fw) ∧ d ∈ (any ∧ ¬Corporate) ∧ p = tcp ∧ dport = 80)→ accept

However, the lack of semantics and expressiveness of current firewall configura-
tion languages (specially the impossibility for combining both positive and negative
statements on single condition attributes) forces us to use different strategies to make
up for this lack of expressiveness. We overview in the following sections some pos-
sible solutions for applying the previous example by means of such languages.

4 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

2.1 First Matching Strategy

Most firewalls solve the managing of exceptions by an ordering of rules. For instance,
the configuration language for IPTables, the administration software used to config-
ure GNU/Linux-based firewalls through the Netfilter framework, is based on a first
matching strategy, i.e., the firewall is parsing the rules until a rule applies. When no
rule applies, the decision depends on the default policy: in the case of an open policy,
the packet is accepted whereas if the policy is closed, the packet is rejected. Other
languages, like the configuration language of IPFilter, the administration software
for configuring FreeBSD-, NetBSD- and Solaris 10-based firewalls, apply the oppo-
site strategy, called last matching. Similar approaches have also been proposed in
other security domains, such as the formal access control proposed in [10] to specify
protection policies on XML databases. Through a first matching strategy, one may
specify the handling of exceptions in the form R1 : (s ∈ (A ∧ ¬ B)) → accept by
means of the following ordering of rules:

R1 : (s ∈ B)→ deny

R2 : (s ∈ A)→ accept

Regarding the access control setup shown in Figure 1(b), together with the set of
policy goals and exceptions defined above, i.e., “All the hosts in (Private ∧ ¬Admin
∧ ¬Interf-fw) are allowed to access web resources on (Internet ∧ ¬Corporate)”, a
possible solution for such a motivation example through a first matching strategy
shall be the following set of rules:

R1 : (s ∈ 111.222.1.0/24 ∧ d ∈ 111.222.0.0/16 ∧ p = tcp ∧ dport = 80)→ deny

R2 : (s ∈ [111.222.1.13, 111.222.1.25]∧d ∈ any∧p = tcp∧dport = 80)→ deny

R3 : (s ∈ 111.222.1.1 ∧ d ∈ any ∧ p = tcp ∧ dport = 80)→ deny

R4 : (s ∈ 111.222.1.0/24 ∧ d ∈ any ∧ p = tcp ∧ dport = 80)→ accept

R5 : deny

Although this strategy offers a proper solution for the handling of exceptions, it is
well known that it may introduce many other configuration errors, such as shadowing
of rules and redundancy [4, 2], as well as important drawbacks when managing rule
updates, specially when adding or removing new general rules and/or exceptions. For
example, if we consider now the extended access control policy shown in Figure 1(c),
together with the insertion of the following general rule: “In Private, all hosts can
access web resources on the zone DMZ”; and the insertion of the following exception
to the previous rule: “The interfaces of firewall FW1 (i.e., Interf-fw = {111.222.1.1,
111.222.2.1, 111.222.100.1}) are not allowed to access web resources on the zone
DMZ”; we shall agree that the resulting rules according with these two new premises
are the following ones: Ri : (s ∈ 111.222.1.1 ∧ d ∈ 111.222.2.0/24 ∧ p = tcp ∧
dport = 80) → deny;Rj : (s ∈ 111.222.1.0/24 ∧ d ∈ 111.222.2.0/24 ∧ p =
tcp∧ dport = 80)→ accept. Such new rules must be inserted in the previous set of
rules as shown in Figure 2.

Notice that, in the previous example, the only possible ordering of rules that guar-
antees the defined assumptions forces us to place the new general rule in the second

Management of Exceptions on Access Control Policies 5

R1 : (s ∈ 111.222.1.1 ∧ d ∈ any ∧ p = tcp ∧ dport = 80)→ deny
R2 : (s ∈ 111.222.1.0/24∧d ∈ 111.222.2.0/24∧p = tcp∧dport = 80)→ accept
R3 : (s ∈ [111.222.1.13, 111.222.1.25]∧d ∈ any∧p = tcp∧dport = 80)→ deny
R4 : (s ∈ 111.222.1.0/24 ∧ d ∈ 111.222.0.0/16 ∧ p = tcp ∧ dport = 80)→ deny
R5 : (s ∈ 111.222.1.0/24 ∧ d ∈ any ∧ p = tcp ∧ dport = 80)→ accept
R6 : deny

Fig. 2. Set of rules for our second motivation example.

position of the set of rules as R2 : (s ∈ 111.222.1.0/24∧d ∈ 111.222.2.0/24∧p =
tcp ∧ dport = 80) → accept. Let us also notice that the related rule to the local
exception “The interfaces of firewall FW1 are not allowed to access web resources
on the Internet”, i.e., the former rule R3 : (s ∈ 111.222.1.1 ∧ d ∈ any ∧ p =
tcp ∧ dport = 80) → deny, is now a global exception, and it must be placed in
the first position of the set, i.e., it must be placed as R1 : (s ∈ 111.222.1.1 ∧ d ∈
any ∧ p = tcp ∧ dport = 80)→ deny.

As we can observe, the use of this strategy will continously increase the com-
plexity of the firewall’s configuration as the combination of rules will also do. Fur-
thermore, we can even propose combinations of rules that will not be possible to
implement by simply ordering the rules. For instance, let us consider the following
two condition attributes A and B, such that A∩B 6= ∅, and the following two rules:
R1 : (s ∈ (A∧¬ B))→ accept; R2 : (s ∈ (B ∧¬ A))→ accept. As we have seen
in this section, the use of a first matching strategy should easily allow us to separately
implement these two rules as follows:

R1,1 : (s ∈ B)→ deny
R1,2 : (s ∈ A)→ accept

R2,1 : (s ∈ A)→ deny
R2,2 : (s ∈ B)→ accept

However, the simple ordering of rules for such an example will not allow us to
find out any appropriate combination of rules R1 and R2. Instead, we should first
compute A ∩B and then transform the previous rules as follows:

R1,1 : (s ∈ (A ∩ B))→ deny
R1,2 : (s ∈ A)→ accept

R2,1 : (s ∈ (A ∩ B))→ deny
R2,2 : (s ∈ B)→ accept

and finally deploy the following set of rules:

R1 : (s ∈ (A ∩ B)→ deny
R2 : (s ∈ A)→ accept
R3 : (s ∈ B)→ accept

We can thus conclude that through this strategy the handling of exceptions can
lead to very complex configurations and even require additional computations and
transformations processes. The administration of the final setup becomes, moreover,
an error prone difficult task. Other strategies, like the segmentation of condition at-
tributes or the use of a partial order of rules, will allow us to perform similar manage-
ments with better results. We see these other two strategies in the following section.

