Analysis of Policy Anomalies on
Distributed Network Security Setups

J. G. Alfard-2, F. Cuppens, and N. Cuppens-BoulaHia

! GET/ENST-Bretagne, 35576 Cesson Sévigné - France
{Frederi c. Cuppens, Nor a. Cuppens }@nst - br et agne. fr

2 dEIC/UAB, Edifici Q, 08193, Bellaterra, Barcelona - Spain
Joaqui n. Gar ci a- Al faro@lei c. uab. es

Abstract: The use of different network security components, sucfirasalls
and network intrusion detection syster(i$IDSs), is the dominant method to
survey and guarantee the security policy in current cotpamatworks. On the
one hand, firewalls are traditional security componentsivpirovide means to
filter traffic within corporate networks, as well as to polittee incoming and
outcoming interaction with the Internet. On the other haldt)Ss are com-
plementary security components used to enhance the itisileVel of the net-
work, pointing to malicious or anomalous traffic. To progecbnfigure both
firewalls and NIDSs, it is necessary to use several sets efifif and alerting
rules. Nevertheless, the existence of anomalies betwese tules, particularly
in distributed multi-component scenarios, is very likedydiegrade the network
security policy. The discovering and removal of these ari@®& a serious and
complex problem to solve. In this paper, we present a segofithms for such
a management.

1 Introduction

Generally, once a security administrator has specifiedwaisgpolicy, he or she
aims to enforce it in the information system to be protecigds enforcement
consists in distributing the security rules expressedighlicy over different
security components of the information system — such as ditewintrusion
detection systems (IDSs), intrusion prevention systemS§g), proxies, etc —
both at application, system, and network level. This ingpli®hesion of the
security functions supplied by these components. In otlwedsy security rules
deployed over the different components must be consistehtedundant and,
as far as possible, optimal.

An approach based on a formal security policy refinement ar@sn (us-
ing for instance abstract machines grounded on set thearyiahorder logic)

ensures cohesion, completeness and optimization asifyitperties. Unfor-
tunately, in most cases, such an approach has not a wide/fafid the policy is
more often than not empirically deployed based on secudiityimistrator exper-
tise and flair. It is then advisable to analyze the securigsrdeployed to detect
and correct some policy anomalies — often referred in theditire astra- and
inter-configuration anomaliet].

These anomalies might be the origin of security holes arf@aviness of in-
trusion prevention and detection processes. Firewallarjl]network intrusion
detection systems (NIDSs) [12] are the most commonly usedrigg compo-
nents and, in this paper, we focus particularly on their sgctules. Firewalls
are prevention devices ensuring the access control. Thapgeathe traffic be-
tween the public network and the private network zones onhamel and be-
tween private zones in the local network in the other hanet: Tihdesirable
traffic is blocked or deviated by such a component. NIDSs ateation devices
ensuring a monitoring role. They are components that sigeetlie traffic and
generate alerts in the case of suspicious traffic. The atésbused to block or
to generate alerts are almost the same. The challenge, Wwesa two kinds of
components coexist in the security architecture of an médion system is then
to avoid inter-configuration anomalies.

In[7, 8], we presented an audit process to manage intradlrgwlicy anoma-
lies, in order to detect and remove anomalies within the satles of a given
firewall. This audit process is based on the existence ofioekhips between
the condition attributes of the filtering rules, such as cience, disjunction,
and inclusion, and proposes a transformation process wieidtes from an ini-
tial set of rules — with potential policy anomalies — to anieglent one which
is completely free of errors. Furthermore, the resultirigsare completely dis-
joint, i.e., the ordering of rules is no longer relevant.

In this paper, we extend our proposal of detecting and remganira-firewall
policy anomalies [7, 8], to a distributed setup where bothwalls and NIDSs
are in charge of the network security policy. This way, adegnthat the role
of both prevention and detection of network attacks is agslgo several com-
ponents, our objective is to avoid intra and inter-compo@omalies between
filtering and alerting rules. The proposed approach is basethe similarity
between the parameters of a filtering rule and those of atirlerule. This
way, we can check whether there are errors in those configunsategarding
the policy deployment over each component which matchesaime traffic.

The advantages of our proposal are threefold. First, assiieptm the re-
lated work we show in Section 6, our approach not only comsitlee analy-
sis of relationships between rules two by two but also a cetephnalysis of
the whole set of rules. This way, those conflicts due to themuoi rules that

are not detected by other proposals (such as [2, 3, 9]) apegyodiscovered
by our intra- and inter-component algorithms. Secondy aip@lying our intra-
component algorithms the resulting rules of each compcarenbtally disjoint,
i.e., the ordering of rules is no longer relevant. Hence, care perform a sec-
ond rewriting of rules in @loseor openmanner, generating a configuration that
only containsieny (or alert) rules if the component default policy is open, and
accept (or pass) rules if the default policy is close (cf. Section 3.1). Thiwe
also present in this paper a network model to determine wtoohponents are
crossed by a given packet knowing its source and destina®mwell as other
network properties. Thanks to this model, our approaclebd#fines all the set
of anomalies studied in the related work. Furthermore tble ¢d this model in
other approaches, such as [2, 3], may lead to inappropreaiisidns.

The rest of this paper is organized as follows. Section 2sstgrintroducing
a network model that is further used in Section 3 and Sectiaén present-
ing, respectively, our intra and inter-component anonsatyassifications and
algorithms. Section 5 overviews the performance of our pseg algorithms.
Section 6 shows an analysis of some related work. Finallyi@eZ closes the
paper with some conclusions and gives an outlook on futum.wo

2 Network Model

The purpose of our network model is to determine which coreptswithin the
network are crossed by a given packet, knowing its sourcedastination. It is
defined as follows. First, and concerning the traffic flowirgi two different
zones of the distributed policy scenario, we may determigeset of compo-
nents that are crossed by this flow. Regarding the scenamiwrsin Figure 1,
for example, the set of components crossed by the netwdfictilawing from
zoneexternal network to zoneprivates equals {U1,C2,Cy], and the set of
components crossed by the network traffic flowing from zpreates to zone
privatey equals {y,Co,Cs).

