
DETECTION AND REMOVAL OF
FIREWALL MISCONFIGURATION

Frédéric Cuppens Nora Cuppens-Boulahia

GET/ENST-Bretagne,
2, rue de la Châtaigneraie,
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ABSTRACT

To police network traffic, firewalls must be config-
ured with a set of filtering rules. The existence of errors
in this set is very likely to degrade the network security
policy. The management of these configuration errors is a
serious and complex problem to solve. In this paper, we
present a set of algorithms to manage rules that never apply
or are redundant in a firewall configuration. Our approach
is based on the analysis of relationships between the set of
filtering rules. Then, a subsequent rewriting of rules will
derive from an initial firewall setup to an equivalent one
completely free of errors. At the same time, the algorithms
will detect both shadowed and redundant rules in the initial
firewall configuration.
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1 Introduction

Many companies and organizations use firewalls to seg-
ment access control within their own networks. Firewalls
are typically deployed to filter traffic between trusted and
untrusted zones of corporate networks, as well as to police
their incoming and outcoming interaction with other net-
works – e.g., the Internet1.

Firewalls, as many other network security components,
must to be configured with a list of rules (e.g., the set of fil-
tering rules shown in Table 1). Each rule typically specifies
a decision (e.g., accept or deny) that applies to a set of
condition attributes, such as protocol, source, destination,
service ports, and so on. For our work, we define a filtering
rule as follows:

Ri : {conditioni} → decisioni (1)

1Firewalls also implement other functionalities, such as Proxying and
Network Address Transfer (NAT), but it is not the purpose of this paper to
cover these functionalities.

where i is the relative position of the rule within
the set of rules, decisioni is a boolean expression in
{accept, deny}2, and {conditioni} is a conjunctive set of
condition attributes such that {conditioni} equals A1 ∧
A2 ∧ ... ∧ Ap – p being the number of condition attributes
of the given set of filtering rules.

To solve conflicts when processing packages, most fire-
wall implementations use a first matching strategy through
the ordering of rules (e.g. the order field shown in Table 1).
Hence, each packet processed by the firewall is mapped to
the decision of the highest priority rule.

This strategy introduces, however, firewall rule conflicts
that result in non-firing rules (shadowing) or rules that have
no effect (redundancy). We define these two general cases
of firewall misconfiguration as follows.

Definition 1.1 Let R be a set of filtering rules. Then R
has shadowing iff there exists at least one filtering rule,
Ri in R, which never applies because all the packets that
Ri may match, are previously matched by another rule, or
combination of rules, with higher priority in order.

Definition 1.2 Let R be a set of filtering rules. Then R
has redundancy iff there exists at least one filtering rule,
Ri in R, such that the following conditions hold: (1) Ri

is not shadowed by any other rule; (2) when removing Ri

from R, the filtering result does not change.

The detection and removal of both redundancy and shad-
owing is a serious problem which must to be solved, since
a misconfigured set of filtering rules, if not handled cor-
rectly, is very likely to lead to a inefficient and weak secu-
rity policy – since packets could be subject to the wrong
actions. Although the proper managing of this configura-
tion errors is starting to get currently a significant amount
of work, such as [1, 7, 10, 2, 4], just few approaches seem
to manage acceptable results.

2The decision field may also be a combination of both accept and
deny together with some other options such as a logging or jump options.
For reasons of clarity we assume that just accept and deny are proper
values.



order condition decision
(p)rotocol (s)ource (sP)ort (d)estination (dP)ort

1 any xxx.xxx.xxx.[010,050] any xxx.xxx.xxx.xxx any deny
2 any xxx.xxx.xxx.[040,090] any xxx.xxx.xxx.xxx any accept
3 any xxx.xxx.xxx.[060,100] any xxx.xxx.xxx.xxx any accept
4 any xxx.xxx.xxx.[030,080] any xxx.xxx.xxx.xxx any deny
5 any xxx.xxx.xxx.[001,070] any xxx.xxx.xxx.xxx any accept

Table 1. Example of a set of filtering rules with five condition attributes.

