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Abstract—In cognitive radio networks, primary users have
priority over the regulated radio spectrum. Secondary users may
use residual air time. We focus on the problem of meeting on a
common channel by a group of secondary users. The goal is to
make the users rendezvous on a common channel in a minimum
amount of time. The jump-stay algorithm has been created by Lin
et al. to solve this problem. We construct a new analytic model
for the two-user expected time to rendezvous in the jump-stay
algorithm that better reflects its performance. For the sake of
comparison, we also evaluate the performance of the jump-stay
algorithm through simulation.
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I. INTRODUCTION

In cognitive radio networks, secondary users can com-
municate over idle channels as long as they do not create
interference to the primary users. In this paper, we address
the problem of selecting a common communication channel,
among m possible channels, between a number of secondary
users in a cognitive radio network, where m is a positive
integer. Each participant hops over a set of channels looking
to rendezvous with other secondary users. Lin et al. have
introduced the jump-stay rendezvous algorithm that establishes
rendezvous on a common channel between an arbitrary number
of secondary users [1]. Rendezvous is achieved when all users
meet on a common channel, when such a channel exists. The
goal is to make the users rendezvous on a common channel in
a minimum number of time slots.

We revisit the work of Lin et al., the enhanced jump-
stay rendezvous algorithm. For the sake of simplicity, we
refer to it as the jump-stay rendezvous algorithm. While the
original algorithm remains the same, we derive a new analytic
model for the expected time to rendezvous (TTR) that better
reflects its performance. In this short paper, the focus is on the
symmetric case, i.e., a channel set common to all users. Let p
be the smallest prime number greater than m. The original
analysis demonstrates that the expected TTR is lower than
or equal to 3p

2 + 3 time slots. Our revised analysis shows
that the expected TTR is lower than or equal to p. The new
analytic model provides a significantly lower number. It is also
consistent with the simulation results of Lin et al. and ours.

In Section II, we review the jump-stay rendezvous algo-
rithm. The new analytic model of the jump-stay algorithm is
developed in Section III. Simulation results are presented in
Section IV. We conclude with Section V.

II. BACKGROUND

The jump-stay rendezvous algorithm works for multiple
users with guaranteed rendezvous. We illustrate the principle
with two users. Time is divided in slots of equal length. A
rendezvous takes place within one time slot. It is assumed that
the secondary users are synchronous. Each of them implements
a cyclic behavior. It consists of four phases of the same length,
in time slots. The first three phases are identical. The secondary
user hops from channel to channel. All channels are visited.
Each hop lasts for the duration of one time slot. During the
last phase, the secondary user stays on the same channel for
the whole phase duration.

Channel hopping is performed according to a pattern.
Channel indices are 0, . . . ,m− 1. Let p be the smallest prime
number greater than m. For instance, if there are four channels,
then p is five. Hopping is performed in steps of r units, with
r ∈ {1, . . . ,m} and starting index i ∈ {0, . . . , p − 1}. Each
phase consists of p time slots. In the first phase, hopping
is performed for p time slots. The same thing is done in
the second and third phases. During the fourth phase, the
secondary user stays on channel r for p time slots. The
total length of a cycle, called a round from hereafter, is
therefore 4p time slots. Let us index the time slots with variable
t = 0, 1, 2, . . . , 4p−1. As a function of p, r, i and t, a number
pattern is generated according to the equation j = (i + tr)
mod p. The sequence of generated pattern numbers is such
that any window of length p time slots is a permutation of
the numbers 0, . . . , p − 1. The indices of the corresponding
channels are produced as c = j mod m. Every channel is
visited at least once during any interval of p time slots.

The initial value of the step increment r is selected at
random. The initial value of the start index i is also selected
at random. It is incremented to the successor value, modulo p,
after each round. Given a sequence generated with r = r1 and
another sequence generated with r = r2, with r1 6= r2, then
any jump pattern window of p time slots of the first sequence
has a common channel time slot with an overlapping jump



pattern window of p time slots of the second sequence [1].
The performance of the algorithm is evaluated in reference to
the TTR metric. From the moment both users are running, it
is the number of time slots required to achieve rendezvous.

III. NEW ANALYTIC MODEL

We develop a new analytic model for the expected TTR of
the jump-stay rendezvous algorithm.

Theorem 1: In the symmetric two-user case, the expected
TTR of the jump-stay rendezvous algorithm is lower than or
equal to p+ 1/2 time slots.

Proof: We assume that there are two users: User 1 and
User 2. They respectively use step increments r1 and r2. We
assume that User 2 starts when or after User 1 has started.
We start counting the TTR from the time slot where User 2
has started. The analysis is structured into two main cases:
when r1 and r2 are equal and when r1 and r2 are different.
The probability of picking two different step increments is
m(m−1)

m2 = m−1
m . The probability of picking identical step

increments is 1− m−1
m = 1/m.
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Fig. 1. Jump-stay rendezvous channel hopping Case 1, with four subcases.
The upper horizontal stripe represents User 1, the lower one User 2. The clear
areas represent jump patterns. Grey areas are stay patterns.

Case 1 (r1 = r2): There are four subcases illustrated in
Figure 1.

Case 1.1: Both users are in their jump pattern and the overlap
is greater than 2p and lower than or equal to 3p time slots.
In the worst case, rendezvous takes place when they are both
in their stay pattern, i.e., within a maximum of 3p + 1 time
slots from the start of User 2. Besides, there is also the
non-guaranteed possibility of making rendezvous before the
3p+1-th time slot. Hence, each hop with index i in 1, . . . , 3p
can be seen as a Bernoulli trial with probability of success,
i.e., rendezvous, 1/m (the two users pick the same channel)
and probability of failure m−1

m (the two users pick different
channels).1 For 3p + 1-th hop, the probability of success is
one, by definition of the algorithm.