Let C be a set of components and Ethe a set of zones. We assume that
each pair of zones ¥ are mutually disjoint, i.e., it; € Z andz; € Z then
z N z; = (. We then define the predicatennected(ci, c2) as a symmetric
and anti-reflexive function which becomése whether there exists, at least,
one interface connecting componefntto component,. On the other hand,
we define the predicatedjacent(c, z) as a relation between components and
zones which becomes-ue whether the zone is interfaced to componert
Referring to Figure 1, we can verify that predicatesnected(Cy,Cs) and
connected(Cy,Cs), as well asidjacent(Cy, DM Z), adjacent(Cy, privatey),
adjacent(Cs, DM Z), and so on, become-ue.

We then define the set of pathB, as follows. Ifc € C then[c] € P is
an atomic path. Similarly, ifp.c;] € P (be “” a concatenation functor) and
co € C, such thaty ¢ p andconnected(cy, c2), then[p.cy.ca] € P. This way,

we can notice that, concerning Figured;, C2, C4] € P and[Cy,C3] € P.

A
external c
network i

Fig. 1. Simple distributed policy setup.

Let us now define a set of functions related with the order betwpaths.
We first define functiong'irst, last, and the order functor between paths. We
define functionsfirst andlast, respectively, fromP in C, such that ifp is a
path, thenfirst(p) corresponds to the first component in the path, lard(p)
corresponds to the last component in the path. We then défnertler functor
between paths ag; < ps, such that patlp, is shorter tharp,, and where
all the components withip; are also withinps. We also define the predicates
isFirewall(c) andisNI1DS(c) which becomérue whether the component
is, respectively, a firewall or a NIDS.

Two additional functions areoute and minimal_route. We first define
function route from Z to Z in 27, such thatp € route(zy, 20) iff the pathp
connects zone; to zonez,. Formally, we define thap € route(z1, 2zo) iff
adjacent(first(p),z1) and adjacent(last(p), z2). Similarly, we then define
minimal_route from Z to Z in 2P, such thatp € minimal_route(zy, z2)
iff the following conditions hold: (1p € route(z1, 22); (2) There does not exist
p’ € route(z1, z2) such thap’ < p. Regarding Figure 1, we can verify that the
minimal_route from zoneprivates to zoneprivates equalgCy, Csa, Cs], i.e.,
minimal_route(privates, privates) = {[Cy, Ca, Cs]}.

Let us finally conclude this section by defining the prediadfects 7, A.)
as a boolean expression which becorhes: whether there is, at least, an ele-
mentz € Z such that the configuration efis vulnerable to the attack category
A. € V, whereV is a vulnerability set built from a vulnerability databasach
as CVE/CAN [11] or OSVDB [13].

3 Intra-Component Analysis

In this section we extend our previous work on analysis ofvngt access con-
trol rules for the configuration of firewalls [7, 8], conceaitng on anomalies
that may also arise in NIDS setups. In particular, a new céassmomaly is
pointed out (cf. Intra-Component Irrelevance) and the @ased code of our
intra-component algorithms has been properly revised

For our work, we define the security rules of both firewalls &HDSs as
filtering and alerting rules, respectively. In turn, botkefiing and alerting rules
are specific cases of a more general configuration rule, wimhbally defines
a decision (such asdeny, alert, accept, Or pass) that applies over a set of
condition attributes, such aprotocol source destination classification and
so on. We define a general configuration rule as follows:

R; : {condition;} — decision; @)

wherei is the relative position of the rule within the set of rulésondition; }
is the conjunctive set of condition attributes such thedndition;} equals
C1 A Cy A ... N C), — beingp the number of condition attributes of the given
rule — anddecision is a boolean value ifitrue, false}.

We shall notice that the decision of a filtering rule will besjiive (¢rue)
whether it applies to a specific value relateddeny (or filter) the traffic it
matches, and will be negativé ¢/se) whether it applies to a specific value re-
lated toaccept(or ignore) the traffic it matches. Similarly, the decision of an
alerting rule will be positive tf-ue) whether it applies to a specific value re-
lated toalert (or warn) about the traffic it matches, and will be negatifelse)
whether it applies to a specific value relatedptmss(or ignore) the traffic it
matches.

Let us continue by classifying the complete set of anomdhas$ can occur
within a single component configuration. An example for eacbmaly will be
illustrated through the sample scenario shown in Figure 2.

Intra-Component Shadowing A configuration ruleR; is shadowed in a set of
configuration rules® whether such a rule never applies because all the packets
that R; may match, are previously matched by another rule, or coatibim of
rules, with higher priority. Regarding Figure 2, rdlg{ R } is shadowed by the
union of rulesC;{Rs} andC1{R5}.

3 Because of the similarity between the revision and the ptavivork already covered in [7,
8], we move our intra-component audit algorithms to AppeidiTheir correctness and com-
plexity can also be found in [7, 8].

external
network

windows
network

unix
network

G

192.170.26.[0,255]

192.170.21.[0,255] 192.170.33.[0,255]

:{tcp, 192.170.26.[10,20]:any, 192.170.26.[50,60]:any} -> false
1 {tcp, 192.170.26.[0,255]:any, 192.170.33.[0,255]:any} -> false
: {tcp, 192.170.21.[1,30]:any, 192.170.26.[20,45]:any} > true
:{tcp, 192.170.21.[20,60]:any, 192.170.26.[25,35]:any} -> false
C+{Rs} : {tcp, 192.170.21.[30,70]:any, 192.170.26.[20,45]:any} -> false
C+{Rg} : {tcp, 192.170.21.[15,45]:any, 192.170.26.[25,30]:any} -> true

o
T
&

(a) Example scenario of a filtering policy.