In this paper, we present a set of algorithms for the manag-
ing of both redundancy and shadowing of rules. Our main
objective is the following. Given a specific firewall setup,
we want to analyze the existing firewall configuration to
check whether there is errors in such a configuration, i.e.,
the set of filtering rules presents shadowing or redundancy
as defined above.

Our approach is based on the relationships between the
filtering rules’ parameters: coincidence, disjunction and in-
clusion. We use a rule transformation process that derive
from a set of filtering rules to an equivalent and valid one
that is completely free of both shadowing and redundancy.
The advantages of our proposal are the following.

After rewriting the rules, one can verify that each redun-
dant or shadowed rule – considered as useless during the
audit process – will be removed from the initial set of fil-
tering rules. When such a detection occurs, the discovering
process will provide an evidence of error to the administra-
tion console. This way, the security officer in charge of the
network can check from the initial specification, in order to
verify the correctness of the whole process.

Furthermore, since the resulting rules are disjoint, the
ordering of rules is no longer relevant. Hence, one can
perform a second transformation in a positive or negative
manner. The first – when generating only permissions –
can be used in a closed policy whereas the latter – when
generating only prohibitions – can be used in case of an
open policy. After performing this second rewriting, the
security officer will have a clear view of the accepted
traffic (in the case of positive rewriting) or the rejected
traffic (in the case of negative rewriting).

The rest of this paper is organized as follows: We start in
Section 2 with an analysis of some related work. In Section
3 and Section 4, we formally present our algorithms, and
introduce some examples and demonstrations to validate
the correctness of our approach. We close with conclusions
and future work in Section 5.

2 Related Work

A first approach to get a firewall configuration free of errors
is by applying a formal security model to express the net-
work security policy. In [4], for example, a formal model

is presented with this purpose. This way, a set of filtering
rules, whose syntax is specific to a given firewall, may be
generated using a transformation language. Nonetheless,
this approach is not enough to ensure that the firewall con-
figuration is completely free of errors.

Some other proposals, such as [1, 7, 2, 10], provide
means to directly manage misconfiguration. The authors
in [1], for instance, consider that in a configuration set, two
rules are in conflict when the first rule in order matches
some packets that match the second rule, and the second
rule also matches some packets that match the first rule.
This approach is very limited since it does not detect what
we consider serious misconfiguration errors – the two gen-
eral cases defined in Section1. What they detect is just a
particular case of wrongly defined rules which cause am-
biguity in the firewall configuration, and that is more effi-
ciently defined as a combination of both redundancy and
shadowing.

In [7], two new cases of misconfiguration are considered.
First, a rule Rj is defined as backward redundant if and
only if there exists another rule Ri with higher priority in
order such that all the packets that match rule Rj also match
rule Ri. On the other hand, a rule Ri is defined as forward
redundant if and only if there exists another rule Rj with
the same decision and less priority in order such that the
following conditions hold: (1) all the packets that match
Ri also match Rj ; (2) for each rule Rk between Ri and
Rj , and that matches all the packets that also match rule
Ri, Rk has the same decision than Ri.

Although this approach seems to head in the right direc-
tion, we consider our definitions (cf. Section1, Def. 1.1 and
Def. 1.2) simpler and more general, because all possible
backward and forward redundant rules are specific cases of
both redundancy and shadowing, but not vice versa. For
instance, given the following set of rules:

R1 : s ∈ [10, 50]→ deny
R2 : s ∈ [40, 70]→ accept
R2 : s ∈ [50, 80]→ accept

their detection proposal, as defined above, cannot detect
the redundancy of rule R2. Thus, we point out this work as
incomplete.

Firewall Builder [10], a well known support tool devel-
oped to assist administrators in their task of configuring
firewalls, also provides detection of misconfiguration in the
set of filtering rules. Nevertheless, this discovering mecha-
nism only detects trivial equality or inclusion between the



filtering rules’ parameters. We checked out that more com-
plex configuration errors are unfortunately not detected by
this tool.

To our best knowledge, the authors in [2] propose the
most efficient set of techniques and algorithms to detect re-
dundancy and shadowing in different firewall configuration
setups. In addition to the discovery process, their approach
also attempts an optimal insertion of arbitrary rules into an
existing configuration, through a tree based representation
of the filtering criteria.

