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Abstract: The use of different network security components, such asfirewalls
and network intrusion detection systems(NIDSs), is the dominant method to
survey and guarantee the security policy in current corporate networks. On the
one hand, firewalls are traditional security components which provide means to
filter traffic within corporate networks, as well as to policethe incoming and
outcoming interaction with the Internet. On the other hand,NIDSs are com-
plementary security components used to enhance the visibility level of the net-
work, pointing to malicious or anomalous traffic. To properly configure both
firewalls and NIDSs, it is necessary to use several sets of filtering and alerting
rules. Nevertheless, the existence of anomalies between those rules, particularly
in distributed multi-component scenarios, is very likely to degrade the network
security policy. The discovering and removal of these anomalies is a serious and
complex problem to solve. In this paper, we present a set of algorithms for such
a management.

1 Introduction

Generally, once a security administrator has specified a security policy, he or she
aims to enforce it in the information system to be protected.This enforcement
consists in distributing the security rules expressed in this policy over different
security components of the information system – such as firewalls, intrusion
detection systems (IDSs), intrusion prevention systems (IPSs), proxies, etc –
both at application, system, and network level. This implies cohesion of the
security functions supplied by these components. In other words, security rules
deployed over the different components must be consistent,not redundant and,
as far as possible, optimal.

An approach based on a formal security policy refinement mechanism (us-
ing for instance abstract machines grounded on set theory and first order logic)



ensures cohesion, completeness and optimization as built-in properties. Unfor-
tunately, in most cases, such an approach has not a wide follow and the policy is
more often than not empirically deployed based on security administrator exper-
tise and flair. It is then advisable to analyze the security rules deployed to detect
and correct some policy anomalies – often referred in the literature asintra- and
inter-configuration anomalies[4].

These anomalies might be the origin of security holes and/orheaviness of in-
trusion prevention and detection processes. Firewalls [6]and network intrusion
detection systems (NIDSs) [12] are the most commonly used security compo-
nents and, in this paper, we focus particularly on their security rules. Firewalls
are prevention devices ensuring the access control. They manage the traffic be-
tween the public network and the private network zones on onehand and be-
tween private zones in the local network in the other hand. The undesirable
traffic is blocked or deviated by such a component. NIDSs are detection devices
ensuring a monitoring role. They are components that supervise the traffic and
generate alerts in the case of suspicious traffic. The attributes used to block or
to generate alerts are almost the same. The challenge, when these two kinds of
components coexist in the security architecture of an information system is then
to avoid inter-configuration anomalies.

In [7, 8], we presented an audit process to manage intra-firewall policy anoma-
lies, in order to detect and remove anomalies within the set of rules of a given
firewall. This audit process is based on the existence of relationships between
the condition attributes of the filtering rules, such as coincidence, disjunction,
and inclusion, and proposes a transformation process whichderives from an ini-
tial set of rules – with potential policy anomalies – to an equivalent one which
is completely free of errors. Furthermore, the resulting rules are completely dis-
joint, i.e., the ordering of rules is no longer relevant.

In this paper, we extend our proposal of detecting and removing intra-firewall
policy anomalies [7, 8], to a distributed setup where both firewalls and NIDSs
are in charge of the network security policy. This way, assuming that the role
of both prevention and detection of network attacks is assigned to several com-
ponents, our objective is to avoid intra and inter-component anomalies between
filtering and alerting rules. The proposed approach is basedon the similarity
between the parameters of a filtering rule and those of an alerting rule. This
way, we can check whether there are errors in those configurations regarding
the policy deployment over each component which matches thesame traffic.