external
network

windows
network

unix
network

%9
|

CofR1} : {tcp, 192.170.26.[0,256]:any, 192.170.33.[0,255]:any, payload:, winworm} - true
C»{Ra} : {tcp, 192.170.26.[0,255]:any, 192.170.21.[0,255]:any, payload,, winworm} - true
C2{Ra} : {tcp, 192.170.33.[0,255]:any, 192.170.21.[0,255]:any, payloads, unixworm} > true
Cz{Ra} : {tcp, 192.170.26.[1,30]:any, 192.170.21.[20,45]:any, payload,, unixworm} - true
Co{Rs} : {tcp, 192.170.26.[20,60]:any, 192.170.21.[25,35]:any, payloads, unixworm} - true
C2{Rs} : {tcp, 192.170.26.[10,40]:any, 192.170.21.[25,30]:any, payloads, unixworm} - true

192.170.26.[0,255] 192.170.21.[0,255] 192.170.33.0,255]

(b) Example scenario of an alerting policy.

Fig. 2. Example filtering and alerting policies.

Intra-Component Redundancy A configuration ruleR; is redundant in a set
of configuration rulesk whether the following conditions hold: (1%; is not
shadowed by any other rule or set of rules; (2) when remo#gpgom R, the
security policy does not change. For instance, referririgdgare 2, ruleC { R4}
is redundant, since the overlapping between rGlgsks } andC{ Rs } is equiv-
alent to the police of rul€';{R4}.

Intra-Component Irrelevance A configuration ruleR; is irrelevant in a set of
configuration rulesk if one of the following conditions holds:

(1) Both source and destination address are within the same. Zor in-
stance, rule&’;{ R, } is irrelevant since the source of its addresg,ernal net-
work, as well as its destination, is the same.

(2) The component is not within the minimal route that corngéee source
zone, concerning the irrelevant rule which causes the alyptodhe destination
zone. Hence, the rule is irrelevant since it matches trafficlvdoes not flow
through this component. Ruté, { R, }, for example, is irrelevant since compo-
nentC is not in the path which corresponds to the minimal route betwthe
source zonemnix network to the destination zoneindows network.

(3) The component is a nids, i.e., the predicat® / DS(c) (cf. Section 2)
becomesrue, and, at least, one of the condition attributediinis related with
a classification of attack,. which does not affect the destination zone of such
arule —i.e., the predicate affetts, A.) becomesfalse. Regarding Figure 2,
we can see that rul€>{ R, } is irrelevant since the nodes in the destination zone
uniz network are not affected by vulnerabilities classifieci@@worm.

3.1 Default policies

Each component implements a positive (i.e., close) or hegéite., open) de-
fault policy. In the positive policy, the default policy is tilert or to deny a
packet when any configuration rule applies. Converselynégative policy will
accept Or pass a packet when no rule applies.

After rewriting the rules with the intra-component-audgaithms (cf. Ap-
pendix A), we can actually remove every rule whose decispassor acceptf
the default policy of this component is negative (else this rs redundant with
the default policy) and, similarly, we can remove every mulgose decision is
denyor alert if the default policy is positive. Thus, we can consider tbat
proposedntra-component-audilgorithm generates a configuration that only
contains positive rules if the component default policyagative, and negative
rules if the default policy is positive.

4 Inter-Component Analysis

The objective of the inter-component audit algorithms és¢cbhmplete detection
of policy anomalies that could exist in a multi-componentigyo i.e., to dis-
cover and warn the security officer about potential anoredlatween policies
of different components.

The main hypotheses to deploy our algorithms hold the fafigw(1) An
upstream network traffic flows away from the closest compbiwthe origin
of this traffic (i.e., the most-upstream component [3]) tadgathe closest com-
ponent to the remote destination (i.e., the most-downstim@nponent [3]); (2)
Every component’s policy in the network has been rewritteimgi the intra-
component algorithms defined in Appendix A, i.e., it does cmtain intra-
component anomalies and the rules within such a policy amptaiely inde-
pendent between them.

4.1 Inter-Component Anomalies Classification

In this section, we classify the complete set of anomaliasdan occur within a
multi-component policy. Our classification is based on tegwerk model pre-

sented in Section 2. An example for each anomaly will betilhied through
the distributed multi-component policy setup shown in Feg8.

Inter-Component Shadowing A shadowing anomaly occurs between two
components whether the following conditions hold: (1) Thestrupstream com-
ponent is a firewall; (2) The downstream component, wheraitoenaly is de-
tected, does not block or report (completely or partialtgffic that is blocked
(explicitly, by means of positive rules; or implicitly, byeans of its default pol-
icy), by the most-upstream component.

The explicit shadowing as result of the union of rul@s R;} andCs{ Rs}
to the traffic that the componeidt; matches by means of rul€s{R;} is a
proper example diull shadowingbetween a firewall and a NIDS. Similarly, the
anomaly between ruleS5{ R} andCs{Rs} shows an example of axplicit
partial shadowinganomaly between a firewall and a NIDS.

On the other hand, the implicit shadowing between theylgR;} and the
default policy of component’; is a proper example amplicit full shadowing
between two firewalls. Finally, the anomaly between the €uléRs }, C2{ R1 },
and the default policy of compone@it shows an example of amplicit partial
shadowinganomaly between two firewalls.

Inter-Component Redundancy A redundancy anomaly occurs between two
components whether the following conditions hold: (1) Thestrupstream com-
ponent is a firewall; (2) The downstream component, wheraiioenaly is de-
tected, blocks or reports (completely or partially) tratfiat is blocked by the
most-upstream component.

RulesC5{R3} andCs{R;} show a proper example @ill redundancybe-
tween two firewalls, whereas rul€s,{ R3} and Cs{R5} show an example of
full redundancybetween a firewall and a NIDS. Similarly, rulés{R,} and
Cs{R2} show a proper example giartial redundancybetween two firewalls,
whereas rules’;{ R4} and Cs{Rs} show an example opartial redundancy
between a firewall and a NIDS.