Nonetheless, and even though the efficiency of their
proposed discovering algorithms and techniques is very
promising, we also consider this approach as incomplete.
On the one hand, their approach is too weak since, given a
misconfigured firewall, their discovering algorithms could
not detect all the possible errors. For example, given the
following set of rules:

R1 : s ∈ [10, 50]→ accept
R2 : s ∈ [40, 90]→ accept
R3 : s ∈ [30, 80]→ deny

their approach cannot detect the shadowing over rule R3

due to the union of rules R1 and R2. Furthermore, they do
not cover, intentionally, an automatic rewriting of rules to
correct the discovered errors. This way, it is the security
officer who should perform the final changes.

Summing up, we believe that none of the identified related
work provides a complete discovering of both redundancy
and shadowing of rules – which are the cases we consider
serious errors within firewalls configurations – as well as a
proper handling of such a misconfiguration.

3 Detection Process

As pointed out in Section 1, our main goal is the discov-
ering of both shadowing and redundancy inside an initial
set of filtering rules R. Such a detection process is a way
to alert the security officer in charge of the network about
these configuration errors, as well as to remove all the use-
less rules in the initial firewall configuration.

The data for the process is the following. A set of
rules R as a linked-list3of initial size n, where n equals
count(R), and where each element is an associative ar-
raywith the strings condition, decision, shadowing, and
redundancy as keys to access each necessary value. In
turn, each element Ri[condition] is an indexed arrayof size
p containing the set of conditions of each rule; each element
Ri[decision] is a boolean variable whose values are in
{accept, deny}; each element Ri[shadowing] is a boolean
variable in {true, false}; each element Ri[redundancy]

3We assume one can access a linked-list through the operator Ri,
where i is the relative position regarding the initial list size – count(R).
We also assume one can remove elements through the addition of an
empty set (element ← ∅). The internal order of elements from the
linked-list R keeps with the relative ordering of rules.

is another boolean variable in {true, false}. Both shad-
owing and redundancy variables of each rule are initialized
to false.

To simplify, we split the whole detection process and
the removal of misconfiguration in two different processes.
Thus, we define a main detection function (Algorithm 1),
whose input is the initial set of filtering rules, R, and an
auxiliary function (Algorithm 2) whose input is two rules,
A and B. Once executed, this auxiliary function returns a
further rule, C, whose set of condition attributes is the ex-
clusion of the set of conditions from A over B. In order to
simplify the representation of this second algorithm (cf. Al-
gorithm 2), we use the notation Ai as an abbreviation of the
variable A[condition][i], an the notation Bi as an abbrevi-
ation of the variable B[condition][i] – where i in [1, p].

Algorithm 1: detection(R)
for i← 1 to (count(R)− 1) do

for j ← (i + 1) to count(R) do
Rj ← exclusion (Rj ,Ri);
if Rj [condition] = ∅
then Rj [shadowing]← true;

end
end

Algorithm 2: exclusion(B,A)

C[condition]← ∅;
C[decision]← B[decision];
C[shadowing]← false;
C[redundancy]← false;
forall the elements of A[condition] and B[condition] do

if ((A1 ∩B1) 6= ∅ and (A2 ∩ B2) 6= ∅ and ...
... and (Ap ∩Bp) 6= ∅)
then

C[condition]← C[condition] ∪
{(B1 −A1) ∧ B2 ∧ ...∧ Bp,
(A1 ∩ B1) ∧ (B2 − A2) ∧ ... ∧Bp,
(A1 ∩ B1) ∧ (A2 ∩ B2) ∧ (B3 − A3) ∧ ... ∧Bp,
...

(A1 ∩ B1) ∧ ... ∧ (Ap−1 ∩ Bp−1) ∧ (Bp − Ap)};

else
C[condition]←
(C[condition] ∪ B[condition]);

end
end
return C;

We recall that the output of the main detection function
(cf. Algorithm 1) is the set which results as a transforma-
tion of the initial set of filtering rules R. This new set is
equivalent to the initial one, R, and all its rules are com-
pletely disjoint. Therefore, the resulting set is free of both
redundancy and shadowing of rules, as well as any other
possible configuration error – such as correlation, general-
ization, and irrelevance [2].