The advantages of our proposal are threefold. First, as opposite to the re-
lated work we show in Section 6, our approach not only considers the analy-
sis of relationships between rules two by two but also a complete analysis of
the whole set of rules. This way, those conflicts due to the union of rules that



are not detected by other proposals (such as [2, 3, 9]) are properly discovered
by our intra- and inter-component algorithms. Second, after applying our intra-
component algorithms the resulting rules of each componentare totally disjoint,
i.e., the ordering of rules is no longer relevant. Hence, onecan perform a sec-
ond rewriting of rules in acloseor openmanner, generating a configuration that
only containsdeny (or alert) rules if the component default policy is open, and
accept (or pass) rules if the default policy is close (cf. Section 3.1). Third, we
also present in this paper a network model to determine whichcomponents are
crossed by a given packet knowing its source and destination, as well as other
network properties. Thanks to this model, our approach better defines all the set
of anomalies studied in the related work. Furthermore the lack of this model in
other approaches, such as [2, 3], may lead to inappropriate decisions.

The rest of this paper is organized as follows. Section 2 starts by introducing
a network model that is further used in Section 3 and Section 4when present-
ing, respectively, our intra and inter-component anomaly’s classifications and
algorithms. Section 5 overviews the performance of our proposed algorithms.
Section 6 shows an analysis of some related work. Finally Section 7 closes the
paper with some conclusions and gives an outlook on future work.

2 Network Model

The purpose of our network model is to determine which components within the
network are crossed by a given packet, knowing its source anddestination. It is
defined as follows. First, and concerning the traffic flowing from two different
zones of the distributed policy scenario, we may determine the set of compo-
nents that are crossed by this flow. Regarding the scenario shown in Figure 1,
for example, the set of components crossed by the network traffic flowing from
zoneexternal network to zoneprivate3 equals [C1,C2,C4], and the set of
components crossed by the network traffic flowing from zoneprivate3 to zone
private2 equals [C4,C2,C3].

Let C be a set of components and letZ be a set of zones. We assume that
each pair of zones inZ are mutually disjoint, i.e., ifzi ∈ Z andzj ∈ Z then
zi ∩ zj = ∅. We then define the predicateconnected(c1, c2) as a symmetric
and anti-reflexive function which becomestrue whether there exists, at least,
one interface connecting componentc1 to componentc2. On the other hand,
we define the predicateadjacent(c, z) as a relation between components and
zones which becomestrue whether the zonez is interfaced to componentc.
Referring to Figure 1, we can verify that predicatesconnected(C1, C2) and
connected(C1, C3), as well asadjacent(C1,DMZ), adjacent(C2, private1),
adjacent(C3,DMZ), and so on, becometrue.



We then define the set of paths,P , as follows. Ifc ∈ C then [c] ∈ P is
an atomic path. Similarly, if[p.c1] ∈ P (be “.” a concatenation functor) and
c2 ∈ C, such thatc2 /∈ p andconnected(c1, c2), then[p.c1.c2] ∈ P . This way,
we can notice that, concerning Figure 1,[C1, C2, C4] ∈ P and[C1, C3] ∈ P .

Fig. 1.Simple distributed policy setup.

Let us now define a set of functions related with the order between paths.
We first define functionsfirst, last, and the order functor between paths. We
define functionsfirst and last, respectively, fromP in C, such that ifp is a
path, thenfirst(p) corresponds to the first component in the path, andlast(p)
corresponds to the last component in the path. We then define the order functor
between paths asp1 ≤ p2, such that pathp1 is shorter thanp2, and where
all the components withinp1 are also withinp2. We also define the predicates
isF irewall(c) andisNIDS(c) which becometrue whether the componentc
is, respectively, a firewall or a NIDS.

Two additional functions areroute and minimal route. We first define
function route from Z to Z in 2P , such thatp ∈ route(z1, z2) iff the pathp
connects zonez1 to zonez2. Formally, we define thatp ∈ route(z1, z2) iff
adjacent(first(p), z1) and adjacent(last(p), z2). Similarly, we then define
minimal route from Z to Z in 2P , such thatp ∈ minimal route(z1, z2)
iff the following conditions hold: (1)p ∈ route(z1, z2); (2) There does not exist
p′ ∈ route(z1, z2) such thatp′ < p. Regarding Figure 1, we can verify that the
minimal route from zoneprivate3 to zoneprivate2 equals[C4, C2, C3], i.e.,
minimal route(private3, private2) = {[C4, C2, C3]}.