Sometimes, this kind of redundancy is expressly introdumedetwork ad-
ministrators (e.g., to guarantee the forbidden traffic wilt reach the destina-
tion). Nonetheless, it is important to discover it sincestth a rule is applied,
we may conclude that at least one of the redundant compoigerisongly
working.

Inter-Component Misconnection A misconnection anomaly occurs between
two components whether the following conditions hold: (hepTnost-upstream
component is a firewall; (2) the most-upstream firewall pesriexplicitly, by

FALSE

Ce

E1
200.160.1.0/24

20 te0 o Cs 10.0.26.0/24 Cs e 19217023024
Q 10.0.28.0/24 Q
TRUE P2 G;
10.0.24.0/24
10.0.25.0/24
10.0.27.0/24
5 P4 T
10.0.16.0/24 &
10.0.31.0/24 oo ot ’
10.0.32.0/24
10.0.35.0/24
10.0.33.0/24
10.0.36.0/24 FALSE

TRUE

P1

E2

ﬂ 192.170.21.0/24

192.170.22.0/24

TRUE

02 bs;
C+{Ry} : {tcp 200.160.1.[0,255]:any, 10.0.16.[0,255]:any} > false CofR1} : {tcp 10.0.31.[15,17]:any, 200.160.1.[0,255]:any} > false
C+{Rz} : {tcp 200.160.1.[0,255]:any, 10.0.16.[0,255]:any} > false C»{R2} : {tcp 10.0.32.[0,70]:any, 10.0.35.[0,255]:any} -> false
C+{Rq} : {tep 192.170.21.[20,33]:any, 200.160.1.[20,30]:any} > false CofRg} : {tcp 10.0.32.[0,70]:any, 200.160.2.[0,255]:any} > false
Ci{Ru} : {tcp 192.170.21.[60,80]:any, 200.160.1.[20,30]:any} -> false Cz{R4} : {tcp 10.0.33.[0,255]:any, 200.160.1.[0,255]:any} -> false
C:+{Rs} : {tcp 10.0.33.[0,30]:any, 200.160.2.[10,30]:any} > false Co{Rs} : {tcp 10.0.32.[0,70]:any, 10.0.25.[0,255]:any} > false
Ci{Rs} : {tcp 10.0.31.[10,20]:any, 200.160.1.[0,255]:any} -> false C2{Rs} : {tcp 200.160.[1.0,2.255]:any, 10.0.16.[0,255]:any} > false
C+{Ry} : {tcp 10.0.33.[0,255]:any, 200.160.1.[10,12]:any} -> false
Co{R) * {tcp 10.0.31.[15,17]:any, 200.160.1.00,255]:any, pas, Cax} > false | | Celh : {tcp 10.0.32.10:any, 10.0.25.0,255]:any, P, Cas} > true
CofRe} : {tcp 10.0.32.[0,70]:any, 10.0.35.[0,255]:any, psz. Cas) > false || C+{Rel : {tcp 10.0.32.(60,80]:any, 10.0.25.[0,255]:any. Paz, Caz} > true
C4{Rs} : {tcp 192.170.22.[15,30]:any, 10.0.24.[0,255]:any, ps-s, Cs-3} > true
i - N C4{R4} : {tcp 192.170.23.[0,255]:any, 10.0.24.[0,255]:any, Ps-4, Cs-4} > true
iy oo 152 rozzibasmany. 100sulozmgtam 3 e || CUR -l lop 170 1o any. 10027 05y b 15 e
Cs{Ra} : {tcp 192.170.21.[10,40]:any, 200.160.1.[0,255]:any} > true
Ce{Rq} : {tcp 192.170.21.[65,70]:any, 200.160.1.[0,255]:any} > true Cs{Ri} : {tcp 10.0.32.10:any, 10.0.35.[0,255]:any} > true
Ce{Re} : {tcp 192.170.22.0,255]:any, 10.0.24.[0,255]:any} > true Cs{Re} : {tcp 10.0.32.[60,80]:any, 10.0.35.[0,255]:any} > true
CelRe} - ftop 192.170.23.[18,20]-any, 10.0.24[0.255]-any} > true Cs{Ra} : {tcp 192.170.22.[15,30]:any, 10.0.34.[0,255]:any} > true
CelRy} - ftop 192.170.21.[10.40)-any. 10.0.26.[0.255]any} > true Cs{Rq} : {tcp 192.170.23.[0,255]:any, 10.0.34.[0,255]:any} > true
Ce{Rg} : {tcp 192.170.21.[65,70]:any, 10.0.26.[0,255]:any} > true Cs{Rs} : {tcp 192.170.21.[18,20]:any, 10.0.36.[0,255]:any} > true

Fig. 3. An example for a distributed network policy setup.

means of negative rules; or implicitly, through its defaqgticy) all the traffic —
or just a part of it — that is denied or alerted by a downstreamponent.

An explicit misconnection anomaly between two firewallshiewn through
the rulesCs{ R; } andC2{ R} (full misconnectio}i and the rules”s{ R} and
C2{ Ry} (partial misconnection An implicit misconnection anomaly between
two firewalls is also shown by the ruté,{ R;} and the default policy of fire-
wall Cy (full misconnectioly and the rule€’; { R} andCs{ R, }, together with
the default policy ofC, (partial misconnection Similarly, the pair of rules
Cu4{R1}-C2{Rs5} and the pair of rule€’s{ Ry }-C2{ R5} show, respectively, an
explicit example of full and partial misconnection anombbtween a firewall
and a NIDS. Finally, the rul€’s{ R5} together with the negative policy of the
firewall Cy shows an example of implicit misconnection anomaly betwaen
firewall and a NIDS.