3.1 Applying the Algorithms

This section gives a short outlook on applying our algo-
rithms over some representative examples. Let us start
by applying function exclusion over a set of two rules Ri

and Rj , each one of them with two condition attributes –
(s)ource and (d)estination – and where rule Rj has less pri-
ority in order than rule Ri. In this first example,

Ri[condition] = (s ∈ [80, 100])∧ (d ∈ [1, 50])
Rj [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])

since (s ∈ [1, 50]) ∩ (s ∈ [80, 100]) = ∅, the condition
attributes of rules Ri and Rj are completely independent.
Thus, the applying of exclusion(Rj , Ri) is equal to
Rj [condition].

The following three examples show the same execution
over a set of condition with different cases of conflict. A
first case is the following,

Ri[condition] = (s ∈ [1, 60]) ∧ (d ∈ [1, 30])
Rj [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])

where there is a main overlap of attribute s from
Ri[condition] which completely excludes the same at-
tribute on Rj [condition]. Then, there is a second overlap
of attribute d from Ri[condition] which partially excludes
the range [1, 30] into attribute d of Rj [condition], which
becomes d in [31, 50]. This way, exclusion(Rj , Ri) ←
{(s ∈ [1, 50]) ∧ (d ∈ [31, 50])}4. In this second example,

Ri[condition] = (s ∈ [1, 60]) ∧ (d ∈ [20, 30])
Rj [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])

there is two simple overlaps of both attributes s
and d from Ri[condition] to Rj [condition], such that
exclusion(Rj , Ri) becomes {(s ∈ [1, 50]) ∧ (d ∈
[1, 19]), (s ∈ [1, 50]) ∧ (d ∈ [31, 50])}. A more complete
example is the following,

Ri[condition] = (s ∈ [10, 40]) ∧ (d ∈ [20, 30])
Rj [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])

where exclusion(Rj , Ri) becomes {(s ∈ [1, 9]) ∧ (d ∈
[1, 50]), (s ∈ [41, 50])∧ (d ∈ [1, 50]), (s ∈ [10, 40])∧ (d ∈
[1, 19]), (s ∈ [10, 40]) ∧ (d ∈ [31, 50])}.

Regarding a full exclusion, let us now show the following
example,

Ri[condition] = (s ∈ [1, 60]) ∧ (d ∈ [1, 60])
Rj [condition] = (s ∈ [1, 50]) ∧ (d ∈ [1, 50])

where the set of condition attributes of rule Ri com-
pletely excludes the ones of rule Rj . Then, the applying
of exclusion(Rj , Ri) becomes an empty set (i.e.,

4We do not show the first empty set corresponding to the first overlap.
If shown, the result should become as follows: exclusion(Rj , Ri) ←
{∅, (s ∈ [1, 50]) ∧ (d ∈ [31, 50])}.

{∅, ∅} = ∅). Hence, on a further execution of Algorithm 1
the shadowing field of rule Rj (initialized as false by de-
fault) would become true (i.e., Rj [shadowing]← true).

To conclude, let us show a complete applying over the set
of filtering rules based on Table 1, where the number of
condition attributes, p, is just one.

/ ∗ motivation example ∗ /
R1 : s ∈ [10, 50] → deny
R2 : s ∈ [40, 90] → accept
R3 : s ∈ [60, 100] → accept
R4 : s ∈ [30, 80] → deny
R5 : s ∈ [1, 70] → accept

/ ∗ step 1 ∗ /
R1 : s ∈ [10, 50] → deny
R2 : s ∈ [51, 90] → accept
R3 : s ∈ [60, 100] → accept
R4 : s ∈ [51, 80] → deny
R5 : {s ∈ [1, 9], s ∈ [51, 70]} → accept

/ ∗ step 2 = step 3 = step 4 ∗ /
R1 : s ∈ [10, 50] → deny
R2 : s ∈ [51, 90] → accept
R3 : s ∈ [91, 100] → accept
R4 : ∅ → deny
R5 : s ∈ [1, 9] → accept

/ ∗ resulting rules ∗ /
R1 : s ∈ [10, 50] → deny
R2 : s ∈ [51, 90] → accept
R3 : s ∈ [91, 100] → accept
R5 : s ∈ [1, 9] → accept

/ ∗ warnings ∗ /
R4[shadowing] = true

3.2 Correctness of the Algorithms

Definition 3.1 Let R be a set of filtering rules and let
Tr(R) be the resulting filtering rules obtained by applying
Algorithm 1 to R.