Let us finally conclude this section by defining the predicateaffects(Z,Ac)
as a boolean expression which becomestrue whether there is, at least, an ele-
mentz ∈ Z such that the configuration ofz is vulnerable to the attack category
Ac ∈ V , whereV is a vulnerability set built from a vulnerability database,such
as CVE/CAN [11] or OSVDB [13].



3 Intra-Component Analysis

In this section we extend our previous work on analysis of network access con-
trol rules for the configuration of firewalls [7, 8], concentrating on anomalies
that may also arise in NIDS setups. In particular, a new case of anomaly is
pointed out (cf. Intra-Component Irrelevance) and the associated code of our
intra-component algorithms has been properly revised3.

For our work, we define the security rules of both firewalls andNIDSs as
filtering and alerting rules, respectively. In turn, both filtering and alerting rules
are specific cases of a more general configuration rule, whichtypically defines
a decision (such asdeny, alert, accept, or pass) that applies over a set of
condition attributes, such asprotocol, source, destination, classification, and
so on. We define a general configuration rule as follows:

Ri : {conditioni} → decisioni (1)

wherei is the relative position of the rule within the set of rules,{conditioni}
is the conjunctive set of condition attributes such that{conditioni} equals
C1 ∧ C2 ∧ ... ∧ Cp – beingp the number of condition attributes of the given
rule – anddecision is a boolean value in{true, false}.

We shall notice that the decision of a filtering rule will be positive (true)
whether it applies to a specific value related todeny (or filter) the traffic it
matches, and will be negative (false) whether it applies to a specific value re-
lated toaccept(or ignore) the traffic it matches. Similarly, the decision of an
alerting rule will be positive (true) whether it applies to a specific value re-
lated toalert (or warn) about the traffic it matches, and will be negative (false)
whether it applies to a specific value related topass(or ignore) the traffic it
matches.

Let us continue by classifying the complete set of anomaliesthat can occur
within a single component configuration. An example for eachanomaly will be
illustrated through the sample scenario shown in Figure 2.

Intra-Component Shadowing A configuration ruleRi is shadowed in a set of
configuration rulesR whether such a rule never applies because all the packets
thatRi may match, are previously matched by another rule, or combination of
rules, with higher priority. Regarding Figure 2, ruleC1{R6} is shadowed by the
union of rulesC1{R3} andC1{R5}.

3 Because of the similarity between the revision and the previous work already covered in [7,
8], we move our intra-component audit algorithms to Appendix A. Their correctness and com-
plexity can also be found in [7, 8].



(a) Example scenario of a filtering policy.

(b) Example scenario of an alerting policy.

Fig. 2. Example filtering and alerting policies.

Intra-Component Redundancy A configuration ruleRi is redundant in a set
of configuration rulesR whether the following conditions hold: (1)Ri is not
shadowed by any other rule or set of rules; (2) when removingRi from R, the
security policy does not change. For instance, referring toFigure 2, ruleC1{R4}
is redundant, since the overlapping between rulesC1{R3} andC1{R5} is equiv-
alent to the police of ruleC1{R4}.

Intra-Component Irrelevance A configuration ruleRi is irrelevant in a set of
configuration rulesR if one of the following conditions holds:

(1) Both source and destination address are within the same zone. For in-
stance, ruleC1{R1} is irrelevant since the source of its address,external net-
work, as well as its destination, is the same.

(2) The component is not within the minimal route that connects the source
zone, concerning the irrelevant rule which causes the anomaly, to the destination
zone. Hence, the rule is irrelevant since it matches traffic which does not flow
through this component. RuleC1{R2}, for example, is irrelevant since compo-
nentC1 is not in the path which corresponds to the minimal route between the
source zoneunix network to the destination zonewindows network.



(3) The component is a nids, i.e., the predicateisNIDS(c) (cf. Section 2)
becomestrue, and, at least, one of the condition attributes inRi is related with
a classification of attackAc which does not affect the destination zone of such
a rule – i.e., the predicate affects(zd, Ac) becomesfalse. Regarding Figure 2,
we can see that ruleC2{R2} is irrelevant since the nodes in the destination zone
unix network are not affected by vulnerabilities classified aswinworm.