4.2 Inter-Component Analysis Algorithms

For reasons of clarity, we split the whole analysis proced$sur different algo-
rithms. The input for the first algorithm (cf. Algorithm 5) ike set of compo-
nentsC, such that for alt € C, we notec[rules] as the set of configuration rules
of component, andc[policy] € {true, false} as the default policy of such a
component. In turn, each rule: € c[rules] consists of a boolean expression
over the attributeszone (source zoneYzone (destination zoneyxport (source
port), dport (destination port)protocol, anddecision (true or false).

Let us recall here the function®urce(r) = szone anddest(r) = dzone.
Thus, we compute for each component C' and for each rule € c[rules],
each one of the source zongse Z, and destination zones € Z,; — whose
intersection with respectivelyzone anddzone is not empty — which become,
together with a reference to each componeamd each rule, the input for the
second algorithm (i.e., Algorithm 6).

Once in Algorithm 6, we compute the minimal route of compdaehat
connects zone; to zy, i.e.,[C1,Cy, . .., Cy,] € minimal_route(z1, z2). Then,
we decompose the set of components inside each path in deamstpath
(pathg) and upstream pathpgth,,). To do so, we use the implicit functiongad
andtail. The first component; € pathg, and the last componeny, € path,,
are passed, respectively, as argument to the last two thlgwi(i.e., Algorithm 7
and Algorithm 8) in order to conclude the set of necessarglchthat guarantee
the audit proce$s

Let us conclude by giving an outlook in Figure 4 to the set ofnirays after the
execution of Algorithm 5 over the scenario of Figure 3:

C1{R3} — Cs{R3, R4}: Full Shadowing C4{R2} — C2{Rs}: Partial Misconnection
C1{Ra} — Cs{R4}: Partial Shadowing Cs{R3} — Cs{Rs}: Full Redundancy
C1{Rs5} — C2{pol.}: Full Shadowing C4{R4s} — Cs{Rs}: Partial Redundancy
C1{R¢} — C2{R1, pol.}: Partial Shadowing C4{Rs} — Ce{pol.}: Full Misconnection
C2{R3} — C1{pol.}: Full Misconnection Cs{R1} — C2{Ra2}: Full Misconnection
C2{R4} — C1{R7,pol.}: Partial Misconnection| Cs{R2} — C2{R2}: Partial Misconnection
Cg{Rl} — C6{R7, Rg}: Full Shadowing C5{R3} — C6{R1}Z Full Redundancy
C3{R2} — Cs{Rg}: Partial Shadowing Cs5{Ra} — Cs{R2}: Partial Redundancy
Cs{R1} — C2{Rs}: Full Misconnection Cs{Rs} — Ce{pol.}: Full Misconnection

Fig. 4. Execution of Algorithm 5 over the scenario of Figure 3.

“ n

* The operator &” within algorithms 7 and 8 denotes that two rulesandr; are correlated if
every attribute inR; has a non empty intersection with the corresponding at&ilvuR ;.

Algorithm 5: inter—component-audit(C) Algorithm 8: upstream(r,c,c,)

1 foreach ¢ € C' do 1 Ruj « {ru € cu | 7y v 7 Ary[decision] = false};
2 foreach r € c[rules] do 2 Ryt — {ru € cu | T «~ 7 A ry[decision] = true};
3 Zs— {z€Z|zNsource (r) # 0}; 3 if r[decision] =“true” then

4 Zg— {2€Z|zNdest (r)# 0}; 4 if testRedundancy (R,y,7) then

5 foreach z, € Z, do 5 | warning (“Full Spurious™);

6 foreach 2, € Z; do 6 else if R,, # () then

7 L L audit (¢,r,2z1,22); 7 ‘ warning (“Partial Spurious”);

8 else if testRedundancy (R,,r) then
T - 9 warning (“Full Redundancy”);

Algorithm 6: audit(c,r,z1,22) " e‘lse if Ru: # 0 then

1 foreachp € minimal_route (21,22) do 1 ‘ warning (“Partial Redundancy”);

2 pathq < tail (p,c); 12 elseif R,y =0 and Ry; =0

3 path,, «— header (p,c); 13 and ¢y [policy] = false then

4 if pathq # 0 and 7‘[d€d’5i0n] ="false” 14 L warning (“Full Misconnection”);

5 and isFirewall (c)then

6 ¢q — first(pathg); 15 else‘

7 downstream (r,¢,cq); 16 if testhdunfancy (R“,,?") tPen

s if path, 7& () then 17 ‘ v\'rarnlng(Full Shadowing™);

9 ¢, — last(pathy); 18 else if RM. # w‘)‘then' .
1 if isFirewall (cy) then 19 ‘ v\‘rarnlng (“Partial Sha'dowzng);
u upstream (r.e.cy): 20 | elseif R,y = () and c,[policy|] = true then

= 21 ‘ warning (“Full Shadowing™);

Algorithm 7: downstrean(r,c,cq) 22 else if — testRedundancy (Ryy,7)

1 if cq[policy] = true then 23 | and cy[policy] = true then

2 Rgp — {rq € cq | ra v 7 Argldecision] = false}; 4 L warning (“Partial Shadowing”);

3 if Rqf = (then warning

(“Full Misconnection™);

4 else if -~ testRedundancy (Rgy,7) then
5 warning (“Partial Misconnection”);

5 Performance Evaluation

In this section, we present an evaluation of the performaht®RAGE (which
stands for MIsconfiguRAtion manaGEr), a software prototiae implements
the intra and inter-firewall algorithms presented in sei8 and 4. MIRAGE
has been developed using PHP, a scripting language thapéially suited
for web services development and can be embedded into HT¥th&con-
struction of client-side GUI based applications [5]. MIRE@an be locally or
remotely executed by using a HTTP server and a web browser.

Inspired by the experiments done in [3], we evaluated owrélgns through
a set of experiments over two different IPv4 real networkse fopology for the
first network consisted of a single firewall based Netfilte®][land a single
NIDS based on Snort [15] — connected to three different zarigsmore than
50 hosts. The topology for the second network consistedafiferent compo-
nents — based on netffilter, ipfilter [14], and snort [15] — ecting six different
zones with more than 200 hosts. The whole of these experawesite carried
out on an Intel-Pentium M 1.4 GHz processor with 512 MB RAMnjing
Debian GNU/Linux 2.6.8, and using Apache/1.3 with PHP/48figured.

During a first phase, we measured the memory space and thespiog
time needed to perform Algorithm 4 over several sets of |Poklcies for the
first IPv4 network, according to the three following segufficer profiles:
beginner, intermediate, and expert — where the probabdityave overlaps be-
tween rules increases from 5% to 90%. The results of thessureraents are
plotted in Figure 5(a) and Figure 5(b). Though those pldoigecestrong mem-
ory and process time requirements, we consider they arerrabke for off-line
analysis, since it is not part of the critical performancaaingle component.

We conducted, in a second phase, similar experiments toureetse per-
formance and scalability of Algorithm 5 through a progressincrement of
auto-generated rules, firewalls and zones for the secomebrietThe results of
these measurements are plotted in Figure 5(c) and FigujeSi(dilarly to the
intra-component evaluation, we consider these requiresnemy reasonable for
off-line inter-component analysis.

140 | Expert —s— A4 14+ Expert —e—
Intermediate --%--- - Intermediate -----
Beginner & - Beginner ---&

(kb)
"

Memory space

0 10 20 30 40 50 60 7) 10 20 30 a0 50 60 7
Number of rules Number of rules

(a) Memory space evaluation. (b) Processing time evaluation.

3 components / 2 zones —e—
5 components / 4 zones ---x---
6 components / 6 zones ---&

Memory space (kb)
8

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Number of rules Number of rules

(c) Memory space evaluation. (d) Processing time evaluation.

Fig. 5. Evaluation of our set of intra- and inter-component aldpons.

6 Related Work

Some related proposals to our work, such as [1,9, 2, 10, prdjjide means
to directly manage the discovery of anomalies from the camepts’ configu-
ration. For instance, the authors in [1] consider that, im@figuration set, two
rules are in conflict when the first rule in order matches soaoigts that match
the second rule, and the second rule also matches some @idketpthat match
the first rule. This approach is very limited since it justed$ a particular case
of ambiguity within a single component configuration. Ferthore, it does not
provide detection on multiple-component configurations.

In [9], two cases of anomalies are considered. First, aRylés defined as
backward redundant iff there exists another mjewith higher priority in order
such that all the packets that match ridg also match rule?;. Second, a rule
R; is defined as forward redundant iff there exists anotherRylevith the same
decision and less priority in order such that the followiogditions hold: (1) all
the packets that matcR; also matchR;; (2) for each ruleR; betweenR; and
R;, and that matches all the packets that also match&yle?; has the same
decision ask;. Although this approach seems to head in the right directien
consider it as incomplete, since it does not detect all thlesipte cases of intra-
component anomalies (as we define in this paper). For instagieen the set
of rules shown in Figure 6(a), sindeg, comes afterRR, rule R, only applies
over the interval[51, 70] — i.e., Ry is not necessary, since, if we remove this
rule from the configuration, the filtering policy does not kba. The detection
proposal, as defined in [9], cannot detect the redundancylefts within the
configuration of such a given firewall. Furthermore, neifl®nor [10] provide
detection on multiple-component configurations.

R: : s €[10,50] — deny R : s € [10,50] — accept

R> : s € [40,70] — accept R> : s € [40,90] — accept

Rs : s € [50,80] — accept R3 : s € [30,80] — deny
(a) Setofrules A (b) Setof rules B

Fig. 6. Example of some firewall configurations.

To our best knowledge, the approach presented in [2—4] peofite most
efficient set of techniques and algorithms to detect poligynaalies in both sin-
gle and multi-firewall configuration setups. In additiontie tdiscovery process,
their approach also attempts an optimal insertion of atitrules into an ex-
isting configuration, through a tree based representafitimediltering criteria.
Nonetheless, and even though the efficiency of their prapdsscovering al-
gorithms and techniques is very promising, we also conghisrapproach as
incomplete. First, their intra- and inter-component disy approach is not

complete since, given a single- or multiple-component sgcpolicy, their de-
tection algorithms are based on the analysis of relatigisshétween rules two
by two. This way, errors due to the union of rules are not expliconsidered
(as our approach does). The set of rules shown in Figure fifbexample,
may lead their discovery algorithms to inappropriate dens The approach
defined in [2] cannot detect that ruke; will be never applied due to the union
of rules Ry and R,. Just a correlation signal — that is obviously a weaker signa
than a shadowing one — would be labeled. Though in [3] thecasiftointed out
to this problematic, claiming that they break down the @hiset of rules into
an equivalent set of rules free of overlaps between rulespeoific algorithms
have been provided for solving it in [2—4].

Second, their inter-component discovery approach corssiae anomalies
some situations that, from our point of view, must be suiteavbid inconsistent
decisions between components used in the same policy tootontsurvey to
different zones. For instance, given the following scemari

111.222.0.[0,255 111.222.1.[0,255]

]
external _/ _/
network
FW, FW,

FW . {Ri} :p=tpA s€anyade 111.222.1.0/24 A dport= 80 — deny

FW,{Ry} :p= tpAse 111222.0.0/24 ad € 111.222.1.0/24 A dport= 80 — deny

their algorithms will inappropriately report a redundararyomaly between
filtering rulesFW,{ R, } andF'W>{ R, }. This is because rulEW,{ R, } matches
every packet that alsé'W2{R;} does. As a consequence, [2] considers rule
FWy{R,} as redundant since packets denied by this rule are alreadgdde
by rule FWi{R;}. However, this conclusion is not appropriate because rule
FWi{R,} applies to packets from the external zone to the private nirezeas
rule FW,{R;} applies to packets from the DMZ zone to the private zone. So,
rule FWe{R; } is useful and cannot be removed. Though in [2, 3] the authors
claim that their analysis technique marks every rule thatsesd on a network
path, no specific algorithms have been provided for doing ke.main advan-
tage of our proposal over their approach is that it includesdel of the traffic
which flows through each component. We consider this is sacgso draw the
right conclusion in this case.