Lemma 3.2 Let Ri : conditioni → decisioni and
Rj : conditionj → decisionj be two filtering rules.
Then {Ri, Rj} is equivalent to {Ri, R

′

j} where R′

j ←
exclusion(Rj , Ri).

Theorem 3.3 Let R be a set of filtering rules and let
Tr(R) be the resulting filtering rules obtained by applying
Algorithm 1 to R. Then R and Tr(R) are equivalent.

Lemma 3.4 Let Ri : conditioni → decisioni and Rj :
conditionj → decisionj be two filtering rules. Then rules
Ri and R′

j , where R′

j ← exclusion(Rj , Ri) will never
simultaneously apply to any given packet.



Theorem 3.5 Let R be a set of filtering rules and let
Tr(R) be the resulting filtering rules obtained by apply-
ing Algorithm 1 to R. Then ordering the rules in Tr(R) is
no longer relevant.

Theorem 3.6 Let R be a set of filtering rules and let
Tr(R) be the resulting filtering rules obtained by applying
Algorithm 1 to R. Then Tr(R) is free from both shadowing
and redundancy.

For space limitation reasons, we move the correctness
proofs of this section to Appendix A.

4 Complete Detection

Up to now, the result of Algorithm 1 offers a set of filter-
ing rules, Tr(R), equivalent to an initial set of rules R, and
completely free of any possible relation between its rules.
Nevertheless, there is a limitation on such an algorithm re-
garding the reporting of redundancy – just the existence of
shadowing is reported to the security officer. Therefore, we
need to modify this algorithm in order to also detect redun-
dancy in R.

The purpose of this section is to solve this limitation, by
presenting a second manner to completely discover both
shadowing and redundancy errors into the initial set of fil-
tering rules, R, based on the techniques and results previ-
ously shown in Section 3.

The reporting of redundancy is much more complex than
the task of reporting shadowing. To properly overcome this
complexity, we first divide the whole process in two differ-
ent algorithms (Algorithm 3 and Algorithm 4).

The first algorithm (cf. Algorithm 3) is a boolean func-
tion in {true, false}, which, in turn, apply the transfor-
mation exclusion (cf. Section 3, Algorithm 2) over a set of
filtering rules to check whether the rule obtained as a pa-
rameter is potentially redundant.

The second algorithm (cf. Algorithm 4) performs the
whole process of detecting and removing both redundancy
and shadowing, and is also split in two different phases.
During the first phase, a potential set of redundant rules is
calculated from a top-bottom scope, by iteratively applying
Algorithm 3. Such a process is applied during the stage
of detecting and removing shadowed rules, i.e., before the
detection and removal of proper redundant rules. This in-
formation is then used when applying the second phase,
from a bottom-top scope. This stage is performed to detect
and remove proper redundant rules, as well as to detect and
remove all the further shadowed rules resulting during the
process. As a result of the whole execution, the initial set
of rules, R, is transformed into an equivalent set, Tr(R),
whose rules are completely disjoint. Furthermore, all the
discovery of both shadowing and redundancy is reported to
the security officer, who may verify the correctness of the
whole process.