6 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

2.2 Segmentation of Condition Attributes

A second solution when managing exceptions on access control policies is to directly
exclude the conditions from the set of rules. In [7, 6], for example, we presented a
rewriting mechanism for such a purpose. Through this rewriting mechanism, one
may specify the handling of exceptions in the form R1 : (s ∈ (A∧¬ B))→ accept
by simply transforming it into the following rule:

R1 : (s ∈ (A – B))→ accept

The deployment of our motivation example, i.e., “All the hosts in (Private
∧¬Admin∧¬Interf-fw) are allowed to access web resources on (Internet∧¬Corpo-
rate)”, through this new strategy, will be managed as follows. We first obtain the set
of exclusions, i.e., (Private – Admin – Interf-fw) and (Internet – Corporate):

Private = 111.222.1.*

Admin = [111.222.1.13, 111.222.1.25]

Interf-fw = {111.222.1.1, 111.222.100.1}

Private – Admin – Interf-fw → [111.222.1.2, 111.222.1.12] ∪ [111.222.1.26, 111.222.1.254]

Internet = *.*.*.*

Corporate = 111.222.*.*

Internet – Corporate → [0.0.0.1, 111.222.255.254] ∪ [111.223.1.1, 255.255.255.254]

Then, we must deploy the following rules:

R1 : (s ∈ [111.222.1.2, 111.222.1.12] ∧ d ∈ [0.0.0.1, 111.222.255.254] \
∧ p = tcp ∧ dport = 80)→ accept

R2 : (s ∈ [111.222.1.26, 111.222.1.255] ∧ d ∈ [0.0.0.1, 111.222.255.254] \
∧ p = tcp ∧ dport = 80)→ accept

R3 : (s ∈ [111.222.1.2, 111.222.1.12] ∧ d ∈ [111.223.1.1, 255.255.255.254] \
∧ p = tcp ∧ dport = 80)→ accept

R4 : (s ∈ [111.222.1.26, 111.222.1.255] ∧ d ∈ [111.223.1.1, 255.255.255.254] \
∧ p = tcp ∧ dport = 80)→ accept

R5 : deny

The main advantage of this approach, apart from offering a solution for the man-
agement of exceptions, is that the ordering of rules is no longer relevant. Hence,
one can perform a second transformation in a positive or negative manner: posi-
tive, when generating only permissions; and negative, when generating only prohi-
bitions. Positive rewriting can be used in a closed policy whereas negative rewrit-
ing can be used in case of an open policy. After this second rewriting, the secu-
rity officer will have a clear view of the accepted traffic (in the case of positive
rewriting) or the rejected traffic (in the case of negative rewriting). However, it also
presents some drawbacks. First, it may lead to very complex configuration setups

Management of Exceptions on Access Control Policies 7

that may even require a post-process of the different segments. Second, it may in-
volve an important increase of the initial number of rules2. Nevertheless, such an
increase may only degrade the performance of the firewall whether the associated
parsing algorithm of the firewall depends on the number of rules. Third, the manag-
ing of rule updates through this strategy may also be very complex, since the addition
or elimination of new exceptions may require a further segmentation processing of
the rules. Some firewall implementations, moreover, are not able to directly manage
ranges (e.g., they can require to transform the range [111.222.1.2, 111.222.1.12] into
{111.222.1.2/31∪111.222.1.4/29∪111.222.1.12/32}), and should require the use
of third party tools.

2.3 Partial Ordering of Rules

To our knowledge, the most efficient solution to manage the problem of exceptions
on access control policies would be by means of a strategy based on partial ordering
of rules. Notice that in both first and last matching approaches (cf. Section 2.1), the
interpretation of the rules depends on the total order in which the rules are specified,
i.e., a total order describes the sequence of rules from a global point of view. How-
ever, this ordering of rules can also be implemented in a partial manner, where a set
of local sequences of rules are defined for a given specific context.

In the case of NetFilter-based firewalls, for instance, a partial ordering of rules
may be achieved through the chain mechanism of IPTables. In this way, we can
group sets of rules into different chains, corresponding each one to a given excep-
tion. These rules are, moreover, executed in the same order they were included into
the chain, i.e., by means of a first match strategy. When a specific traffic matches
a rule in the chain, and the decision field of this rule is pointing out to the action
return, the matching of rules within the given chain stops and the analysis of rules
returns to the initial chain. Otherwise, the rest of rules in the chain are considered
until a proper match is found. If no rule applies, the default policy of the chain does.
Thus, through this new strategy, one may specify the handling of exceptions in the
form R1 : (s ∈ (A ∧ ¬ B))→ accept as follows:

R1 : (s ∈ A)→ jump_to chainA

RchainA
2 : (s ∈ B)→ return

RchainA
1 : accept

Regarding the scenario shown in Figure 2, i.e., “(1) All the hosts in (Pri-
vate ∧ ¬Admin ∧ ¬Interf-fw) are allowed to access web resources on (Internet
∧ ¬Corporate); (2) All the hosts in (Private ∧ ¬Interf-fw) are allowed to access web
resources on DMZ”, we can now implement such premises via two chains, private-
to-internet (or p2i for short) and private-to-dmz (or p2d for short), as follows:

2 This increase is not always a real drawback since the use of a parsing algorithm independent
of the number of rules is the best solution for the deployment of firewall technologies [15].

8 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

R1 : (s ∈ 111.222.1.0/24 ∧ d ∈ any ∧ p = tcp ∧ dport = 80)→ jump_to p2i

R2 : (s ∈ 111.222.1.0/24 ∧ d ∈ 111.222.2.0/24 ∧ p = tcp ∧ dport = 80)→ jump_to p2d

R3 : deny

Rp2i
1 : (s ∈ 111.222.1.1)→ return

Rp2i
2 : (s ∈ [111.222.1.13, 111.222.1.25])→ return

Rp2i
3 : (d ∈ 111.222.0.0/16)→ return

Rp2i
4 : accept

Rp2d
1 : (s ∈ 111.222.1.1)→ return

Rp2d
2 : accept

Let us now consider the same rules specified in the syntax of NetFilter. The first
two rules create a chain called “private-to-internet” (or p2i for short) and a chain
called “private-to-dmz” (or p2d for short). The third rule corresponds to the posi-
tive inclusion condition for the first general case (this way, when a given packet will
match this rule, the decision is to jump to the chain p2i and check the negative ex-
clusion conditions). Similarly, the fourth rule corresponds to the positive inclusion
condition for the second general case. We shall observe that in order to deploy this
example over a firewall based on Netfilter we should first verify whether its version
of IPTables has been patched to properly manage ranges. We must also correctly
define in the final IPTables script those variables such as $PRIVATE, $DMZ, etc.

