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Abstract. We address the issue of formally validating the deployment
of access control security policies. We show how the use of a formal ex-
pression of the security requirements, related to a given system, ensures
the deployment of an anomaly free abstract security policy. We also de-
scribe how to develop appropriate algorithms by using a theorem proving
approach with a modeling language allowing the specification of the sys-
tem, of the link between the system and the policy, and of certain target
security properties. The result is a set of proved algorithms that consti-
tute the certified technique for a reliable security policy deployment.

1 Introduction

Security is concerned with assets protection. Securing the access to a file server,
guaranteeing a certain level of protection of a network channel, executing par-
ticular counter measures when attacks are detected, are appropriate examples
of security requirements for an information system. Such security requirements
belong to a guide usually called the access control security policy. Deploying the
policy means enforcing (i.e., configuring) those security components or mecha-
nisms so that the system behavior is the one specified by the policy. Successfully
deploying the policy depends not only on the complexity of the security require-
ments but also on the complexity of the system in terms of architecture and
security functionalities.

Specifying, deploying and managing the access control rules of an information
system are some of the major concerns of security administrators. Their task
can be simplified if automatic mechanisms are provided to distribute or update,
in short to deploy the policy in complex systems. A common approach is the
formalization of the security policy, based on an access control model and the
application of a downward process (i.e., the translation and refinement of the
formal policy requirements into concrete security device configurations). Though
PBNM (Policy Based Network Management) architectures (cf. [rfc 3198]) are
such examples, a challenging problem persists: proving the deployment process
to be correct with respect to some initial target security properties and ensuring
that no ambiguities (e.g., inconsistencies [13]) are added within this process.

In this paper we aim at establishing a formal frame for the deployment of
security policies in information systems. We formally prove the process of de-
ploying a security policy related to an information system. To do so, we require
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(1) an expressive security access control model that covers a large diversity of
security requirements, (2) a modeling language for system specification and (3) a
formal expression of security properties modeling the relationships between the
security policy and the system it was designed for. We propose a formal tech-
nique that combines the use of access control policies expressed in the OrBAC
(Organization-Based Access Control) language [1] together with specifications
based on the B-Method [2]. Our proposal avoids, moreover, the existence of
inconsistencies derived from the deployment [13].

Paper Organization — Section 2 gives the motivation of our work and some
related works. Section 3 presents the model on which we base our approach
and establishes some prerequisites necessary for our proposal. Section 4 formally
defines the link between a policy and a system, including the expression of some
security properties. Section 5 provides a discussion upon our approach.

2 Motivation and Related Work

The policy-based configuration of security devices is a cumbersome task. Man-
ual configuration is sometimes unacceptable: the security administrator’s task
becomes not only more difficult but also error-prone given the anomalies he/she
may introduce. Guaranteeing the deployment of anomaly-free configurations in
complex systems is achievable if the policy is first formalized based on an ac-
cess control model and then automatically translated into packages of rules for
each security device. This is the current approach in PBNM architectures where
the PDP, Policy Decision Point, is the intelligent entity in the system and the
PEPs, Policy Enforcement Points, enforce its decisions along with specific net-
work protocols (e.g., Netconf [rfc 4741]). Obtaining these packages of rules (i.e.,
the configurations of PEPs) is the result of the downward translation process:
the abstract policy, given the system architecture, is compiled through a set of
algorithms at the PDP level into, for example, firewall scripts and IPsec tunnel
configurations — all the way through bearing the system architecture details
(interconnections and capabilities) [19].

The correctness of these algorithms is a crucial aspect since the system config-
uration must reflect the abstract policy. One can simply design such algorithms
using imperative languages and then validate them via specific tools [18]. Imper-
ative program verification is performed in three steps: (1) the specification of a
program is first formalized by some properties based on a first order logic; (2) an
automatic process for analyzing the program extracts its semantics, i.e., a set of
equations that define the program theory in the first order logic; (3) a proof sys-
tem is finally used to prove that the program has the properties of step (1) given
the extracted data in step (2). The main concerns with such approaches are:
(a) the verification of these properties is realized at the end and not during the
algorithm implementation; (b) it is difficult to express the interesting properties:
not only those concerning the design of operations which may be seen as generic
(e.g., termination of loops or lack of side effects), but also those reflecting, in our
case, some network security aspects (e.g., no security anomalies are introduced
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during the deployment of the policies [13]). To cope with these issues, we claim
that the algorithms intended for enforcing deployment of policies have to be de-
signed with proof-based development methods, like the B-Method, to allow the
expression and verification of important properties (e.g., security properties).