3.1 Default policies

Each component implements a positive (i.e., close) or negative (i.e., open) de-
fault policy. In the positive policy, the default policy is to alert or to deny a
packet when any configuration rule applies. Conversely, thenegative policy will
accept or pass a packet when no rule applies.

After rewriting the rules with the intra-component-audit algorithms (cf. Ap-
pendix A), we can actually remove every rule whose decision ispassor acceptif
the default policy of this component is negative (else this rule is redundant with
the default policy) and, similarly, we can remove every rulewhose decision is
denyor alert if the default policy is positive. Thus, we can consider thatour
proposedintra-component-auditalgorithm generates a configuration that only
contains positive rules if the component default policy is negative, and negative
rules if the default policy is positive.

4 Inter-Component Analysis

The objective of the inter-component audit algorithms is the complete detection
of policy anomalies that could exist in a multi-component policy, i.e., to dis-
cover and warn the security officer about potential anomalies between policies
of different components.

The main hypotheses to deploy our algorithms hold the following: (1) An
upstream network traffic flows away from the closest component to the origin
of this traffic (i.e., the most-upstream component [3]) towards the closest com-
ponent to the remote destination (i.e., the most-downstream component [3]); (2)
Every component’s policy in the network has been rewritten using the intra-
component algorithms defined in Appendix A, i.e., it does notcontain intra-
component anomalies and the rules within such a policy are completely inde-
pendent between them.

4.1 Inter-Component Anomalies Classification

In this section, we classify the complete set of anomalies that can occur within a
multi-component policy. Our classification is based on the network model pre-



sented in Section 2. An example for each anomaly will be illustrated through
the distributed multi-component policy setup shown in Figure 3.

Inter-Component Shadowing A shadowing anomaly occurs between two
components whether the following conditions hold: (1) The most-upstream com-
ponent is a firewall; (2) The downstream component, where theanomaly is de-
tected, does not block or report (completely or partially) traffic that is blocked
(explicitly, by means of positive rules; or implicitly, by means of its default pol-
icy), by the most-upstream component.

The explicit shadowing as result of the union of rulesC6{R7} andC6{R8}
to the traffic that the componentC3 matches by means of ruleC3{R1} is a
proper example offull shadowingbetween a firewall and a NIDS. Similarly, the
anomaly between rulesC3{R2} andC6{R8} shows an example of anexplicit
partial shadowinganomaly between a firewall and a NIDS.

On the other hand, the implicit shadowing between the ruleC1{R5} and the
default policy of componentC2 is a proper example ofimplicit full shadowing
between two firewalls. Finally, the anomaly between the ruleC1{R6}, C2{R1},
and the default policy of componentC2 shows an example of animplicit partial
shadowinganomaly between two firewalls.

Inter-Component Redundancy A redundancy anomaly occurs between two
components whether the following conditions hold: (1) The most-upstream com-
ponent is a firewall; (2) The downstream component, where theanomaly is de-
tected, blocks or reports (completely or partially) trafficthat is blocked by the
most-upstream component.

RulesC5{R3} andC6{R1} show a proper example offull redundancybe-
tween two firewalls, whereas rulesC4{R3} andC6{R5} show an example of
full redundancybetween a firewall and a NIDS. Similarly, rulesC5{R4} and
C6{R2} show a proper example ofpartial redundancybetween two firewalls,
whereas rulesC4{R4} and C6{R6} show an example ofpartial redundancy
between a firewall and a NIDS.

Sometimes, this kind of redundancy is expressly introducedby network ad-
ministrators (e.g., to guarantee the forbidden traffic willnot reach the destina-
tion). Nonetheless, it is important to discover it since, ifsuch a rule is applied,
we may conclude that at least one of the redundant componentsis wrongly
working.