iptables -N p2i
iptables -N p2d

iptables -A FORWARD -s $PRIVATE -p tcp –dport 80 -j p2i
iptables -A FORWARD -s $PRIVATE -d $DMZ -p tcp –dport 80 -j p2d
iptables -A FORWARD -j DROP

iptables -A p2i -s $INTERF_FIREWALL -j RETURN
iptables -A p2i -s $ADMIN -j RETURN
iptables -A p2i -d $CORPORATE -j RETURN
iptables -A p2i -j ACCEPT

iptables -A p2d -s $INTERF_FIREWALL -j DROP
iptables -A p2d -j ACCEPT

The main advantages of this strategy (i.e., partial ordering of rules) are threefold.
First, it allows a complete separation between exceptions and general rules; second,
the ordering of general rules is no longer relevant; and third, the insertion and elim-
ination of both general rules and exception is very simple. We consider, moreover,
that a proper reorganization of rules from a total order strategy to a partial order one
may also help us to improve not only the handling of exception, but also the fire-
wall’s performance on high-speed networks [16, 12]. In [16], on the one hand, the
authors propose a refinement process of rules which generates a decision-like tree

Management of Exceptions on Access Control Policies 9

implemented through the chain mechanism of IPTables. Their approach basically re-
organizes the set of configuration rules into an improved setup, in order to obtain a
much flatter design, i.e., a new set of configuration rules, where the number of rules
not only decreases but also leads to a more efficient packet matching process. In [12],
on the other hand, the authors also propose a reorganization of rules in order to bet-
ter deploy the final configuration. Nevertheless, both authors in [16] and [12] do not
seem to address the handling of exceptions, neither expressiveness aspects of their
configuration language – that seems to rely upon partial expressiveness languages.

3 Use of Full Expressiveness

Notice that the solutions above overviewed are always based on partial expressive-
ness, i.e., they implement security policies by means of security rules whose condi-
tion attributes are mainly composed of either positive (e.g., A) or negative (e.g., ¬A)
statements, but they do not allow us to combine both positive and negative statements
(e.g., A ∧ ¬B) for a single attribute at the same time. Although we have seen in the
previous section that these languages may allow us to specify any possible security
policy, they can can lead to very complex configurations when dealing with the man-
agement of exceptions. However, the use of both negative and positive statements
for each condition attribute may allow us to specify filtering rules in a more efficient
way. The use of a structured SQL-like language [9], for example, will allow us to
manage the handling of exceptions in the form R1 : (s ∈ (A ∧ ¬ B)) → accept
through the use of queries like the following ones:

select decision
from firewall
where (s ∈ A) ∧ (s /∈ B)

select decision from firewall where (s ∈ A)
minus
select decision from firewall where (s ∈ B)

However, these kind of languages are not currently being used for the config-
uration of firewalls or similar devices – at least not for managing exceptions on
access control policies, as defined in this paper. We consider that they will allow
security officers to deploy the security policies in a more efficient manner, as well
as to properly manage the handling of exceptions on access control policies. Let us
for example assume that the configuration language we have been using along the
examples of this paper allows us the combination of either positive (e.g., A) and neg-
ative (e.g., ¬A) statements for each attribute of a single filtering rule. For the sake
of simplicity, let us just assume the use of a 2-tuple for specifying both positive and
negative values of each attribute (e.g., Ri : (s ∈ (A ∧ ¬ B)) → accept becomes
Ri : (s[+] ∈ A ∧ s[−] ∈ B) → accept). Let us also assume that both positive
and negative values are initialized to ∅ by default. Let us finally assume that we
rewrite the matching algorithm implemented in our hypothetical firewall FW1 into
Algorithm 1. In this case, we can easily deploy the first motivation example based
on Figure 1(b)’s setup, i.e., “All the hosts in (Private ∧ ¬Admin ∧ ¬Interf-fw) are
allowed to access web resources on (Internet ∧ ¬Corporate)”, as follows:

10 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

Algorithm 1: MatchingAlgorithm
input : (1) firewall’s filtering rules: r1 . . . rn;

(2) firewall’s default policy: policy;
(3) packet: p

output: decision
decision← policy;1
H ← GetPacketHeaders (p);2
/* Let ri = (Ai

1[+] ∈ V
+
1) ∧ (Ai

1[−] ∈ V
−
1) · · · (Ai

p[+] ∈ V +
p) ∧ (Ai

p[−] ∈ V−p) → di, */
/* where Ai

1..p[+] and Ai
1..p[−] are, respectively, the set of positive and negative */

/* attribute conditions of rule ri; and V
+
1..p and V

−
1..p are, respectively, the set */

/* of positive and negative attribute values of rule ri; */
for i← 1 to n do3

if (H1 ∩ V +
1 6= ∅) ∧ (H1 ∩ V −1 = ∅) · · · (Hp ∩ V +

p 6= ∅) ∧ (Hp ∩ V −p = ∅) then4
decision← di;5
break; /* Leave the loop */6

return decision;7

R1 : (s[+] ∈ 111.222.1.0/24 ∧ s[−] ∈ {[111.222.1.13, 111.222.1.25] \
∪ 111.222.1.1} ∧ d[+] ∈ any ∧ d[−] ∈ 111.222.0.0/16 ∧ p[+] = tcp \
∧ dport[+] = 80)→ accept

R2 : deny;

Regarding the second motivation example, i.e., “(1) All the hosts in (Private
∧¬Admin∧¬Interf-fw) are allowed to access web resources on (Internet∧¬Corpo-
rate); (2) All the hosts in (Private ∧ ¬Interf-fw) are allowed to access web resources
on the zone DMZ”, we can now properly specify the resulting set of rules as follows:

R1 : (s[+] ∈ 111.222.1.0/24 ∧ s[−] ∈ {[111.222.1.13, 111.222.1.25] \
∪ 111.222.1.1} ∧ d[+] ∈ any ∧ d[−] ∈ 111.222.3.0/24 ∧ p[+] = tcp \
∧ dport[+] ∈ 80)→ accept

R2 : (s[+] ∈ 111.222.1.0/24 ∧ s[−] ∈ 111.222.1.1} ∧ d[+] ∈ 111.222.2.0/24 \
∧ p[+] = tcp ∧ dport[+] ∈ 80)→ accept

R3 : deny;

As we can observe, the use of a language based on both positive and negative
statements, when specifying the condition attributes of the security rules of a fire-
wall, allows us a more efficient deployment of policies, even using fewer rules. We
therefore consider that the little modification we must perform to improve the expres-
siveness of current firewall configuration languages may allow us to better afford the
managing of exceptions on network access control policies. To verify such an as-
sumption, we implemented a proof-of-concept by extending the matching algorithm
of IPTables through a Netfilter extension. Due to space limitation, we do not cover
in the paper this first proof-of-concept. A report regarding its implementation and
performance is provided in the appendix.