Formal validation or security policy deployment has already been addressed
in the literature. The approaches in [15] and [16] seem to be the closest to ours.
Jürjens et al. propose in [15] to apply UMLsec [14] to analyze some security
mechanisms enforced with respect to a security policy. UMLsec is an extension
of UML which allows the expression of some security-related information in UML
diagrams. Stereotypes and tags are used to formulate the security requirements.
Analyzing the mechanisms means verifying whether the requirements are met
by the system design. For this purpose two models are proposed: (1) a Security
Requirements Model which includes architectural or behavioral system details
in a prescriptive manner and (2) a Concretized Model summarizing a concrete
architecture which should satisfy the security requirements. Both models ap-
pear as UMLsec diagrams. The verification is realized using the UMLsec tools
which includes several plugins that uses (1) SPIN (Simple Promela Interpreter)
for model-checking and (2) SPAAS (an automated theorem prover for first-order
logic with equality) or Prolog as theorem provers given that some UMLsec se-
quence diagrams are automatically translated to first-order formulas. Applying
the right plugin depends on the scenario, i.e., the architecture and the security
requirements. However, the approach in [15] presents some drawbacks. First, no
abstract model is employed for modeling the policy. Second, the Concretized
Model must already exist in order to automatically derive the first-order for-
mulas to be automatically proved by SPAAS. And finally, the expressions of
security properties are application-dependent: there are no generic properties
dealing with the anomalies that could exist within single- or multi-component
network security policies.

Laborde et al. present in [16] a different solution to the problem of deploying
security policies: the use of (1) Petri Nets as the language to specify the system
and (2) CTL (Computational Tree Logic) as the language to express the security
properties. Four generic system functionalities are identified and modeled as
different Petri Nets which are then interconnected in order to specify the system
(i.e., each security device is modeled by a Petri Net): channel (e.g., network
links), transformation (IPsec and NAT), filtering (to include the firewalls) and
the end-flow functionality for the hosts (the active and passive entities in the
network). The Petri Nets transitions for each PEPs (here, firewalls and IPsec
tunnels) are guards which actually represent the security rules to be enforced by
the PEP. The policy model is RBAC-based. However, no clear downward (i.e.,
refinement) approach is defined and no algorithms for selecting the right PEP
are described either. The model-checking verification is realized after manually
deploying the policy and consequently this approach can be applied to relatively
simple architectures. Besides, it is not clear whether other functionalities (e.g.,
intrusion detection performed by IDSs) can be taken into account with one of
the four functionalities.
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The research presented in [22] proposes the use of Event B specifications to
provide a link between the two levels of abstractions provided by the OrBAC
model. As further research perspectives, the authors mentioned that their models
can be reused for further developments of real infrastructures with respect to
their security policy. We consider our work as a natural continuation of such
a research line. As we did, the authors in [22] chose not to address the proof
of an OrBAC policy in terms of conflicts. The use of automatic tools (e.g.,
MotOrBAC [4]), allows us to assume that the policy is consistent and free of
anomalies. Similarly, Coq was proposed in [7] to derive OCaml algorithms for
conflict detection in firewall policies. The use of Coq as a theorem prover to derive
refinement algorithms can also be found in [21]. The authors provide a solution to
detect and remove conflicts in policies defined as tuples <permission/prohibition,
subject, read/write/execute, object>. Finally, and regarding the security policy
deployment domain, there exist in the literature several proposals. Some are more
or less RBAC-based (e.g., proposal presented in [5]), others propose different
languages for the high level policy definition. Although the efforts are significant
[10], often such languages are not generic enough [17], covering only some specific
security applications (e.g., host firewalls, system calls management); or they do
not address some key policy matters like the conflict management or the dynamic
and contextual security requirements [8].