Inter-Component Misconnection A misconnection anomaly occurs between
two components whether the following conditions hold: (1) The most-upstream
component is a firewall; (2) the most-upstream firewall permits (explicitly, by



Fig. 3. An example for a distributed network policy setup.

means of negative rules; or implicitly, through its defaultpolicy) all the traffic –
or just a part of it – that is denied or alerted by a downstream component.

An explicit misconnection anomaly between two firewalls is shown through
the rulesC5{R1} andC2{R2} (full misconnection); and the rulesC5{R2} and
C2{R2} (partial misconnection). An implicit misconnection anomaly between
two firewalls is also shown by the ruleC1{R5} and the default policy of fire-
wall C2 (full misconnection); and the rulesC1{R6} andC2{R1}, together with
the default policy ofC2 (partial misconnection). Similarly, the pair of rules
C4{R1}-C2{R5} and the pair of rulesC4{R2}-C2{R5} show, respectively, an
explicit example of full and partial misconnection anomalybetween a firewall
and a NIDS. Finally, the ruleC4{R5} together with the negative policy of the
firewall C2 shows an example of implicit misconnection anomaly betweena
firewall and a NIDS.



4.2 Inter-Component Analysis Algorithms

For reasons of clarity, we split the whole analysis process in four different algo-
rithms. The input for the first algorithm (cf. Algorithm 5) isthe set of compo-
nentsC, such that for allc ∈ C, we notec[rules] as the set of configuration rules
of componentc, andc[policy] ∈ {true, false} as the default policy of such a
componentc. In turn, each ruler ∈ c[rules] consists of a boolean expression
over the attributesszone (source zone),dzone (destination zone),sport (source
port),dport (destination port),protocol, anddecision (true or false).

Let us recall here the functionssource(r) = szone anddest(r) = dzone.
Thus, we compute for each componentc ∈ C and for each ruler ∈ c[rules],
each one of the source zonesz1 ∈ Zs and destination zonesz2 ∈ Zd – whose
intersection with respectivelyszone anddzone is not empty – which become,
together with a reference to each componentc and each ruler, the input for the
second algorithm (i.e., Algorithm 6).

Once in Algorithm 6, we compute the minimal route of components that
connects zonez1 to z2, i.e., [C1, C2, . . . , Cn] ∈ minimal route(z1, z2). Then,
we decompose the set of components inside each path in downstream path
(pathd) and upstream path (pathu). To do so, we use the implicit functionshead
andtail. The first componentcd ∈ pathd, and the last componentcu ∈ pathu

are passed, respectively, as argument to the last two algorithms (i.e., Algorithm 7
and Algorithm 8) in order to conclude the set of necessary checks that guarantee
the audit process4.

Let us conclude by giving an outlook in Figure 4 to the set of warnings after the
execution of Algorithm 5 over the scenario of Figure 3:

C1{R3} − C6{R3, R4}: Full Shadowing
C1{R4} − C6{R4}: Partial Shadowing
C1{R5} − C2{pol.}: Full Shadowing
C1{R6} − C2{R1, pol.}: Partial Shadowing
C2{R3} − C1{pol.}: Full Misconnection
C2{R4} − C1{R7, pol.}: Partial Misconnection
C3{R1} − C6{R7, R8}: Full Shadowing
C3{R2} − C6{R8}: Partial Shadowing
C4{R1} − C2{R5}: Full Misconnection

C4{R2} − C2{R5}: Partial Misconnection
C4{R3} − C6{R5}: Full Redundancy
C4{R4} − C6{R6}: Partial Redundancy
C4{R5} − C6{pol.}: Full Misconnection
C5{R1} − C2{R2}: Full Misconnection
C5{R2} − C2{R2}: Partial Misconnection
C5{R3} − C6{R1}: Full Redundancy
C5{R4} − C6{R2}: Partial Redundancy
C5{R5} − C6{pol.}: Full Misconnection

Fig. 4. Execution of Algorithm 5 over the scenario of Figure 3.

4 The operator “∽” within algorithms 7 and 8 denotes that two rulesri andrj are correlated if
every attribute inRi has a non empty intersection with the corresponding attribute inRj .