Management of Exceptions on Access Control Policies 11

4 Related Work

To our knowledge, very little research has been done on the use of full expressiveness
languages for the management of firewall configuration as we address in this paper.
In [13], for instance, a SQL-like query language for firewalls, called Structured Fire-
wall Query Language is proposed. The authors do not seem to address, however,
whether such a language can be used for examining incoming and outgoing traffic,
neither to accept nor discard such traffic. The language seems to only be used for the
understanding and analysis of firewall’s functionality and behavior, rather than be
used to perform packet matching or for expressiveness improvement purposes. Sim-
ilarly, the authors in [14] propose a firewall analysis tool for the management and
testing of global firewall policies through a query-like language. However, the ex-
pressiveness power of such a language is very limited (just four condition attributes
are allowed), and we doubt it may be useful to address our motivation problem.

Some other approaches for the use of formal languages to address the design and
creation of firewall rules have been proposed in [5, 8, 3]. However, those approaches
aim at specifying and deploying a global security policy through a refinement process
that automatically generates the configuration rules of a firewall from a high level
language. Thus, the problem of managing exceptions is handled in those works at a
high level, rather than a concrete level, and so, the proper configuration once solved
the managing issues shall be implemented through one of the strategies already dis-
cussed in Section 2. Finally, some proposals for the reorganization of filtering rules
have been presented in [16, 12]. However, and as we already pointed out in Section
2, those approaches do not seem to address the handling of exceptions, neither ex-
pressiveness aspects of their configuration languages. Their reordering process aim
at simply improve the firewall’s performance on high speed networks, rather than to
offer an easier way to manage the exclusion of condition attributes.

5 Conclusions

In this paper we have studied current strategies in order to manage and deploy pol-
icy exceptions when configuring network security components, such as firewalls and
filtering routers. As we have discussed, those components are still being configured
by security officers in a manual fashion through partial expresssiveness based lan-
guages. We have also discussed how the use of these languages can lead to very com-
plex configurations when dealing with exclusions of general rules that should always
apply. We finally pointed out to the necessity of full expressiveness for combining
both negative and positive conditions on firewall languages in order to improve this
management of exceptions on access control policies. As we have seen, the simple
modification of a general packet matching algorithm can allow us to perform a more
efficient deployment of policies by using almost always fewer rules.

As work in progress, we are actually evaluating the implementation of the strat-
egy presented in this paper over NetFilter-based firewalls. For the moment, we have
slightly modified its matching process according to the algorithm shown in Section 3,

12 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

through the rewriting of a new matching process for IPTables. This first proof-of-
concept demonstrates the practicability of our approach. However, we must conduct
more experiments to study the real impact on the performance of Netfilter through
real scenarios when using our proposal. We plan to address these evaluations and
report the results in a forthcoming paper.

References

1. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Analysis of Policy Anomalies
on Distributed Network Security Setups. In 11th European Symposium On Research In
Computer Security (Esorics 2006), pp. 496–511, Hamburg, Germany, 2006.

2. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Towards Filtering and Alerting
Rule Rewriting on Single-Component Policies. In Intl. Conference on Computer Safety,
Reliability, and Security (Safecomp 2006), pp. 182–194, Gdansk, Poland, 2006.

3. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Aggregating and Deploying Net-
work Access Control Policies. In Symposium on Frontiers in Availability, Reliability and
Security (FARES), 2nd International Conference on Availability, Reliability and Security
(ARES 2007), Vienna, Austria, 2007.

4. Alfaro, J. G., Cuppens-Boulahia, N., and Cuppens, F. Complete Analysis of Configura-
tion Rules to Guarantee Reliable Network Security Policies In International Journal of
Information Security, Springer, 7(2):103-122, April 2008.

5. Bartal, Y., Mayer, A., Nissim, K., Wool, A. Firmato: A novel firewall management toolkit
ACM Transactions on Computer Systems (TOCS), 22(4):381–420, 2004.

6. Cuppens, F., Cuppens-Boulahia, N., and Alfaro, J. G. Detection and Removal of Fire-
wall Misconfiguration. In Intl. Conference on Communication, Network and Information
Security (CNIS05), pp. 154–162, 2005.

7. Cuppens, F., Cuppens-Boulahia, N., and Alfaro, J. G. Misconfiguration Management
of Network Security Components. In 7th Intl. Symposium on System and Information
Security, Sao Paulo, Brazil, 2005.

8. Cuppens, F., Cuppens-Boulahia, N., Sans, T. and Miege, A. A formal approach to specify
and deploy a network security policy. In 2nd Workshop on Formal Aspects in Security
and Trust, pp. 203–218, 2004.

9. Date, C. J. A guide to the SQL standard. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1989.

10. Gabillon, A. A formal access control model for XML databases. Lecture notes in com-
puter science, 3674, pp. 86-103, February 2005.

11. Godik, S., Moses, T., and et al. eXtensible Access Control Markup Language (XACML)
Version 2. Standard, OASIS. February 2005.

12. Hamed, H. and Al-Shaer, E. On autonomic optimization of firewall policy organization,
Journal of High Speed Networks, 15(3):209–227, 2006.

13. Liu, A. X., Gouda, M. G., Ma, H. H., and Ngu, A. H. Firewall Queries. In Proceedings
of the 8th International Conference on Principles of Distributed Systems (OPODIS-04),
pp. 197–212, 2004.

14. Mayer, A., Wool, A., Ziskind, E. Fang: A firewall analysis engine. Security and Privacy
Proceedings, pp. 177–187, 2000.

15. Paul, O., Laurent, M., and Gombault, S. A full bandwidth ATM Firewall. In Proceedings
of the 6th European Symposium on Research in Computer Security (ESORICS 2000), pp.
206–221, 2000.