3 Model and Notation

We propose a refinement process that guarantees anomaly-free configurations
([13]). The process derives a global policy into specific configurations for each
security component in the system. Our proposal provides the set of algorithms for
such a refinement process, and proves the correctness of the outgoing algorithms.
We briefly justify in the sequel the choice of our formalisms. We also describe
the necessary concepts to establish the link between policies and architectures.

3.1 Choice of OrBAC and B-Method

The OrBAC [1] (Organization-Based Access Control) model is an extended
RBAC [20] access control model which provides means to specify contextual
security requirements. It allows the expression of a wide range of different re-
quirements both static and contextual. OrBAC is well-known for being a robust
language for defining complex administration tasks at the organizational level.
Existing automatic tools (e.g., MotOrBAC [4]) ease, moreover, the administra-
tion of tasks using this model.

In contrast to model checking, we choose the B-Method – a theorem prov-
ing approach – for various reasons. First, the performances of theorem-proving
tools are not influenced by system complexity. For example, we do not make
any assumption concerning the number of nodes in the architecture. Second,
the B Method eases the use of refinement paradigms. Even if B refinement does
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not necessarily mean an enhancement of system specifications (i.e., here it de-
notes the weakening of the preconditions and of the operation indeterminism
towards the implementation level), there is always the possibility of keeping a B
specification up to date. The B refinement allows the decomposition of system
specification in layers and particular B clauses (e.g., use of SEES and IMPORTS
clauses). This allows a modular system proof. New modules can be added to a B
specification and existent ones may be assumed as being already proved; there
is no need to totally reprove (i.e., recompute) the new specification. We there-
fore reuse an already proved specification. This aspect is very important as the
security functionalities may be changed in a given system. Moreover, since spec-
ifying the system is an important step in our proposal, the link with the security
policy must be established in a specific way. In this sense, the OrBAC philoso-
phy considers that the security policy must be detached by functionality and by
technology details at network level; and that changing the system architecture
(hereinafter system or network with the same meaning) has no impact in policy
definition. The same OrBAC policy may be specified for two different systems.
Finally, the specification language must ensure the previous constraint: changing
the security policy or the architecture should not trigger a new call for a total
system proof.

We consider that the B-Method is suitable to achieve these purposes: in our
approach the policy SEES the system it was designed for. The SEES clause in
the B-Method makes the assumption that the seen system is already proved (i.e.,
the INVARIANTS of the SEEING module are being proved with the assumption
that the INVARIANTS of the SEEN module are already proved). Let us notice
that in our approach, we use the terminology security property as a synonym of
correct deployment of a security policy in a system, meaning that it is achievable
whenever certain specific security properties are verified. For instance, all net-
work traffic between two network zones is protected if all traffic passes through
an IPsec tunnel with certain parameters. If an IPsec tunnel is established and
there is no IPsec tunnel anomaly [12] related to the current tunnel, the integrity
security property is consequently verified. Hence, in a B specification there is
the possibility of capturing such details at the INVARIANT clause level.

Some security requirements are dynamic or contextual. It is sometimes nec-
essary to add new security functionalities to the given system. For example,
some firewalls are upgraded with new functionalities (e.g., temporal function-
ality). Taking into account all security functionalities is out of our scope. We,
therefore, address only some basic functionalities such as packet filtering, IPsec
tunneling and signature-based Intrusion Detection. If further functionalities are
added to the specification, their semantics must be reflected in particular SETS,
CONSTANTS and consequently PROPERTIES clauses; but the main deploy-
ment algorithms should remain unaffected.

3.2 Policy and System Modeling

The starting point in deploying a security policy is a set of OrBAC abstract
rules. A first assumption is that the abstract policy is consistent: no OrBAC
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conflicting rules. This is ensured by some pertaining tools like MotOrBAC which
implements the conflict resolution described in [9].

The context definition may be related to a specific subject, action and object.
Consequently, it is necessary to instantiate the corresponding subjects, actions
and objects for each such contexts before deploying the OrBAC rules over each
PEP. The abstract OrBAC rules, Permission(org, r, a, ν, c), must be brought
to a concrete OrBAC expression [1], Is permitted(org, s, α, o, c). Even if a large
set of concrete security rules will have to be deployed, this may be the only
option if the security requirements imply only such context definitions. At this
point, we refer to the works in [22] that addressed the refinement problem: the
OrBAC abstract expression towards a concrete one and using the B-Method
(cf. Section 2). The works in [22] stopped at our stage, i.e., the link with the
system. Therefore we will make a second assumption: the OrBAC concrete rules
(i.e., Is permitted(org, s, α, o, c)) are already available and they represent the
input to our deployment process. The main entities to implement our approach
are described as follows. The “security policy” is defined as the set of rules
over the domain (Subjects × Actions × Objects × Contexts). “Subjects” and
“objects” represent active and respectively passive entities in the network. A
host in a subnetwork may be modeled as a subject in contrast to a web-server
which may be seen as an object; not only the hosts/network components but
also the clients and servers applications may be seen as subject-object entities.
The “actions” are defined as network services (e.g., http and https are actions of
the same abstract activity, web). We should also include the “contexts” in which
some rules are activated. These may be bound in hard with some functionalities.
For example, the protected context relies on IPsec functionalities and the warning
context on IDS functionality. Is permitted(s, α, o, default) is activated in the
default context only if a path from s to o exists, so the firewalls on this path
have to open some ports corresponding to the action α. Finally, the approach
also includes all those interesting “nodes” in the network (subjects and objects)
will appear as nodes in a connected graph. Those having security functionalities
are the PEPs. A PEP may also be a subject or an object.

Figure 1 depicts a sample network in which an access control policy must
be deployed. The system is modeled as a graph (cf. Figure 2). In real networks,
each link may have a real cost or weight (e.g., an overhead required to send IP
packets over the link and inversely proportional to the bandwidth of the link). A
routing protocol like the OSPF, Open Shortest Path First [rfc 2328], establishes
routes in choosing, for example, the shortest paths (i.e., the less expensive). We
choose positive integers for the link costs and we assume that IP datagrams
always follow the shortest path between two points. In such a system, the PEPs
must be enforced with the right decisions corresponding to each security rule.
For didactical reasons we take into account only permissions. One may choose to
enforce the same rule in all PEPs having the same functionalities: this is what we
call a redundancy anomaly and this is what we try to avoid. Our configuration
approach is the following: for each permission, only the interesting PEPs must
be identified and enforced. This leads us to consider an algorithm for selecting
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Fig. 1. The Real Architecture. Fig. 2. The Corresponding Graph.

the interesting PEPs: the well placed PEPs for each security rule. For example,
a rule in a default context takes into account only the firewalls on a certain
path. In a protected context, two PEPs must configure an IPsec tunnel and
all firewalls on the tunnel path must permit the establishment of the tunnel.
Regarding the warning context, the most down-stream IDS (i.e., the closest IDS
to the destination) is enough and more efficient to spoofing attacks than the
most up-stream IDS (i.e., the closest to the source).

We aim to formally implement this approach in B and go as far as possible
towards the IMPLEMENTATION level. In this manner we will capture all in-
teresting details for the security property enouncement. In the following sections
we consider the policy at concrete OrBAC level as described above. We deal with
a system where some distributed nodes have security functionalities (PEPs) and
some are either active entities (subjects) or resources (objects) or both.

4 Policy Deployment Process: Formal Specification

Not all B machines will be carried out to an IMPLEMENTATION level: the
Policy and Network (cf. Figure 4) machines should be instantiated for each sce-
nario. The data these machines manipulate does not require highly specialized
mathematical objects: only lists/sequences must be provided. But the other ma-
chines we present will have an IMPLEMENTATION structure. We describe in
detail the Policy and Network (system) machines; they will be incorporated to
our model development as a result of an IMPORTING machine: Deployment
machine which also imports other machines necessary to our process. The Path
machine will implement a tracing path algorithm necessary to select the well
placed PEPs for each security rule which are then updated by the UpdatePep
machine (cf. Figure 3).
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4.1 Policy and Network Machines

The SUBJECTS, ACTIONS and OBJECTS will represent deferred sets but we
prefer for the moment a concrete/enumerated set of CONTEXTS: default, pro-
tected, user-defined and other. The set of permissions to be deployed as well as
the matching nodes-subjects, nodes-objects may be considered as CONSTANTS.
They will be defined via some relations, more precisely functions. As already
mentioned we prefer to bind in hard a context to a security functionality; we
model this by the matching relation. Moreover, the user will be given the possi-
bility of defining other types of context activation. For instance, a certain user-
defined context may impose a hub-and-spoke tunnel configuration so the user
must be able to manually indicate the hub and the spokes (nodes in the net-
work). We model this by the context constant relation. Besides, the permissions
are progressively read in the deployment process. An abstract variable is con-
sequently necessary, the Read Permissions. All these semantics will be summed
up at PROPERTIES level.

Regarding the dynamic part of the Policy machine: the Read Permissions is
initialized with the empty set and some simple operations are necessary (1) to
read and return a permission (read permission) and (2) to read the attributes
(subject, object, action and context) of a permission (read data in permission).
The INVARIANT is a simple one, it checks the variable type. Other inquiry op-
erations (no read permission, no more permissions) simply return true or false.

Concerning the Network machine, we can envision the following two options.
We can use an abstract machine encapsulating a node, say the Node machine. It
should contain at least the node functionalities as a deferred SET. Node could
be imported in our project by renaming: the project will therefore contain as
many renamed Node machines as the existent ones in the real network. In the
same project, a different SEEN machine will define, via a constant, the network

The Project Organization

A Dependency Graph is automat-
ically obtained from a B project
in Atelier B if no machine sharing
rules (i.e., via SEES, IMPORTS
clauses) are violated.

We deliberately do not charge the
graph with the other machines nec-
essary to the final implementation
of Weighted Forest and Prior-
ity Queue. Their implementation
is similar to the one in [12] and
they do not reveal any important
security details.

Fig. 3. Dependency Graph.
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topology (e.g., the nodes connections). The second option is to define a machine
Network containing the topology description from the beginning. This way, we
do not require other machines to carry out the network topology. Network will
simply be imported only once in the project.

We choose the second solution. The Network machine models a graph: a
non-empty set of Nodes, a set of Links ∈ Nodes × Nodes and a weight function
binding a link to a natural number. We choose to identify each node by a natural
number in the sequence 1..nn, where nn = card(Nodes). These are constants
that require a refinement (i.e., valuation) at the IMPLEMENTATION level with
concrete data for each different topology. The graph is undirected, so Links ∩
Links−1 = ∅. The connectedness assumption is caught by All Links∗= (Nodes)
× (Nodes) (where ∗ stands for the transitive closure of relations). Each node may
have security functionalities: functionality ∈ Nodes ↔ FUNCTIONALITIES (a
constant relation). Some definitions are also necessary when a path is traced in
the network: all links having a common node and the cost/weight of a set of
links. These are the λ-functions cost and neigh nodes.

When choosing the variables of the Network machine we take into account not
only the network parsing aspect but also the nodes involved in the construction of
paths (shortest paths) given a source node and a destination one. We, therefore,
introduce some processed nodes (PPnodes) and links variables necessary in our
shortest path algorithm. The INVARIANT of the Network machine acts on the
variables type. We follow a generous style in specifying the operations: almost
each operation has some preconditions. The generous style, in contrast to the
defensive style which considers some internal operation tests (e.g., IF, SELECT
substitutions), is more in the spirit of a B specification ([2]) as it demands prior
design and specification. Such operations may be called from somewhere else
(i.e., operations of other machines) and their preconditions must be verified;
otherwise, they may not terminate.

Policy SEES Network (cf. Figure 4). Although the constants of Network may
appear in the operations of a SEEING machine (e.g., Policy) its variables may
be read-only. No operation of a SEEN machine can be called from within a
SEEING machine. Therefore, Network is not aware of the fact that it is seen.
Even if there are specific proof-obligations generated as a result of a SEES clause
([2]), the invariants of the SEEN machine are considered already proved. If we
change the Policy for the same Network, the latter is once and independently
proved. A SEEN machine, and consequently Network, may be imported only
once somewhere in the project. We pay attention and we import Network only
in a machine that really necessitates more than read-only variable references.
This is illustrated in Figure 3.

4.2 A Tracing Path Algorithm

The role of a tracing path algorithm in our development is to find the security
devices that must enforce each policy rule. These security devices must have
the right functionalities and must be well placed in the network. If the right
functionalities are indirectly designated by the OrBAC contexts (i.e., default -
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Fig. 4. Policy and Network Machines.
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firewall, protected - IPsec and firewalls, warning - IDS), finding the well placed
device in the network is not obvious. Nevertheless things are getting simpler if
we consider that IP packets follow the shortest path in the network. One could
say this is a severe assumption, but conciliating a given routing policy with our
deployment process is a simpler matter: it suffices to take into account the few
hops a route may involve.

Therefore, we use Dijkstra’s shortest path algorithm. Implementing such an
algorithm in imperative languages is not too difficult but it is not obvious using
the B-Method. There are already B algorithms for deriving spanning trees, [11],
[3], but none for shortest-path trees. We base our path derivation algorithm on
the works in [11]; we could not totally reuse their method: the shortest path may
not go along the minimum spanning tree. Moreover, shortest-path tree changes as
a result of choosing different source and destination nodes. Some implementation
details in [11] concerning the priority-queues turned out to be extremely useful:
we reused them although the lists would have been much easier to manipulate.
However, we mention that the project in [11] violates a sharing rule: a SEEN
machine must be imported once but IMPORTS must not introduce loops in the
project. We believe their error is due to their prover which did not check on
machine sharing rules.

Path Machine, Weighted Forest, Min Weight Link: Path machine SEES
Network whose constants (Nodes, Links and weight) are used. We need a defi-
nition of a path in the network. But as a pre-requisite we have to formalize the
notion of a tree, more precisely of a spanning-tree: a forest with (n - 1) links,
where n = card(Nodes) and a forest is a cycle-free set of links. We also need
a definition of the set of paths from a source node to a destination node: all
(i.e., the union of) adjacent links with the source and destination as extremity
nodes. We are therefore interested in selecting the less-expensive path in this
set of paths. This will represent the shortest path which will be simply selected
once the shortest-path tree is generated (shortest path tree). In what follows we
introduce only some specific B details we faced when designing Path machine
and its implementation (the termination of the shortest path tree operation is
ensured by our assumption of a connected graph).

Implementing the Path machine with the previous specifications would be dif-
ficult. The IMPLEMENTATION will therefore import two machines: Min Weight-
Link machine, to find the minimum link weight in a set of links adjacent to some
processed nodes (Dijsktra’s algorithm) and Weighted Forest machine, to build
the tree as a union of links. The tree is noted LL which is an abstract variable of
Weighted Forest. LL finally represents the shortest-path-tree. Due to space lim-
itations we do not go further with our algorithm. The complete implementation
of Weighted Forest and Min Weight Link has several hundreds of B code lines.
We mention only that we used the Abstract Constants clause in order to avoid
the error in [11] regarding the SEES and IMPORTS clauses: if an abstraction
SEES a machine, all the further refinements must also SEES this machine and
the final IMPLEMENTATION cannot IMPORTS the seen machine.
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4.3 Deployment Implementation and Security Properties

The root machine of our model is the Deployment machine (cf. Figure 5). Its
abstract specification is quite simple: there is only a Boolean concrete variable,
deployment ok modified by an operation, deploy. The refinement of this operation
is based on other operations of the IMPORTED machines Policy, Path and Up-
datePep. Network is imported in our model indirectly, via the Path machine. By
using the IMPORTS clause, allowed only from within an IMPLEMENTATION
there are specific obligation-proofs generated for the IMPORTING machine. We
deliberately leave the IF substitution unfinished: there are tests concerning the
existence of a path in the network according to the type of context. Therefore,
exists path, a boolean variable of the Path machine, is valued in function of sev-
eral other variables: the security functionalities of the source and destination
nodes (e.g., the IPv6 protocol incorporates the IPsec suite but this functionality
may not be considered in the IPsec tunnel extremities), the security functional-
ities in their neighborhood (e.g., for IDS rules) or the security functionalities of
the whole path (path set) between the source and the destination. These tests
are simple and rely on the definition and implementation of the Path machine.
Finally, the UpdatePep machine stores, for each PEP, the security configuration
as a set of rules {sub 7→ act 7→ obj 7→ ctx} modified via the update pep oper-
ation. The concrete deployment ok variable respects the data types required in
an IMPLEMENTATION. It needed no further refinement and we defined it as
a CONCRETE VARIABLE in the abstraction.

4.4 Security Properties

A security property is generally expressed at a more abstract level than the
security requirements. A security property may rely on the correct enforcement of
several security requirements. Moreover, a property may still not be verified after
the deployment of all security rules. Often, a property violation is the result of
anomalies in deploying the policy. Our refinement approach is a property-aware
one: the target properties determine the enforcement of the security devices.
In the implementation of the Deployment machine (cf. Figure 5), we denote
by P1-P8 some of the most interesting application-independent properties the
policy deployment process should verify. We do not claim to achieve a thorough
analysis of security properties: some may be enounced at higher levels ([6]) and
some may be identified from specific security requirements ([15]).

– Completeness: Captured by INVARIANT P1, this property states that if
the network path from a subject to an object is correctly computed (i.e., it
exists and the security devices belonging to this path have the right func-
tionalities with respect to the context) the security rule may and will be
deployed.

– Accessibility (and Inaccessibility): Property P6 states that for each per-
mission rule, a subject is able to access an object with respect to the policy.
Thus, there must be a path between the subject and the object network
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Fig. 5. Deployment Implementation.
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entities and if this path involves some firewalls, they must all permit the
action the subject is supposed to realize on the object. In this manner, the
default context is activated (this may be seen as a minimal context). How-
ever, P6 must be seen as a partial accessibility property: it is verified at
each WHILE loop iteration, i.e., it does not take into account all deployed
rules. In order to guarantee the global accessibility, P3 relies on the correct
deployment of all permissions. We simplified the notation: given that the
operation shortest path(src, dest) returns a set of links called path set, we
should have written: node ∈ path set. In P3 we use config which is defined in
the UpdatePep machine: config ∈ Nodes↔PERMISSIONS and config[{ni}],
the image of the {ni} set under config, is the set of rules already deployed
over the node ni.

Following the same reasoning we can also enounce the global inaccessibility
property, P4: there should be no open path from the subject to the object.
The path variable is given in the Path machine and regroups a set of links
from a source node to a destination one.

– All traffics are regulated by firewalls: Property P7 is also interesting
when there is a new context called logging: this context is managed by those
devices with a logging functionality as today’s most popular firewalls.

– Integrity and confidentiality property: This property is related to the
establishment of IPsec tunnels. It ensures the extremities of the IPsec tunnel.
Moreover, particular IPsec configurations may include recursive encapsula-
tion of traffic on a path. Verifying this property begins at higher levels: if
no OrBAC security rule is enounced with a protected (prot) context, no
further verification is necessary. To ensure the protected context activation,
a configuration of an IPsec tunnel is necessary. If no specific information
concerning the IPsec tunnel establishment is provided, we may suppose the
following two cases: (1) the subject/source and the object/destination are
IPsec enabled (e.g., IPv6 nodes and end-to-end tunnel) or (2) at least one
node in their neighborhood (e.g., site-to-site tunnel) has IPsec functional-
ities. For the first case, it suffices to check on the IPsec functionalities on
both the subject and the object nodes and this is captured by the P8 prop-
erty of the WHILE loop. The second case is handled as follows: in one of
the IMPORTED machines on the Weighted Forest development branch, we
provide an operation predec(node) which returns the precedent node in the
current shortest-path from the source (src) node to the destination (dest)
node. Via PROMOTE clauses, the operation may be called by higher IM-
PORTING machines, including the Deployment machine. We consequently
check on the predec(dest) and predec−1(src) nodes as in the P8 formula.