5 Performance Evaluation

In this section, we present an evaluation of the performanceof MIRAGE (which
stands for MIsconfiguRAtion manaGEr), a software prototypethat implements
the intra and inter-firewall algorithms presented in sections 3 and 4. MIRAGE
has been developed using PHP, a scripting language that is especially suited
for web services development and can be embedded into HTML for the con-
struction of client-side GUI based applications [5]. MIRAGE can be locally or
remotely executed by using a HTTP server and a web browser.

Inspired by the experiments done in [3], we evaluated our algorithms through
a set of experiments over two different IPv4 real networks. The topology for the
first network consisted of a single firewall based Netfilter [16], and a single
NIDS based on Snort [15] – connected to three different zoneswith more than
50 hosts. The topology for the second network consisted of six different compo-
nents – based on netfilter, ipfilter [14], and snort [15] – protecting six different
zones with more than 200 hosts. The whole of these experiments were carried
out on an Intel-Pentium M 1.4 GHz processor with 512 MB RAM, running
Debian GNU/Linux 2.6.8, and using Apache/1.3 with PHP/4.3 configured.



During a first phase, we measured the memory space and the processing
time needed to perform Algorithm 4 over several sets of IPv4 policies for the
first IPv4 network, according to the three following security officer profiles:
beginner, intermediate, and expert – where the probabilityto have overlaps be-
tween rules increases from 5% to 90%. The results of these measurements are
plotted in Figure 5(a) and Figure 5(b). Though those plots reflect strong mem-
ory and process time requirements, we consider they are reasonable for off-line
analysis, since it is not part of the critical performance ofa single component.

We conducted, in a second phase, similar experiments to measure the per-
formance and scalability of Algorithm 5 through a progressive increment of
auto-generated rules, firewalls and zones for the second network. The results of
these measurements are plotted in Figure 5(c) and Figure 5(d). Similarly to the
intra-component evaluation, we consider these requirements very reasonable for
off-line inter-component analysis.
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Fig. 5. Evaluation of our set of intra- and inter-component algorithms.



6 Related Work

Some related proposals to our work, such as [1, 9, 2, 10, 3, 4],provide means
to directly manage the discovery of anomalies from the components’ configu-
ration. For instance, the authors in [1] consider that, in a configuration set, two
rules are in conflict when the first rule in order matches some packets that match
the second rule, and the second rule also matches some of the packets that match
the first rule. This approach is very limited since it just detects a particular case
of ambiguity within a single component configuration. Furthermore, it does not
provide detection on multiple-component configurations.

In [9], two cases of anomalies are considered. First, a ruleRj is defined as
backward redundant iff there exists another ruleRi with higher priority in order
such that all the packets that match ruleRj also match ruleRi. Second, a rule
Ri is defined as forward redundant iff there exists another ruleRj with the same
decision and less priority in order such that the following conditions hold: (1) all
the packets that matchRi also matchRj ; (2) for each ruleRk betweenRi and
Rj , and that matches all the packets that also match ruleRi, Rk has the same
decision asRi. Although this approach seems to head in the right direction, we
consider it as incomplete, since it does not detect all the possible cases of intra-
component anomalies (as we define in this paper). For instance, given the set
of rules shown in Figure 6(a), sinceR2 comes afterR1, rule R2 only applies
over the interval[51, 70] – i.e., R2 is not necessary, since, if we remove this
rule from the configuration, the filtering policy does not change. The detection
proposal, as defined in [9], cannot detect the redundancy of rule R2 within the
configuration of such a given firewall. Furthermore, neither[9] nor [10] provide
detection on multiple-component configurations.

R1 : s ∈ [10, 50] → deny

R2 : s ∈ [40, 70] → accept

R3 : s ∈ [50, 80] → accept

(a) Set of rules A

R1 : s ∈ [10, 50] → accept

R2 : s ∈ [40, 90] → accept

R3 : s ∈ [30, 80] → deny

(b) Set of rules B

Fig. 6. Example of some firewall configurations.

To our best knowledge, the approach presented in [2–4] propose the most
efficient set of techniques and algorithms to detect policy anomalies in both sin-
gle and multi-firewall configuration setups. In addition to the discovery process,
their approach also attempts an optimal insertion of arbitrary rules into an ex-
isting configuration, through a tree based representation of the filtering criteria.
Nonetheless, and even though the efficiency of their proposed discovering al-
gorithms and techniques is very promising, we also considerthis approach as
incomplete. First, their intra- and inter-component discovery approach is not



complete since, given a single- or multiple-component security policy, their de-
tection algorithms are based on the analysis of relationships between rules two
by two. This way, errors due to the union of rules are not explicitly considered
(as our approach does). The set of rules shown in Figure 6(b),for example,
may lead their discovery algorithms to inappropriate decisions. The approach
defined in [2] cannot detect that ruleR3 will be never applied due to the union
of rulesR1 andR2. Just a correlation signal – that is obviously a weaker signal
than a shadowing one – would be labeled. Though in [3] the authors pointed out
to this problematic, claiming that they break down the initial set of rules into
an equivalent set of rules free of overlaps between rules, nospecific algorithms
have been provided for solving it in [2–4].

Second, their inter-component discovery approach considers as anomalies
some situations that, from our point of view, must be suited to avoid inconsistent
decisions between components used in the same policy to control or survey to
different zones. For instance, given the following scenario:

FW1 FW2

111.222.1.[0,255]111.222.0.[0,255]

FW 1{R1} : p = tcp s  any  d  111.222.1.0/24  dport = 80  deny 

FW 2{R1} : p = tcp s  111.222.0.0/24  d  111.222.1.0/24  dport = 80  deny 

external

network DMZ private

their algorithms will inappropriately report a redundancyanomaly between
filtering rulesFW1{R1} andFW2{R1}. This is because ruleFW1{R1}matches
every packet that alsoFW2{R1} does. As a consequence, [2] considers rule
FW2{R1} as redundant since packets denied by this rule are already denied
by rule FW1{R1}. However, this conclusion is not appropriate because rule
FW1{R1} applies to packets from the external zone to the private zonewhereas
rule FW2{R1} applies to packets from the DMZ zone to the private zone. So,
rule FW2{R1} is useful and cannot be removed. Though in [2, 3] the authors
claim that their analysis technique marks every rule that isused on a network
path, no specific algorithms have been provided for doing so.The main advan-
tage of our proposal over their approach is that it includes amodel of the traffic
which flows through each component. We consider this is necessary to draw the
right conclusion in this case.

Finally, although in [4] the authors consider their work as sufficiently gen-
eral to be used for verifying many other filtering based security policies such as
intrusion detection and prevention systems, no specific mechanisms have been
provided for doing so.



7 Conclusions

In this paper we presented an audit process to set a distributed security scenario
composed of bothfirewalls and network intrusion detection systems(NIDSs)
free of anomalies. Our audit process has been presented in two main blocks.
We first presented, in Section 3, a set of algorithms for intra-component analy-
sis, according to the discovering and removal of policy anomalies over single-
component environments. We then presented, in Section 4, a set of algorithms
for inter-component analysis, in order to detect and warn the security officer
about the complete existence of anomalies over a multi-component environ-
ment.

Some advantages of our approach are the following. First, our intra-firewall
transformation process verifies that the resulting rules are completely indepen-
dent between them. Otherwise, each rule considered as useless during the pro-
cess is reported to the security officer, in order to verify the correctness of the
whole process. Second, we can perform a second rewriting of rules, generating
a configuration that only contains positive rules if the component default pol-
icy is negative, and negative rules if the default policy is positive. Third, the
network model presented in Section 2 allows us to determine which compo-
nents are crossed by a given packet knowing its source and destination, as well
as other network properties. Thanks to this model, our approach better defines
all the set of anomalies studied in the related work, and it reports, moreover,
two new anomalies (irrelevanceandmisconnection) not reported, as defined in
this paper, in none of the other approaches. Furthermore, and as pointed out in
Section 6, the lack of this model in [2–4] leads to inappropriate decisions.

The implementation of our approach in a software prototype demonstrates
the practicability of our work. We shortly discussed this implementation, based
on a scripting language [5], and presented an evaluation of its performance. Al-
though these experimental results show that our algorithmshave strong require-
ments, we believe that these requirements are reasonable for off-line analysis,
since it is not part of the critical performance of the audited component.

As future work, we are currently studying the anomaly problems of security
rules in the case where the security architecture includes firewalls, IDS/IPS, and
IPSec devices. Though there is a real similarity between theparameters of those
devices’ rules, more investigation has to be done in order toextend our proposal.
In parallel to this work, we are also considering to extend our approach to the
analysis of stateful policies.
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A Intra-Component Algorithms

Our proposed audit process is a way to alert the security officer in charge of the
network about these configuration errors, as well as to remove all the useless
rules in the initial firewall configuration. The data to be used for the detection
process is the following. A set of rulesR as a list of initial sizen, wheren
equalscount(R), and where each element is an associative array with the strings
condition, decision, shadowing, redundancy, and irrelevance as keys to
access each necessary value.

For reasons of clarity, we assume one can access a linked-list through the
operatorRi, where i is the relative position regarding the initial list size –
count(R). We also assume one can add new values to the list as any other nor-
mal variable does (element ← value), as well as to remove elements through
the addition of an empty set (element ← ∅). The internal order of elements
from the linked-listR keeps with the relative ordering of rules.

Each elementRi[condition] is a boolean expression overp possible at-
tributes. To simplify, we only consider as attributes the following ones:szone
(source zone),dzone (destination zone),sport (source port),dport (destina-
tion port),protocol, andattack class – or Ac for short – which will be empty
whether the component is a firewall. In turn, each elementRi[decision] is a
boolean variable whose values are in{true, false}. ElementsRi[shadowing],
Ri[redundancy], andRi[irrelevance] are boolean variables in{true, false}
– which will be initialized tofalse by default.

We split the whole process in four different algorithms. Thefirst algorithm
(cf. Algorithm 1) is an auxiliary function whose input is tworules,A andB.
Once executed, this auxiliary function returns a further rule, C, whose set of
condition attributes is the exclusion of the set of conditions fromA overB. In
order to simplify the representation of this algorithm, we use the notationAi

as an abbreviation of the variableA[condition][i], and the notationBi as an
abbreviation of the variableB[condition][i] – wherei in [1, p].

The second algorithm (cf. Algorithm 2) is a boolean functionin {true, false}
which applies the necessary verifications to decide whethera ruler is irrelevant
for the configuration of a componentc. To properly execute such an algorithm,
let us definesource(r) as a function inZ such thatsource(r) = szone, and
dest(r) as a function inZ such thatdest(r) = dzone.

The third algorithm (cf. Algorithm 3) is a boolean function in {true, false}
which, in turn, applies the transformationexclusion(Algorithm 1) over a set of
configuration rules to check whether the rule obtained as a parameter is poten-
tially redundant.



The last algorithm (cf. Algorithm 4) performs the whole process of detect-
ing and removing the complete set of intra-component anomalies. This process
is split in three different phases. During the first phase, a set of shadowing rules
are detected and removed from a top-bottom scope, by iteratively applying Al-
gorithm 1 – when the decision field of the two rules is different. Let us notice
that this stage of detecting and removing shadowed rules is applied before the
detection and removal of proper redundant and irrelevant rules.

The resulting set of rules is then used when applying the second phase, also
from a top-bottom scope. This stage is performed to detect and remove proper
redundant rules, through an iterative call to Algorithm 3 (i.e.,testRedundancy),
as well as to detect and remove all the further shadowed rulesremaining during
the latter process. Finally, during a third phase the whole set of non-empty rules
is analyzed in order to detect and remove irrelevance, through an iterative call
to Algorithm 2 (i.e.,testIrrelevance).