Finally, although in [4] the authors consider their work affisiently gen-
eral to be used for verifying many other filtering based sgcpolicies such as
intrusion detection and prevention systems, no specifichar@sms have been
provided for doing so.

7 Conclusions

In this paper we presented an audit process to set a digitlilzgicurity scenario
composed of bottiirewalls and network intrusion detection syster{i$IDSs)
free of anomalies. Our audit process has been presentecoimain blocks.
We first presented, in Section 3, a set of algorithms for tntponent analy-
sis, according to the discovering and removal of policy aalies over single-
component environments. We then presented, in Sectionet, & algorithms
for inter-component analysis, in order to detect and waensicurity officer
about the complete existence of anomalies over a multi-compt environ-
ment.

Some advantages of our approach are the following. Firstintna-firewall
transformation process verifies that the resulting rulescampletely indepen-
dent between them. Otherwise, each rule considered assshieng the pro-
cess is reported to the security officer, in order to verify torrectness of the
whole process. Second, we can perform a second rewritingies,rgenerating
a configuration that only contains positive rules if the comgnt default pol-
icy is negative, and negative rules if the default policy @sifive. Third, the
network model presented in Section 2 allows us to determinetwcompo-
nents are crossed by a given packet knowing its source atidatem, as well
as other network properties. Thanks to this model, our smbrdetter defines
all the set of anomalies studied in the related work, andpbrms, moreover,
two new anomaliesirfelevanceandmisconnectionnot reported, as defined in
this paper, in none of the other approaches. Furthermodeasupointed out in
Section 6, the lack of this model in [2—4] leads to inappraigridecisions.

The implementation of our approach in a software prototypeahstrates
the practicability of our work. We shortly discussed thiplamentation, based
on a scripting language [5], and presented an evaluatiais performance. Al-
though these experimental results show that our algoritiawe strong require-
ments, we believe that these requirements are reasonaldé-fime analysis,
since it is not part of the critical performance of the audlitemponent.

As future work, we are currently studying the anomaly protsesf security
rules in the case where the security architecture includesdils, IDS/IPS, and
IPSec devices. Though there is a real similarity betweepdin@meters of those
devices’ rules, more investigation has to be done in ordextend our proposal.
In parallel to this work, we are also considering to extendapproach to the
analysis of stateful policies.

Acknowledgements

This work was supported by funding from the French ministmesearch, under
the ACI DESIRSoroject, the Spanish Government proj@ét€2003-02041and
the Catalan Government grar#803FI126and2005BE77

References

10.

11.

12.

13.

14.

15.

16.

Adiseshu, H., Suri, S., and Parulkar, G. (2000). Detgaimd Resolving Packet Filter Con-
flicts. In 19th Annual Joint Conference of the IEEE Computer and Conications Soci-
eties 1203-1212.

Al-Shaer, E. S., Hamed, H. H. (2004). Discovery of Poliayofalies in Distributed Fire-
walls. InIEEE INFOCOM’04 March.

Al-Shaer, E. S., Hamed, H. H., and Masum, H. (2005). Cdrifliassification and Analysis
of Distributed Firewall Policies. IHEEE Journal on Selected Areas in Communicatjons
23(10).

Al-Shaer, E. S., Hamed, H. H. (2006). Taxonomy of Conflictsletwork Security Policies.
In IEEE Communications Magaziné4(3), March.

Castagnetto, J. et al. (1999Rrofessional PHP ProgrammingNrox Press Inc, ISBN 1-
86100-296-3.

Cheswick, W. R., Bellovin, S. M., Rubin A. D. (2003)-irewalls and Internet security:
repelling the wily hackerAddison-Wesley, second edition.

Cuppens, F., Cuppens-Boulahia, N., and Garcia-Alfar(®QD5). Detection and Removal
of Firewall Misconfiguration. IfProceedings of the 2005 IASTED International Conference
on Communication, Network and Information Secyriy4—-162.

Cuppens, F., Cuppens-Boulahia, N., and Garcia-Alfa@QD5). Misconfiguration Manage-
ment of Network Security Components. Pnoceedings of the 7th International Symposium
on System and Information Secuyi§ao Paulo, Brazil.

Gupta, P. (2000)Algorithms for Routing Lookups and Packet Classificati®hD Thesis,
Department of Computer Science, Stanford University.

Gouda, M. G. and Liu, A. X. (2004). Firewall Design: Catsncy, Completeness and
Compactness. |24th IEEE International Conference on Distributed CompgtBystems
(ICDCS-04) pages 320-327.

MITRE Corp. Common Vulnerabilities and Exposures. [@e]l Available from:
http://cve.mtre.org/

Northcutt, S. (2002)Network Intrusion Detection: An analyst's Hand BodKew Riders
Publishing, third edition.

Open Security Foundation. Open Source Vulnerabilittabase. [Online]. Available from:
http://osvdb. org/

Reed, D. IP Filter. [Online]. Available fromht t p: / / www. j a. net / CERT/ Sof t wa-
re/ipfilter/ip-filter.htm

Roesch, M. (1999), Snort: lightweight intrusion detatfor networks. In13th USENIX
Systems Administration Conferen&eattle, WA.

Welte, H., Kadlecsik, J., Josefsson, M., McHardy, Pd ahal. The netffilter project:
firewalling, nat and packet mangling for linux 2.4x and 2.g@nline]. Available from:
http://ww. netfilter.org/

A Intra-Component Algorithms

Our proposed audit process is a way to alert the securityeofiiccharge of the
network about these configuration errors, as well as to renadivthe useless
rules in the initial firewall configuration. The data to be diser the detection
process is the following. A set of rule® as a list of initial sizen, wheren
equalscount(R), and where each element is an associative array with tingstri
condition, decision, shadowing, redundancy, andirrelevance as keys to
access each necessary value.

For reasons of clarity, we assume one can access a linketiimigh the
operator R;, wherei is the relative position regarding the initial list size —
count(R). We also assume one can add new values to the list as any other n
mal variable doese{ement «— value), as well as to remove elements through
the addition of an empty setlement < (). The internal order of elements
from the linked-listR keeps with the relative ordering of rules.

Each element?;[condition] is a boolean expression ovgrpossible at-
tributes. To simplify, we only consider as attributes thkofwing ones:szone
(source zone)dzone (destination zone)sport (source port)dport (destina-
tion port), protocol, andattack_class — or A, for short — which will be empty
whether the component is a firewall. In turn, each elenf&mdecision] is a
boolean variable whose values ard/inue, false}. ElementsR;[shadowing],
R;[redundancy], and R;[irrelevance] are boolean variables iftrue, false}
—which will be initialized tofalse by default.

We split the whole process in four different algorithms. Tingt algorithm
(cf. Algorithm 1) is an auxiliary function whose input is twales, A and B.
Once executed, this auxiliary function returns a furthde,r@’, whose set of
condition attributes is the exclusion of the set of condiidrom A over B. In
order to simplify the representation of this algorithm, wse dhe notatiord;
as an abbreviation of the variablcondition|[i], and the notatiorB; as an
abbreviation of the variabl®&[condition|[:] — wherei in [1, p).

The second algorithm (cf. Algorithm 2) is a boolean funciiotitrue, false}
which applies the necessary verifications to decide whetheler is irrelevant
for the configuration of a componeatTo properly execute such an algorithm,
let us definesource(r) as a function inZ such thatsource(r) = szone, and
dest(r) as a function inZ such thatlest(r) = dzone.

The third algorithm (cf. Algorithm 3) is a boolean function{itrue, false}
which, in turn, applies the transformatiesclusion(Algorithm 1) over a set of
configuration rules to check whether the rule obtained aganpeter is poten-
tially redundant.

The last algorithm (cf. Algorithm 4) performs the whole pees of detect-
ing and removing the complete set of intra-component anesalhis process
is split in three different phases. During the first phasetatshadowing rules
are detected and removed from a top-bottom scope, by itelatpplying Al-
gorithm 1 — when the decision field of the two rules is différdret us notice
that this stage of detecting and removing shadowed rulegpkea before the
detection and removal of proper redundant and irrelevdesru

The resulting set of rules is then used when applying thersbpbase, also
from a top-bottom scope. This stage is performed to detetr@move proper
redundant rules, through an iterative call to Algorithm.8.(testRedundangy
as well as to detect and remove all the further shadowed reteaining during
the latter process. Finally, during a third phase the whel@tnon-empty rules
is analyzed in order to detect and remove irrelevance, ¢ir@un iterative call
to Algorithm 2 (i.e. testlrrelevancg

Algorithm 1: exclusion(B,A)

Algori

thm 4: intra-component-audit(e, R)

1 Clcondition] — 0; 1 begin
2 Clshadowing] — false; 2 n «— count(R);
3 C[redundancy] — false; 3 /*Phase 1%/
4 Clirrelevance] < false; 4 fori — 1to(n —1)do
5 Cldecision] «— Bldecision]; 5 for j — (i+1) tondo
6 forall the elements of A[condition] and B[condition] do 6 if Ri[decision] # R;|decision] then
7 if (A1NBi1) # 0and (A2 N Ba) # 0 7 R; «— exclusion (R;.R:);
8 and ... and (A, N B,) # () then 8 if Rj[condition] = () then
9 C|condition] «— C[condition] U 9 warning (“Shadowing™);
10 {(Bi — A1) AB2 A ... A By, 10 Rj[shadowing] — true;
1 (AN Bi) A (Bz— Az) A ... A By,
i; (AN B1)A(A2N B2) A (Bs — Az) A ... A By, 1 /*Phase 2%/
— _
14 (ALNB) A A(Ap 1N By 1) A (Bp— Ap)}: :; fonRu <1—m{1(-:€112)\d:2k>z’and
15 | else N - 14 reldecision] = ri|decision] };
16 L Cleondition] — (C[condition] U Blcondition)); 15 if testRedundancy (Ra, R:) then
7 re_turn C: 16 warning (“Redundancy”);
17 Ri[condition] — (:
Algorithm 2: testIrrelevance(c,r) e Ri[redundancy] — true;
1 zg « source (1); 19 else . .
2 7y — dest (1); y 20 for j «— (i + 1) ton do
: : L 21 if Ri[decision]=R;[decision] then
3 if (25 = zq) and (—r|decision]) then X)
! i . - 22 Rj «—exclusion (R;,Ri);
4 ‘ warning (“First case of irrelevance”); 2 if (<R, [redundancy) and
5 elseif zs # z4 then gL Y
. 24 R;[condition] = () then
6 p + minimal_route (zs,za): - . « L.
N S 25 warning (“Shadowing™);
7 if ¢ ¢ p and (—r[decision]) then % L Ry [shadowing] — true;
8 ‘ warning (“Second case of irrelevance”); I gl true
9 else if (mempty (r[Ac])) and (—affects(za, 7[Ac])) then L
10 ‘ warning (“Third case of irrelevance”); 27 /;Phase 3%/
11 else return false; 28 fori — 1ton do
12 return true; 29 if Ri[condition] # () then
30 if testIrrelevance (¢, R;) then
Algorithm 3: testRedundancy(R.r) 31 Rylirrelevance] — true;
1ie1; 32 L r[condition] — 0;
2 temp —1; L -
3 while —test and (i < count(R)) do 33 end

4 temp «— exclusion(temp, R;):
5 if temp[condition] = () then

6 L return true;

7 i— (i+1):

8 return false;