1The difference between our analysis and Lin et al. is due to this assumption.

For a given l, because the sequence of Bernoulli trials is
continued until the first success, the TTR, which counts the
number of trials, is a random variable with
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The proof uses the facts that
(
m−1
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)i−1 1
m defines the proba-

bility mass function and
∞∑
i=1

i

(
m− 1

m
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m

defines the expected value of a geometric random variable
with parameter 1/m, support {1, 2, 3, . . .} and mean m. This
subcase occurs with probability 1

m ·
p
4p , because User 2 starts

between the first and p-th time slot from the start of User 1.

Case 1.2: Both users are in their jump pattern and the overlap
l is at least one time slot, but lower than or equal to 2p time
slots. Consequently, there is an overlap of p time slots between
the stay pattern of User 1 and jump pattern of User 2. The users
make rendezvous in a maximum of 3p time slots from the start
of User 2. Besides, there is also the non-guaranteed possibility
of making rendezvous before the 3p-th time slot. Hence, each
hop with index i in 1, . . . , 3p − 1 can be interpreted as a
Bernoulli trial with probability of success 1/m and probability
of failure m−1

m . For hop 3p, the probability of success is one,
by definition of the algorithm. Using the logic of developed
for Case 1.1, the expected value is m time slots. This subcase
probability is 1

m ·
2p
4p , because User 2 starts from the p+ 1-th

to the 3p-th time slot from the start of User 1.

Case 1.3: User 1 is in the r1 stay pattern, User 2 is in the jump
pattern and the overlap is l is equal to p. User 2 visits every
channel at least once. For each time slot, we may assume that
it hops on channel r1 with equal probability. The average TTR
is 1

p

∑p
i=1 i =

p+1
2 . This subcase probability is 1

m ·
1
4p .

Case 1.4: User 1 is in the r1 stay pattern, User 2 is in the jump
pattern and the overlap is l is lower than p. Rendezvous takes
place within a maximum of 3p+ l+1 time slots, because they
are on the same channel for sure in the 3p+ l+1-th time slot.
Each hop with index i in 1, . . . , 3p+ l can be interpreted as a
Bernoulli trial with probability of success 1/m and probability
of failure m−1

m . For hop 3p+l+1, the probability of success is
one, by definition of the algorithm. Using the logic of Case 1.1,



the expected value is m time slots. This subcase probability is
1
m ·

p−1
4p . Indeed, User 2 starts when User 1 has been in the

stay pattern for a least one time slot, but no more than p time
slots.
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Fig. 2. Jump-stay rendezvous Case 2, with four subcases (Cases 2.3 and 2.4
are as Cases 1.3 and 1.4 in Figure 1.

Case 2 (r1 6= r2): There are four subcases illustrated in
Figure 2.

Case 2.1: Both users are in the jump pattern and the overlap l
is greater than or equal to p time slots, but lower than or equal
to 3p time slots. The users make rendezvous in a maximum of
p time slots. Assuming that they are all equally probable, on
average it requires 1

p

∑p
i=1 i =

p+1
2 time slots to rendezvous.

This subcase occurs with probability m−1
m · 2p+1

4p , because User
2 starts from the first to the 2p+ 1-th time slot from the start
of User 1.

Case 2.2: Both users are in the jump pattern and the overlap is
l is greater than equal to one, but less than p time slots. There
is an overlap of p time slots between the stay pattern of User
1 and jump pattern of User 2. The users make rendezvous
in a maximum of 2p − 1 time slots from the start of User
2. Assuming that they are all equally probable, on average
it requires 1

2p−1
∑2p−1

i=1 i = p time slots to rendezvous. This
subcase probability is m−1

m · p−14p , because User 2 starts from
the p+ 1-th to the 3p-th time slot from the start of User 1.

Case 2.3: User 1 is in the stay pattern, User 2 is in the jump
pattern and the overlap is l is equal to p time slots. As in Case
1.3 and for the same reason, the average TTR is p+1

2 . This
subcase probability is m−1

m · 1
4p .

Case 2.4: User 1 is in the stay pattern, User 2 is in the jump
pattern and the overlap is l is greater than or equal to one, but
less than p. Rendezvous takes place within 2p− 1 time slots.
Assuming that they are all equally probable as in Case 2.2, on
average it requires p time slots to rendezvous. Start of User 2
when User 1 has been in the stay pattern for a least one time
slot occurs with probability p−1

4p . This subcase probability is
m−1
m · p−14p .

Finally, the expected TTR is equal to
1
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Fig. 3. Expected TTR for two-user rendezvous in 10 to 100-channel scenarios
according to Lin et al., Theorem 1 and simulations.

Moreover, every term in square brackets is lower than or equal
to p. Hence, the expected TTR is lower than or equal to p.

IV. SIMULATIONS

Simulations were conducted using OMNeT++ [2], with
very narrow 95% confidence intervals. Figure 3 pictures the
expected TTRs in accordance to the model of Lin et al.
for two-user rendezvous in 10 to 100-channel scenarios. The
TTRs are compared with the ones obtained with the analytic
model presented in Section III (cf. Theorem 1). The figure
is complemented with experimental results obtained with the
OMNeT++ simulation. The plots confirm that the upper bound
of Lin et al. is highly over estimated.

V. CONCLUSION

We have constructed a new analytic model for the expected
TTR of the jump-stay algorithm of Lin et al. Their original
algorithm is unchanged. The analysis is more consistent with
the simulation results, the ones of Lin et al. and ours.

Lin et al. address the asymmetric case. Users have different
sets of available channels. Rendezvous is possible if they are
not disjoint. We also derived a new analytic model for the
asymmetric case, published in a companion paper [3].
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