Algorithm 3: testRedundancy(R,i)
test← false;
j ← (i + 1);
temp← Ri;
while ¬test and (j ≤ count(R)) do

if temp[decision] = Rj [decision] then
temp← exclusion(temp, Rj);
if temp[condition] = ∅ then

test← true;
end

end
j ← (j + 1);

end
return test;

Algorithm 4: completeDetection(R)
/* Phase 1 */
for i← 1 to (count(R)− 1) do

if testRedundancy (R, i) then
Ri[redundancy]← true;

end
if Ri[redundancy] then

for j ← (i + 1) to count(R) do
if Ri[decision] 6= Rj [decision] then
Rj ← exclusion (Rj ,Ri);

if Rj [condition] = ∅ then
Rj [shadowing]← true;

end
else

for j ← (i + 1) to count(R) do
Rj ← exclusion (Rj ,Ri);
if Rj [condition] = ∅ then
Rj [shadowing]← true;

end
end

end
/* Phase 2 */
for i← (count(R)− 1) to 1 do

if Ri[redundancy] then
if testRedundancy (R, i) then

Ri[condition]← ∅;

else
Ri[redundancy]← false;
for j ← (i + 1) to count(R) do

if Ri[decision]=Rj[decision] then
Rj ←exclusion (Rj ,Ri);

if Rj[condition] = ∅ then
Rj [shadowing]← true;

end
end

end
end



4.1 Applying the Algorithms

In this section we give an outlook on the full execution
of the extended algorithms (Algorithm 3 and Algorithm 4)
over a set of filtering rules based on Table 1, where the
number of condition attributes, p, is just one.

/ ∗motivation example ∗ /

R1 : s ∈ [10, 50]→ deny
R2 : s ∈ [40, 90]→ accept
R3 : s ∈ [60, 100]→ accept
R4 : s ∈ [30, 80]→ deny
R5 : s ∈ [1, 70]→ accept

Then, we begin by showing the initial step within the first
phase of Algorithm 4, where i equals 1, and applied over
the previous set of filtering rules. Let us notice that on this
first step, the execution of function testRedundancy (cf. Al-
gorithm 3), with rule R1 as parameter, becomes false.
Thus, the result of this first step is the following:

/ ∗ phase 1, step 1, i = 1 ∗ /
/ ∗ testRedundancy(R1) = false ∗ /

R1 : s ∈ [10, 50]→ deny
R2 : s ∈ [51, 90]→ accept
R3 : s ∈ [60, 100]→ accept
R4 : s ∈ [51, 80]→ deny
R5 : s ∈ {[1, 9], [51, 70]} → accept

Let us now move to the second step, with i equals 2. In
this step, rule R4 disappears since: (1) the result of ap-
plying function testRedundancy with rule R2 as param-
eter becomes true; (2) the union of condition attributes
from rules R1 and R2 completely excludes the condition
attribute of rule R4. Hence, rule R4, which is shadowed by
the combination of rules R1 and R2, becomes and empty
set. Therefore, the status field shadowing of rule R4,
R4[shadowing], switches its value to true:

/ ∗ phase 1, step 2, i = 2 ∗ /
/ ∗ testRedundancy(R2) = true ∗ /
/ ∗R4[shadowing] = true ∗ /

R1 : s ∈ [10, 50]→ deny
R2 : s ∈ [51, 90]→ accept
R3 : s ∈ [60, 100]→ accept
R4 : ∅ → deny
R5 : s ∈ {[1, 9], [51, 70]} → accept

At the end of the third step of this first phase, the apply-
ing of function testRedundancy, with rule R3 as parameter,
becomes false:

/ ∗ phase 1, step 3, i = 3 ∗ /
/ ∗ testRedundancy(R3) = false ∗ /
/ ∗R4[shadowing] = true ∗ /

R1 : s ∈ [10, 50]→ deny
R2 : s ∈ [51, 90]→ accept
R3 : s ∈ [60, 100]→ accept
R4 : ∅ → deny
R5 : s ∈ {[1, 9], [51, 59]} → accept

Once finished the first phase and running over the step
where i equals 2, we notice that: (1) the applying of testRe-
dundancy with R2 as parameter becomes true; (2) the
union of condition attributes of rules R3 and R5 enables the
redundancy of rule R2. Hence, the status field redundancy
of rule R2, R2[redundancy], switches its value to true:

/ ∗ phase 2, step 4, i = 2 ∗ /
/ ∗ testRedundancy(R2) = true ∗ /
/ ∗R2[redundancy] = true ∗ /
/ ∗R4[shadowing] = true ∗ /

R1 : s ∈ [10, 50]→ deny
R2 : ∅ → accept
R3 : s ∈ [60, 100]→ accept
R4 : ∅ → deny
R5 : s ∈ {[1, 9], [51, 59]} → accept