There is a further case that cannot be addressed at the WHILE loop IN-
VARIANT level (i.e., after each iteration) because it relies on the correct
enforcement of all IPsec tunnels in the network. Figure 6 shows an exam-
ple of successive encapsulations on a site-to-site topology. It may result in
violating the confidentiality property. It also shows an example where the
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source-destination traffic is twice encapsulated: by n1 (IPsec tunnel mode
between n1 and n2) and by n3 (between n3 and n4). The configurations of
n2 and n3 neighbor nodes include a security rule in a default context (i.e.,
{sub 7→act7→obj 7→default}) allowing the IP traffic to pass the section n2-n3
with no encapsulation: the confidentiality is not preserved in this topology
(i.e., between n1 and n4). Such an anomaly is the result of deploying sep-
arately the IPsec tunnels and consequently it cannot be controlled by the
WHILE INVARIANT after each iteration. Nevertheless, the main INVARI-
ANT of the Deployment machine is not reproved during these iterations but
after the loop termination and consequently the IPsec anomaly can be dealt
with only at this level. The P2 formula, in logical conjunction with the com-
pleteness property, accomplishes the integrity and confidentiality property.

Fig. 6. Chained IPsec Tunnels.

– Authentication: P5 is interesting if we deal with an authentication context:
an action that cannot be applied in a certain context unless an authentica-
tion process is achieved. We can verify these cases by providing a variable
that records the actions realized by the subject concerned with the authen-
tication. We, therefore, impose a workflow constraint (history[{sub}] is the
set of actions that sub realized, with history ∈ SUBJECTS ↔ ACTIONS ).

5 Discussion

The B project depicted in this paper was realized using Atelier B v4.0. Validat-
ing a B project consists in proving the Proof Obligations (POs) automatically
generated after analyzing and type-checking the entire project. The functional
correctness of each machine is validated separately with respect to the specific
B inter-machine clauses (SEES, IMPORTS, etc.). The current project was val-
idated with the assumption of a conflict-free OrBAC policy and of a correct
system architecture: no lack of security functionalities in the security compo-
nents placed on the shortest-paths. This leads us to conclude that the outgoing
algorithms are correct with respect to the security properties we considered. The
number of POs automatically generated for each machine varied based on the
operational complexity: from 2 for the Policy machine which involved very sim-
ple operations to 272 for the Min Weight Link implementation; for the latter
one, 110 POs were automatically discharged, the rest being interactively proved.

The choice of the OrBAC model and of the B-Method was motivated by
the type of applications that we address in this paper: the deployment of ac-
cess control security policies. However, our work shows some limitations. On
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the one hand, our approach focuses on the deployment of policies in systems
with an already existing set of security devices. The appropriate deployment of
the access control policy is closely related to the interconnections and the ca-
pabilities of these security devices. As we avoid the intra- and inter-component
anomalies ([13]), there may be unaccomplished security requirements because
of a deficient security device capability. Thus, an improvement to our approach
would be to find, for a given system and a given security policy, the best secu-
rity architecture so that all security requirements be met. On the other hand,
the type of security requirements may also induce a limitation to our approach.
As long as we consider only access control requirements, the B-Method is very
efficient. However, temporal logic specifications cannot be addressed with the
B Method. Therefore, except for the specific case of authentication, the security
requirements involving a trace-like modeling (an ordered set of actions to be
realized by a subject on an object) cannot be addressed with the B Method.
The authentication can be dealt with since the subject needs to accomplish a
single (previous) action (modeled by a provisional — history — OrBAC context)
before gaining the access.

6 Conclusions

The configuration of security devices is a complex task. A wrong configuration
leads to weak security policies, easy to bypass by unauthorized entities. The
existence of reliable automatic tools can assist security officers to manage such
a cumbersome task. In this paper, we established a formal frame for developing
such tools. Our proposal allows the administrator to formally specify security
requirements by using an expressive access control model based on OrBAC [1]. A
tool which is proved using the B-Method may therefore implement the so-called
downward process: the set of algorithms realizing the translation of an OrBAC
set of rules into specific devices configurations. Not only the job of administrators
is simplified, but they know for certain what security properties are verified at
the end.
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