Management of Exceptions on Access Control Policies 13

16. Podey, B., Kessler, T., and Melzer, H.D. Network Packet Filter Design and Performance.
Information Networking, Lecture notes in computer science, 2662, pp. 803–816, 2003.

14 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

APPENDIX 1: IPTABLES FEX

We developed our matching strategy as a Netfilter
extension (cf. http://www.netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO.html).

Extending iptables involved two parts:

(1) extension of kernel’s code, by writing a new module
(cf. fex-kernel-src/linux/net/ipv4/netfilter/ipt_fex.c)

(2) extension of user space’s program iptables, by writing a
 new shared library.

We performed an initial evaluation of our first prototype and experienced that the use of the
new matching strategy decreases the firewall’s performance (cf. Figure 1).

The reason for what the performance seems to decrease is related to the evaluation of
those options associated with explicit matches (cf.
http://iptables-tutorial.frozentux.net/chunkyhtml/x2702.html) of Netfilter.

Looking at the function ipt_do_table of netfilter
(cf. http://lxr.linux.no/source/net/ipv4/netfilter/ip_tables.c#L217)
we can notice that netfilter analyzes all the rules of the selected table from
a top-down scope where:

(1) it first analyzes generic matches, i.e., it
first analyzes, through function ip_packet_match,
(cf. http://lxr.linux.no/source/net/ipv4/netfilter/ip_tables.c#L85),
the following options (cf. http://iptables-tutorial.frozentux.net/chunkyhtml/c2264.html):

-p, --protocol
-s, --src, --source
-d, --dst, --destination
-i, --in-interface
-o, --out-interface
-f, --fragment

(2) Then, through the macro IPT_MATCH_ITERATE
(cf. http://lxr.linux.no/source/include/linux/netfilter_ipv4/ip_tables.h#L229)
it analyzes the rest of matches, i.e., first implicit matches
(cf. http://iptables-tutorial.frozentux.net/chunkyhtml/x2436.html):

TCP matches:
 --sport, --source-port
 --dport, --destination-port
 --tcp-flags
 --syn
 --tcp-option

UDP matches:
 --sport, --source-port
 --dport, --destination-port

ICMP matches:
 --icmp-type

and, whether all the previous matches were successfully
executed, then it analyzes those explicit matches
(cf. http://iptables-tutorial.frozentux.net/chunkyhtml/x2702.html),
i.e., matches registered by extended modules through function
ipt_register_match
(cf. http://lxr.linux.no/source/include/linux/netfilter_ipv4/ip_tables.h#L277)
and specified from the user space by using the option -m (such our extended match
specified by using -m fex), such as:

-m length
-m limit
-m mac
-m multiport
-m owner
...

Management of Exceptions on Access Control Policies 15

The pseudocode for that process should be the following:

foreach packet{

 foreach rule in related table{

 foreach match in generic-matches{

 if match() returns 0 then exit();

 }

 foreach match in implicit-explicit-matches{

 if match() returns 0 then exit();

 }

 jump_to_rule_target();

 }

}

where:

-- match()
(http://lxr.linux.no/source/include/linux/netfilter_ipv4/ip_tables.h#L240)

-- jump_to_rule_target()
(http://lxr.linux.no/source/net/ipv4/netfilter/ip_tables.c#L271)

So, to conclude, we consider that the decrease of performance when using our extended match
option is due to the internal evaluation process of netfilter, which evaluates each match of
each rule in a consecutive manner, i.e., sequentially, rather than the processing time
introduced by our extended matching functions.

16 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

APPENDIX 2: EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

th
ro

u
g
h
p
u
t

 (
M

b
it
/s

e
c
)

number of rules

IPTABLES PERFORMANCE
Frame size: 65535 bytes

rules type 1
rules type 2

Figure 1: Throughtput evaluation.

– Rules type 2:

$>iptables -A OUTPUT -s xxx.xxx.xxx.xxx/xx -d yyy.yyy.yyy.yyy/yy -j DROP

– Rules type 1:

$>iptables -A OUTPUT −−m extended −−s[+] www.www.www.www-www.www.www.www \
−−s[-] xxx.xxx.xxx.xxx-xxx.xxx.xxx.xxx \
−−d[+] yyy.yyy.yyy.yyy-yyy.yyy.yyy.yyy \
−−d[-] zzz.zzz.zzz.zzz-zzz.zzz.zzz.zzz \
-j DROP

Management of Exceptions on Access Control Policies 17

APPENDIX 3: CODE

From: fex-kernel-src/linux/net/ipv4/netfilter/ipt_fex.c

#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <linux/netfilter_ipv4/ip_tables.h>
#include <linux/netfilter_ipv4/ipt_fex.h>

static int
match(const struct sk_buff *skb,
 const struct net_device *in,
 const struct net_device *out,
 const void *matchinfo,
 int offset, int *hotdrop){
 const struct ipt_fex_info *info = matchinfo;
 const struct iphdr *iph = skb->nh.iph;

 if (info->flags & FEX_SRC) {
 if (((ntohl(iph->saddr) < ntohl(info->src.min_ip))
 || (ntohl(iph->saddr) > ntohl(info->src.max_ip)))){
 return 0;
 }
 }
 if (info->flags & FEX_DST) {
 if (((ntohl(iph->daddr) < ntohl(info->dst.min_ip))
 || (ntohl(iph->daddr) > ntohl(info->dst.max_ip)))){
 return 0;
 }
 }
 if (info->flags & FEX_NSRC) {
 if (((ntohl(iph->saddr) >= ntohl(info->nsrc.min_ip))
 && (ntohl(iph->saddr) <= ntohl(info->nsrc.max_ip)))){
 return 0;
 }
 }
 if (info->flags & FEX_NDST) {
 if (((ntohl(iph->daddr) >= ntohl(info->ndst.min_ip))
 && (ntohl(iph->daddr) <= ntohl(info->ndst.max_ip)))){
 return 0;
 }
 }
 return 1;
}

static int check(const char *tablename,
 const struct ipt_ip *ip,
 void *matchinfo,
 unsigned int matchsize,
 unsigned int hook_mask){

 /* verify size */
 if (matchsize != IPT_ALIGN(sizeof(struct ipt_fex_info)))
 return 0;
 return 1;
}

static struct ipt_match fex_match ={
 .list = { NULL, NULL },
 .name = "fex",
 .match = &match,
 .checkentry = &check,
 .destroy = NULL,
 .me = THIS_MODULE
};

static int __init init(void){
 return ipt_register_match(&fex_match);
}

static void __exit fini(void){
 ipt_unregister_match(&fex_match);
}

module_init(init);
module_exit(fini);

18 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

From: fex-kernel-src/linux/include/linux/netfilter_ipv4/ipt_fex.h

#ifndef _IPT_FEX_H
#define _IPT_FEX_H

#define FEX_SRC 0x01 /* Match source IP address */
#define FEX_DST 0x02 /* Match destination IP address */
#define FEX_NSRC 0x10 /* Shouldn't match source IP address */
#define FEX_NDST 0x20 /* Shouldn't match destination IP address */

struct ipt_fex {
 /* Inclusive: network order. */
 u_int32_t min_ip, max_ip;
};

struct ipt_fex_info
{
 struct ipt_fex src;
 struct ipt_fex dst;
 struct ipt_fex nsrc;
 struct ipt_fex ndst;

 /* Flags from above */
 u_int8_t flags;
};

#endif /* _IPT_FEX_H */

Management of Exceptions on Access Control Policies 19

From: fex-kernel-src/linux/net/ipv4/netfilter/ipt_fex.c

#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <linux/netfilter_ipv4/ip_tables.h>
#include <linux/netfilter_ipv4/ipt_fex.h>

MODULE_LICENSE("GPL");

static int
match(const struct sk_buff *skb,
 const struct net_device *in,
 const struct net_device *out,
 const void *matchinfo,
 int offset, int *hotdrop)
{
 const struct ipt_fex_info *info = matchinfo;
 const struct iphdr *iph = skb->nh.iph;

 if (info->flags & FEX_SRC) {
 if (((ntohl(iph->saddr) < ntohl(info->src.min_ip))
 || (ntohl(iph->saddr) > ntohl(info->src.max_ip)))){
 return 0;
 }
 }
 if (info->flags & FEX_DST) {
 if (((ntohl(iph->daddr) < ntohl(info->dst.min_ip))
 || (ntohl(iph->daddr) > ntohl(info->dst.max_ip)))){
 return 0;
 }
 }
 if (info->flags & FEX_NSRC) {
 if (((ntohl(iph->saddr) >= ntohl(info->nsrc.min_ip))
 && (ntohl(iph->saddr) <= ntohl(info->nsrc.max_ip)))){
 return 0;
 }
 }
 if (info->flags & FEX_NDST) {
 if (((ntohl(iph->daddr) >= ntohl(info->ndst.min_ip))
 && (ntohl(iph->daddr) <= ntohl(info->ndst.max_ip)))){
 return 0;
 }
 }
 return 1;
}

static int check(const char *tablename,
 const struct ipt_ip *ip,
 void *matchinfo,
 unsigned int matchsize,
 unsigned int hook_mask)
{

 /* verify size */
 if (matchsize != IPT_ALIGN(sizeof(struct ipt_fex_info)))
 return 0;

 return 1;
}

static struct ipt_match fex_match =
{
 .list = { NULL, NULL },
 .name = "fex",
 .match = &match,
 .checkentry = &check,
 .destroy = NULL,
 .me = THIS_MODULE
};

static int __init init(void)
{
 return ipt_register_match(&fex_match);
}

static void __exit fini(void)
{
 ipt_unregister_match(&fex_match);
}

module_init(init);
module_exit(fini);

20 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

From: fex-libipt_fex-src/extensions/libipt_fex.c

#include <stdio.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <getopt.h>

#include <iptables.h>
#include <linux/netfilter_ipv4/ipt_fex.h>

/* Function which prints out usage message. */
static void
help(void)
{
 printf(
"fex match v%s options:\n"
"--s[+] ip-ip Match source IP in the specified range\n"
"--d[+] ip-ip Match destination IP in the specified range\n"
"--s[-] ip-ip Shouldn't match source IP in the specified range\n"
"--d[-] ip-ip Shouldn't match destination IP in the specified range\n"
"\n",
IPTABLES_VERSION);
}

static struct option opts[] = {
 { "s[+]", 1, 0, '1' },
 { "d[+]", 1, 0, '2' },
 { "s[-]", 1, 0, '3' },
 { "d[-]", 1, 0, '4' },
 {0}
};

static void
parse_fex(char *arg, struct ipt_fex *range)
{
 char *dash;
 struct in_addr *ip;

 dash = strchr(arg, '-');
 if (dash)
 *dash = '\0';

 ip = dotted_to_addr(arg);
 if (!ip)
 exit_error(PARAMETER_PROBLEM, "fex match: Bad IP address `%s'\n",
 arg);
 range->min_ip = ip->s_addr;

 if (dash) {
 ip = dotted_to_addr(dash+1);
 if (!ip)
 exit_error(PARAMETER_PROBLEM, "fex match: Bad IP address `%s'\n",
 dash+1);
 range->max_ip = ip->s_addr;
 } else
 range->max_ip = range->min_ip;
}

/* Function which parses command options; returns true if it
 ate an option */
static int
parse(int c, char **argv, int invert, unsigned int *flags,
 const struct ipt_entry *entry,
 unsigned int *nfcache,
 struct ipt_entry_match **match)
{
 struct ipt_fex_info *info = (struct ipt_fex_info *)(*match)->data;

 switch (c) {
 case '1':
 if (*flags & FEX_SRC)
 exit_error(PARAMETER_PROBLEM,
 "fex match: Only use --s[+] ONCE!");
 *flags |= FEX_SRC;

 info->flags |= FEX_SRC;
 parse_fex(optarg, &info->src);

 break;

 case '2':
 if (*flags & FEX_DST)
 exit_error(PARAMETER_PROBLEM,
 "fex match: Only use --d[+] ONCE!");
 *flags |= FEX_DST;

Management of Exceptions on Access Control Policies 21

 info->flags |= FEX_DST;
 parse_fex(optarg, &info->dst);

 break;

 case '3':
 if (*flags & FEX_NSRC)
 exit_error(PARAMETER_PROBLEM,
 "fex match: Only use --s[-] ONCE!");
 *flags |= FEX_NSRC;

 info->flags |= FEX_NSRC;
 parse_fex(optarg, &info->nsrc);

 break;

 case '4':
 if (*flags & FEX_NDST)
 exit_error(PARAMETER_PROBLEM,
 "fex match: Only use --d[-] ONCE!");
 *flags |= FEX_NDST;

 info->flags |= FEX_NDST;
 parse_fex(optarg, &info->ndst);

 break;

 default:
 return 0;
 }
 return 1;
}

/* Final check; must have specified --s[+] or --s[-] or --d[+] or --d[-] */
static void
final_check(unsigned int flags)
{
 if (!flags)
 exit_error(PARAMETER_PROBLEM,
 "fex match: You must specify `--s[+]' or `--s[-]' or `--d[+]' or `--
d[-]'");
}

static void
print_fex(const struct ipt_fex *range)
{
 const unsigned char *byte_min, *byte_max;

 byte_min = (const unsigned char *) &(range->min_ip);
 byte_max = (const unsigned char *) &(range->max_ip);
 printf("%d.%d.%d.%d-%d.%d.%d.%d ",
 byte_min[0], byte_min[1], byte_min[2], byte_min[3],
 byte_max[0], byte_max[1], byte_max[2], byte_max[3]);
}

/* Prints out the info. */
static void
print(const struct ipt_ip *ip,
 const struct ipt_entry_match *match,
 int numeric)
{
 struct ipt_fex_info *info = (struct ipt_fex_info *)match->data;

 if (info->flags & FEX_SRC) {
 printf("s[+]=");
 print_fex(&info->src);
 }
 if (info->flags & FEX_NSRC) {
 printf("s[-]=");
 print_fex(&info->nsrc);
 }
 if (info->flags & FEX_DST) {
 printf("d[+]=");
 print_fex(&info->dst);
 }
 if (info->flags & FEX_NDST) {
 printf("d[-]=");
 print_fex(&info->ndst);
 }
}

22 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

/* Saves the union ipt_info in parsable form to stdout. */
static void
save(const struct ipt_ip *ip, const struct ipt_entry_match *match)
{
 struct ipt_fex_info *info = (struct ipt_fex_info *)match->data;

 if (info->flags & FEX_SRC) {
 printf("--s[+] ");
 print_fex(&info->src);
 if (info->flags & FEX_NSRC)
 fputc(' ', stdout);
 }
 if (info->flags & FEX_NSRC) {
 printf("--s[-] ");
 print_fex(&info->nsrc);
 if (info->flags & FEX_DST)
 fputc(' ', stdout);
 }
 if (info->flags & FEX_DST) {
 printf("--d[+] ");
 print_fex(&info->dst);
 if (info->flags & FEX_NDST)
 fputc(' ', stdout);
 }
 if (info->flags & FEX_NDST) {
 printf("--d[-] ");
 print_fex(&info->ndst);
 }
}

static struct iptables_match fex = {
 .next = NULL,
 .name = "fex",
 .version = IPTABLES_VERSION,
 .size = IPT_ALIGN(sizeof(struct ipt_fex_info)),
 .userspacesize = IPT_ALIGN(sizeof(struct ipt_fex_info)),
 .help = &help,
 .parse = &parse,
 .final_check = &final_check,
 .print = &print,
 .save = &save,
 .extra_opts = opts
};

void _init(void)
{
 register_match(&fex);
}

Management of Exceptions on Access Control Policies 23

From: http://lxr.linux.no/source/net/ipv4/netfilter/ip_tables.c#L83

83 /* Returns whether matches rule or not. */
84 static inline int
85 ip_packet_match(const struct iphdr *ip,
86 const char *indev,
87 const char *outdev,
88 const struct ipt_ip *ipinfo,
89 int isfrag)
90 {
91 size_t i;
92 unsigned long ret;
93
94 #define FWINV(bool,invflg) ((bool) ^ !!(ipinfo->invflags & invflg))
95
96 if (FWINV((ip->saddr&ipinfo->smsk.s_addr) != ipinfo->src.s_addr,
97 IPT_INV_SRCIP)
98 || FWINV((ip->daddr&ipinfo->dmsk.s_addr) != ipinfo->dst.s_addr,
99 IPT_INV_DSTIP)) {
100 dprintf("Source or dest mismatch.\n");
101
102 dprintf("SRC: %u.%u.%u.%u. Mask: %u.%u.%u.%u. Target: %u.%u.%u.%u.%s\n",
103 NIPQUAD(ip->saddr),
104 NIPQUAD(ipinfo->smsk.s_addr),
105 NIPQUAD(ipinfo->src.s_addr),
106 ipinfo->invflags & IPT_INV_SRCIP ? " (INV)" : "");
107 dprintf("DST: %u.%u.%u.%u Mask: %u.%u.%u.%u Target: %u.%u.%u.%u.%s\n",
108 NIPQUAD(ip->daddr),
109 NIPQUAD(ipinfo->dmsk.s_addr),
110 NIPQUAD(ipinfo->dst.s_addr),
111 ipinfo->invflags & IPT_INV_DSTIP ? " (INV)" : "");
112 return 0;
113 }
114
115 /* Look for ifname matches; this should unroll nicely. */
116 for (i = 0, ret = 0; i < IFNAMSIZ/sizeof(unsigned long); i++) {
117 ret |= (((const unsigned long *)indev)[i]
118 ^ ((const unsigned long *)ipinfo->iniface)[i])
119 & ((const unsigned long *)ipinfo->iniface_mask)[i];
120 }
121
122 if (FWINV(ret != 0, IPT_INV_VIA_IN)) {
123 dprintf("VIA in mismatch (%s vs %s).%s\n",
124 indev, ipinfo->iniface,
125 ipinfo->invflags&IPT_INV_VIA_IN ?" (INV)":"");
126 return 0;
127 }
128
129 for (i = 0, ret = 0; i < IFNAMSIZ/sizeof(unsigned long); i++) {
130 ret |= (((const unsigned long *)outdev)[i]
131 ^ ((const unsigned long *)ipinfo->outiface)[i])
132 & ((const unsigned long *)ipinfo->outiface_mask)[i];
133 }
134
135 if (FWINV(ret != 0, IPT_INV_VIA_OUT)) {
136 dprintf("VIA out mismatch (%s vs %s).%s\n",
137 outdev, ipinfo->outiface,
138 ipinfo->invflags&IPT_INV_VIA_OUT ?" (INV)":"");
139 return 0;
140 }
141
142 /* Check specific protocol */
143 if (ipinfo->proto
144 && FWINV(ip->protocol != ipinfo->proto, IPT_INV_PROTO)) {
145 dprintf("Packet protocol %hi does not match %hi.%s\n",
146 ip->protocol, ipinfo->proto,
147 ipinfo->invflags&IPT_INV_PROTO ? " (INV)":"");
148 return 0;
149 }
150
151 /* If we have a fragment rule but the packet is not a fragment
152 * then we return zero */
153 if (FWINV((ipinfo->flags&IPT_F_FRAG) && !isfrag, IPT_INV_FRAG)) {
154 dprintf("Fragment rule but not fragment.%s\n",
155 ipinfo->invflags & IPT_INV_FRAG ? " (INV)" : "");
156 return 0;
157 }
158
159 return 1;
160 }

24 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

From: http://lxr.linux.no/source/include/linux/netfilter_ipv4/ip_tables.h#L229

229 #define IPT_MATCH_ITERATE(e, fn, args...) \
230 ({ \
231 unsigned int __i; \
232 int __ret = 0; \
233 struct ipt_entry_match *__match; \
234 \
235 for (__i = sizeof(struct ipt_entry); \
236 __i < (e)->target_offset; \
237 __i += __match->u.match_size) { \
238 __match = (void *)(e) + __i; \
239 \

240 __ret = fn(__match , ## args); \

241 if (__ret != 0) \
242 break; \
243 } \
244 __ret; \
245 })

247 /* fn returns 0 to continue iteration */
248 #define IPT_ENTRY_ITERATE(entries, size, fn, args...) \
249 ({ \
250 unsigned int __i; \
251 int __ret = 0; \
252 struct ipt_entry *__entry; \
253 \
254 for (__i = 0; __i < (size); __i += __entry->next_offset) { \
255 __entry = (void *)(entries) + __i; \
256 \
257 __ret = fn(__entry , ## args); \
258 if (__ret != 0) \
259 break; \
260 } \
261 __ret; \
262 })

277 #define ipt_register_match(mtch) \
278 ({ (mtch)->family = AF_INET; \
279 xt_register_match(mtch); })
280 #define ipt_unregister_match(mtch) xt_unregister_match(mtch)

Management of Exceptions on Access Control Policies 25

From: http://lxr.linux.no/source/net/ipv4/netfilter/ip_tables.c#L215

215 /* Returns one of the generic firewall policies, like NF_ACCEPT. */
216 unsigned int
217 ipt_do_table(struct sk_buff **pskb,
218 unsigned int hook,
219 const struct net_device *in,
220 const struct net_device *out,
221 struct ipt_table *table,
222 void *userdata)
223 {
224 static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long))));
225 u_int16_t offset;
226 struct iphdr *ip;
227 u_int16_t datalen;
228 int hotdrop = 0;
229 /* Initializing verdict to NF_DROP keeps gcc happy. */
230 unsigned int verdict = NF_DROP;
231 const char *indev, *outdev;
232 void *table_base;
233 struct ipt_entry *e, *back;
234 struct xt_table_info *private;
235
236 /* Initialization */
237 ip = (*pskb)->nh.iph;
238 datalen = (*pskb)->len - ip->ihl * 4;
239 indev = in ? in->name : nulldevname;
240 outdev = out ? out->name : nulldevname;
241 /* We handle fragments by dealing with the first fragment as
242 * if it was a normal packet. All other fragments are treated
243 * normally, except that they will NEVER match rules that ask
244 * things we don't know, ie. tcp syn flag or ports). If the
245 * rule is also a fragment-specific rule, non-fragments won't
246 * match it. */
247 offset = ntohs(ip->frag_off) & IP_OFFSET;
248
249 read_lock_bh(&table->lock);
250 IP_NF_ASSERT(table->valid_hooks & (1 << hook));
251 private = table->private;
252 table_base = (void *)private->entries[smp_processor_id()];
253 e = get_entry(table_base, private->hook_entry[hook]);
254
255 /* For return from builtin chain */
256 back = get_entry(table_base, private->underflow[hook]);
257
258 do {
259 IP_NF_ASSERT(e);
260 IP_NF_ASSERT(back);
261 if (ip_packet_match(ip, indev, outdev, &e->ip, offset)) {
262 struct ipt_entry_target *t;
263
264 if (IPT_MATCH_ITERATE(e, do_match,
265 *pskb, in, out,
266 offset, &hotdrop) != 0)
267 goto no_match;
268
269 ADD_COUNTER(e->counters, ntohs(ip->tot_len), 1);
270

271 t = ipt_get_target(e);

272 IP_NF_ASSERT(t->u.kernel.target);
273 /* Standard target? */
274 if (!t->u.kernel.target->target) {
275 int v;
276
277 v = ((struct ipt_standard_target *)t)->verdict;
278 if (v < 0) {
279 /* Pop from stack? */
280 if (v != IPT_RETURN) {
281 verdict = (unsigned)(-v) - 1;
282 break;
283 }
284 e = back;
285 back = get_entry(table_base,
286 back->comefrom);
287 continue;
288 }

26 J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia

289 if (table_base + v != (void *)e + e->next_offset
290 && !(e->ip.flags & IPT_F_GOTO)) {
291 /* Save old back ptr in next entry */
292 struct ipt_entry *next
293 = (void *)e + e->next_offset;
294 next->comefrom
295 = (void *)back - table_base;
296 /* set back pointer to next entry */
297 back = next;
298 }
299
300 e = get_entry(table_base, v);
301 } else {
302 /* Targets which reenter must return
303 abs. verdicts */
304 #ifdef CONFIG_NETFILTER_DEBUG
305 ((struct ipt_entry *)table_base)->comefrom
306 = 0xeeeeeeec;
307 #endif
308 verdict = t->u.kernel.target->target(pskb,
309 in, out,
310 hook,
311 t->u.kernel.target,
312 t->data,
313 userdata);
314
315 #ifdef CONFIG_NETFILTER_DEBUG
316 if (((struct ipt_entry *)table_base)->comefrom
317 != 0xeeeeeeec
318 && verdict == IPT_CONTINUE) {
319 printk("Target %s reentered!\n",
320 t->u.kernel.target->name);
321 verdict = NF_DROP;
322 }
323 ((struct ipt_entry *)table_base)->comefrom
324 = 0x57acc001;
325 #endif
326 /* Target might have changed stuff. */
327 ip = (*pskb)->nh.iph;
328 datalen = (*pskb)->len - ip->ihl * 4;
329
330 if (verdict == IPT_CONTINUE)
331 e = (void *)e + e->next_offset;
332 else
333 /* Verdict */
334 break;
335 }
336 } else {
337
338 no_match:
339 e = (void *)e + e->next_offset;
340 }
341 } while (!hotdrop);
342
343 read_unlock_bh(&table->lock);
344
345 #ifdef DEBUG_ALLOW_ALL
346 return NF_ACCEPT;
347 #else
348 if (hotdrop)
349 return NF_DROP;
350 else return verdict;
351 #endif
352 }