For reasons of clarity, we do not show the rest of the
execution, since the resulting set of filtering rules does not
modify from the previous one, which is the following:

/ ∗ resulting rules ∗ /

R1 : s ∈ [10, 50]→ deny
R3 : s ∈ [60, 100]→ accept
R5 : s ∈ {[1, 9], [51, 59]} → accept

To conclude, let us recall that the following two warn-
ings will notice the security officer to the discovering of
both shadowing and redundancy errors, in order to verify
the correctness of the whole detection and transformation
process:

/ ∗ warnings ∗ /

R2[redundancy] = true
R4[shadowing] = true

4.2 Correctness of the Algorithms

Theorem 4.1 Let R be a set of filtering rules and let
Tr′(R) be the resulting filtering rules obtained by apply-
ing Algorithm 4 to R. Then R and Tr′(R) are equivalent.

Theorem 4.2 Let R be a set of filtering rules and let
Tr′(R) be the resulting filtering rules obtained by apply-
ing Algorithm 4 to R. Then ordering the rules in Tr′(R) is
no longer relevant.



Theorem 4.3 Let R be a set of filtering rules and let
Tr′(R) be the resulting filtering rules obtained by applying
Algorithm 4 to R. Then Tr′(R) is free from both shadow-
ing and redundancy.

For space limitation reasons, we move the correctness
proofs of this section to Appendix A.

5 Conclusions

In this paper we presented and audit process based on the
existence of relationships between the condition attributes
of the filtering rules, such as coincidence, disjunction, and
inclusion. Our proposal uses a transformation process
which derives from an initial set of rules to an equivalent
one completely free of misconfiguration.

Furthermore, our proposal verify that any rule considered
as useless is removed from the configuration. In turn, it pro-
vides an evidence of error to the security officer – he can
check whether the security policy is consistent, to verify
the correctness of the whole process. The complete inde-
pendence between rules, moreover, enables the possibility
to perform a second rewriting of rules in a positive or neg-
ative manner. If done, the security officer will have a clear
view of the accepted traffic – when positive – or the rejected
traffic – when negative.

Regarding the increase of number of filtering rules, be-
cause of the rewriting process, it is only significant whether
the associated firewall parsing algorithm would depend on
the number of rules. Nonetheless, this is not a disadvan-
tage since the use of a parsing algorithm independent of
the number of rules becomes the best solution as much for
our proposal as for the current deployment of firewall tech-
nologies. The set pruning tree algorithm is a proper ex-
ample, because it only depends on the number and size of
attributes to be parsed, not the number of rules [13].

As future work we are considering to extend our proposal
to a more complex network setup. This paper is based on
the hypothesis that only one firewall polices the network.
More investigation has to be done when this role is as-
signed several network security components, that is, a dis-
tributed access control. Indeed, in particular, redundancy
will not systematically be considered as an error [2]. It may
be suited to avoid inconsistent decisions between firewalls
used in the same security architecture to control the access
to different zones. In parallel, we are also considering to
study the anomaly problems of security rules in the case
where the security architecture includes firewalls as well
as IDS (Intrusion Detection Systems). The objective is to
avoid redundant or shadowed filtering or/and alerting rules.
These two works are still in progress.
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A Correctness Proofs

Proof of Lemma 3.2 Let us assume that:

Ri[condition] = A1 ∧ A2 ∧ ... ∧ Ap, and
Rj [condition] = B1 ∧ B2 ∧ ... ∧ Bp.

If (A1∩B1) = ∅ or (A2∩B2) = ∅ or . . . or (Ap∩Bp) = ∅
then exclusion(Rj , Ri) ← Rj . Hence, to prove the
equivalence between {Ri, Rj} and {Ri, R

′

j} is trivial in
this case.

Let us now assume that:

(A1 ∩ B1) 6= ∅ and (A2 ∩ B2) 6= ∅ and ...
and (Ap ∩ Bp) 6= ∅.

If we apply filtering rules {Ri, Rj} where Ri comes
before Rj , then rule Rj applies to a given packet if this
packet satisfies Rj [condition] but not Ri[condition]
(since rule Ri applies first). Therefore, notice that
Rj [condition]−Ri[condition] is equivalent to:

(B1 −A1) ∧ B2 ∧ ... ∧ Bp or
(A1 ∩ B1) ∧ (B2 −A2) ∧ ... ∧ Bp or
(A1 ∩B1)∧ (A2 ∩B2)∧ (B3−A3)∧ ...∧Bp or
...
(A1 ∩ B1) ∧ ... ∧ (Ap−1 ∩ Bp−1) ∧ (Bp −Ap)

which corresponds to condition of rule R′

j =
exclusion(Rj , Ri). This way, if rule Rj applies to a
given packet in {Ri, Rj}, then rule R′

j also applies to this
packet in {Ri, R

′

j}.

Conversely, if rule R′

j applies to a given packet
in {Ri, R

′

j}, then this means this packet satisfies
Rj [condition] but not Ri[condition]. So, it is clear that
rule Rj also applies to this packet in {Ri, Rj}.

Since in Algorithm 2 R′

j [decision] becomes Rj [decision],
this enables to conclude that {Ri, Rj} is equivalent to
{Ri, R

′

j}. �

Proof of Theorem 3.3 Notice that if R is a set of filter-
ing rules, then Tr(R) is obtained by recursively applying
transformation exclusion(Rj , Ri) when rule Ri comes be-
fore rule Rj , which preserves the equivalence at each step
of the transformation, previously proved for Lemma 3.2. �

Proof of Lemma 3.4 Notice that rule R′

j only applies
when rule Ri does not apply. Thus, if rule R′

j comes before
rule Ri, this will not change the final decision since rule R′

j

only applies to packets that do not match rule Ri. �

Proof of Theorem 3.5 For any pair of rules Ri

and Rj such that Ri comes before Rj , Rj is replaced
by a rule R′

j obtained by recursively replacing Rj by
exclusion(Rj , Rk) for any k < j.

Then, by recursively applying Lemma 3.4, it is possible to
commute rules R′

i and R′

j in Tr(R) without changing the
final decision. �

Proof of Theorem 3.6 Notice that, in Tr(R), each rule
is independent of all other rules. Thus, if we consider a
rule Ri in Tr(R) such that Ri[condition] 6= ∅, then this
rule will apply to any packet that satisfies Ri[condition].
Hence, this rule is not shadowed.

Similarly, rule Ri is not redundant because if we remove
this rule, since this rule is the only one that applies to pack-
ets that satisfy Ri[condition], then the filtering decision
will change if we remove rule Ri from Tr(R). �

Proof of Theorem 4.1 Let Tr′
1
(R) be the set of

rules obtained after applying the first phase of Algo-
rithm 4. Since Tr′

1
(R) is derived from R by applying

exclusion(Rj , Ri) (cf. Algorithm 2) to some rules Rj in
R, it is straightforward, from Lemma 3.2, to conclude that
Tr′

1
(R) is equivalent to R.

Hence, let us now move to the second phase of
Algorithm 4. Let us consider a rule Ri such that
testRedundancy(Ri) (cf. Algorithm 3) is true. This
means that Ri[condition] can be derived by conditions of
a set of rules S with the same decision and that come after
in order than rule Ri.

Since every rule Rj with a decision different from the
one of rules in S has already been excluded from rules
of S in the first phase of the Algorithm, we can conclude
that rule Ri is definitely redundant and can be removed
without changing the final filtering decision. This way, we
conclude that Algorithm 4 preserves equivalence in this
case.

On the other hand, if testRedundancy(Ri) is false, then
transformation consists in applying exclusion(Rj , Ri) to
some rules Rj which also preserves equivalence. Thus, in
both cases, Tr′(R) is equivalent to Tr′1(R) which, in turn,
is equivalent to R. �

Proof of Theorem 4.2 and Theorem 4.3 As stated out
in the proof of both Theorem 3.5 and Theorem 3.6, once
shadowed and redundant rules have been removed, every
rule Ri is replaced by exclusion(Ri, Rj) where j < i.

Therefore, a similar reasoning enables to prove both Theo-
rem 4.2 and Theorem 4.3. �


