
J. Parallel Distrib. Comput. 74 (2014) 1945–1958
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Searching for a black hole in interconnected networks using mobile
agents and tokens
Wei Shi a,∗, Joaquin Garcia-Alfaro b, Jean-Pierre Corriveau c

a Faculty of Business and Information Technology, University of Ontario Institute of Technology, 2000 Simcoe N. Street, Oshawa, Ontario, L1H 7K4, Canada
b Institut Mines-Télécom, Télécom Bretagne, CS 17607, 35576 Cesson-Sévigné, France
c School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

h i g h l i g h t s

• We show topological structure impacts on the complexity of Black Hole search (Bhs).
• With mobile agents communicating via tokens, cost of Bhs goes from Θ(n log n) to Θ(n).
• Our solutions use a constant number of tokens and run on asynchronous networks.
• We consider the use of initially scattered agents in a torus and a complete network.

a r t i c l e i n f o

Article history:
Received 2 October 2012
Received in revised form
21 May 2013
Accepted 10 August 2013
Available online 22 August 2013

Keywords:
Black hole
Mobile agents
Tokens
Co-located
Scattered
Un-oriented
Simulation

a b s t r a c t

We study the impact of the topological structure on the complexity of the Black hole search (Bhs) problem
using mobile agents that communicate via tokens. First, we show that the token model can support the
same cost as in the whiteboard model, despite the fact that communication between mobile agents is
considerably more restricted (and complex) in a token model than in a whiteboard one. More precisely,
in this paper, we focus on three specific topologies, namely: an asynchronous (i) hypercube, (ii) torus and
(iii) complete network. With knowledge of which of these topologies is being used, we present token-
based solutions for Bhs where the number of moves executed by a team of two co-located anonymous
agents can be reduced to Θ(n). These proposed solutions do not require the availability of a map and do
not assume FIFO on either nodes or links.

Second, we consider the use of scattered agents for Bhs in an asynchronous (i) torus and (ii) complete
network. We show that, using 3 scattered agents and 7 tokens in total, a black hole can be located with
Θ(n) moves in an oriented asynchronous torus. Again, the solution does not assume FIFO on the links
and nodes. If the number of scattered agents in a torus increases, the cost is reduced but communication
between these agents becomes significantly more complicated. We propose an algorithm that solves Bhs
using k (k > 3) scattered agents, with only 1 token per agent, with O(k2n2) moves.

Beyond theoretical proofs, we also discuss simulations of an actual system in order to evaluate our
proposed solutions.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

In the past decade, agent technology has shown great potential
for solving problems in large scale distributed systems. A mobile
agent is defined as abstract and autonomous software. Agents

∗ Corresponding author.
E-mail addresses:wei.shi@uoit.ca, wei_shi@scs.carleton.ca (W. Shi),

joaquin.garcia-alfaro@acm.org (J. Garcia-Alfaro), jeanpier@scs.carleton.ca
(J.-P. Corriveau).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.08.009
are versatile and robust in changing environments, and can be
programmed to work in cooperative teams. Such team members
may have different complementary specialties, or be duplicates of
one another [27]. Mobile agent technology has been increasingly
studied and several researchers (e.g., [31,26]) discuss its strengths,
such as the ability to: (i) reduce network load, (ii) overcome
network latency, (iii) support disconnected operations, (iv)work in
heterogeneous environments, (v) allow asynchronous interaction,
(vi) enable remote searching and filtering, and (vii) deploy new
software components dynamically. For example, in recent years,
a number of agent-based applications related to traffic control
and management in different modes of transportation (including
roadway [29,34,1,9], railway [4,5,36], and air transportation
[25,33]) and healthcare [28,38] have been reported.

http://dx.doi.org/10.1016/j.jpdc.2013.08.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.08.009&domain=pdf
mailto:wei.shi@uoit.ca
mailto:wei_shi@scs.carleton.ca
mailto:joaquin.garcia-alfaro@acm.org
mailto:jeanpier@scs.carleton.ca
http://dx.doi.org/10.1016/j.jpdc.2013.08.009

1946 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
Independently of such agent-based applications, recently there
has been a significant increase in the use of IPads, smart
phones, PDAs, and other wireless computer devices. Allowing such
devices to communicate with each other and interact with other
devices (such as vending machines, POS terminals, messaging
systems, cars, GPSs (Global Positioning Systems), networked
systems, central corporate data and applications, and the Internet)
demands a highly efficient, dynamic wireless network that allows
asynchronous interaction and supports disconnected operations.
Mobile agent technology is a promising approach for addressing
these challenges. In the samevein, Braz [6] states thatweb sites and
other Internet services are not able to efficiently provide the full
range of customization already desired by their clients (e.g., using
the same information and organizing tools across many sites). In
contrast, a mobile agent is not bound to the system/site where it
begins execution. It has the unique ability to transport itself from
one system of a network to another one. The ability to travel allows
a mobile agent to move to a system that contains an object with
which the agent wants to interact and then to take advantage of
being in the same host or network as that object [9].

Security has also been identified as a key criterion for the accep-
tance of mobile agent technology. Computational and algorithmic
research has started to consider security issues, mainly in regards
to the presence of a harmful host (i.e., a network node damaging in-
coming agents) (see [27,10,35]).With respect to the computational
issues related to the presence of a harmful host, the focus has been
on a black hole, a node that disposes of any incoming agent with-
out leaving any observable trace of this destruction [11–16,18,19,
30,37]. In this paper, we continue the investigation of the Black hole
search (Bhs) problem.

A black hole (or BH for brevity) models a network site in which
a resident process (e.g., an unknowingly-installed virus) deletes
visiting agents or incoming data. In particular, any undetectable
crash failure of a site in an asynchronous network transforms that
site into a BH. In the presence of a BH, the most immediate goal
is to determine its location. To this end, a team of mobile agents
is deployed; their task being completed if, within finite time, at
least one agent survives and knows the links leading to the BH.
The research concern here is to determine under what conditions
and at what cost mobile agents can successfully accomplish this
task, called a Black hole search. Themain complexity parameters are
the size of the team (i.e., the number of agents used in the search)
and the total number of tokens used by the team of mobile agents.
Another important measure is the number of moves performed by
the team of agents in their search.

The computability and complexity of Bhs depend on a vari-
ety of factors; first and foremost on whether the system is asyn-
chronous [14–17] or synchronous [11,12,30]. Indeed, the presence
or absence of synchrony drastically changes the nature of the prob-
lem [18]. In this paper we pursue the investigation of the asyn-
chronous case.

Most of the existing investigations on Bhs have assumed the
presence of a powerful inter-agent communication mechanism,
so-called whiteboards, at all nodes. In the whiteboard model, each
node has a local storage area where information can be written
and read by the agents. Each such whiteboard is accessible in fair
mutual exclusion to all incoming agents (e.g. see [24]). In this
research,we instead investigate Bhs in a tokenmodel. In thatmodel,
each agent has available a bounded number of tokens that can be
carried, placed in a node and/or on a port of the node, or removed
from them. Also, all tokens are identical (i.e., indistinguishable) and
no other form of communication or coordination is available to
the agents. We observe that the communication between mobile
agents is considerably more restricted (and complex) in a token
model than in awhiteboard one: information-richmessageswritten
to and read from a whiteboard must instead be represented
using a limited number of tokens. The question then is whether
this additional constraint complicates significantly token-based
solutions to Bhs. In this paper, we show that is not the case for the
following three topologies: a hypercube, a torus and a complete
network.Within this specific context,we also answer the following
question: under what conditions and at what cost is Bhs solvable?
Notice that the use of tokens introduces another complexity
measure: the number of tokens. Indeed, if the number of tokens is
unlimited, each information-rich message of a whiteboard-based
algorithm can be mapped to a specific configuration of tokens and
thus it is possible to simulate a whiteboard environment. Using
tokens, the question then is how few agents are truly required by
a solution to Bhs?

The problemof locating the BH using tokens has been examined
for the ring topology in both cases of co-located agents (inwhich all
the agents start from the samenode) [14,17] and of scattered agents
(in which the agents start from different unknown nodes) [18]. In
this paper, we first consider the use of a group of co-located agents
to solve Bhs for a hypercube, a torus and a complete network. We
then study Bhs in a torus and in a complete network for a group of
scattered agents, which significantly complicates the solution.

Our decision to consider the hypercube network topology pro-
ceeds from the fact that such graphs are very versatile networks.
For example, they have been used extensively to interconnect the
processors of several parallel computers. Also, such an architecture
allows for the emulation of a multitude of networks. Similarly, we
remark that one of the networks that MasPar efficiently simulates
is a torus, in part because of path diversity (i.e., there exist mul-
tiple minimum length paths between a source and a destination)
and also because of better load balancing [20]. Finally, the com-
plete network and/or mesh network topology is commonly used
in Wireless Sensor Networks (WSNs), that is, in a wireless net-
work consisting of spatially distributed autonomous entities that
use sensors tomonitor the condition of a particular environment or
location. Such networks have gained a lot of practical relevance re-
cently. In particular, Agilla [2,23] is a newmobile agentmiddleware
for wireless sensor networks that has received considerable re-
searcher and industry attention in recent years. For example, the
authors of [28,38] present a healthcare application that allows
the triage of victims in emergency scenarios to automatically up-
date their medical condition. The proposed multiagent architec-
ture combines Wireless Sensor Networks, an Electronic Triage Tag
and a doublemultiagent system (Agilla-JADE) to achieve a low cost,
infrastructure free, efficient system. The reliability of this system,
which is crucial in the context of emergency care, rests entirely on
the availability and correct working of all sensors and agents. In
turn, this emphasizes the need to be able to efficiently locate any
compromised and/or malfunctioning sensor node that disposes of
agents.

1.2. Main results

In the context of Bhs, Flocchini et al. [21] proved that in
networks of arbitrary but known topology, the pebble (or token)
model of agent interaction is computationally as powerful as the
whiteboard model; the complexity being exactly the same. More
specifically, a team of two asynchronous agents, each endowed
with a pebble and a map of the graph, can locate the BH
with O(n log n) moves. In the same paper an open problem is
pointed out: the topological structure impact on the complexity
of Bhs with tokens. Intuitively, we ‘‘suspect’’ that the number of
moves to locate the BH can be reduced in interconnected graphs
in which multiple routes exist between any pair of nodes in
the network. Conceptually, this topological characteristic offers
‘shortcuts’ between nodes. But, as much as shortcuts may reduce
the number ofmoves, they also create a drawback: they complicate

W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958 1947
the communication and coordination between the agents. For
example, in a complete network, each node is linked to every
other node by an edge. A solution to leave a simple message (such
as marking which links are explored by an agent) may require
O(δ) tokens (where δ is the degree of the complete network).
This clearly contradicts our goal of using O(1) number of tokens
(in contrast to using an unlimited number of tokens, which is
equivalent to using a whiteboard, as previously mentioned) as
the only means of communication between agents. The same
observation holds for the torus and hypercube topologies: in
contrast to a ring, in these topologies each node has more than
two links adjacent to it, again leading to potentially more complex
communication between agents via tokens. Consequently, it
becomes an interesting goal to investigate whether there is a
solution to Bhs when only a constant number of tokens are
available in these topologies.

Except for our previous work presented in [18], all existing
solutions to Bhs in asynchronous networks use co-located agents.
In [7,8], Chalopin et al. did study Bhs using tokens with initially
scattered mobile agents, but in a synchronous network. When a
synchronous network is considered, the problem becomes much
less complicated: each computation or movement of a mobile
agent takes a known (instead of an unknown but finite) quantum
of time. In this case, we can readily determine that an agent died
in a BH if it does not resume its scheduled movement pattern
within a predefined quantum of time. In asynchronous networks,
it is not possible for us to distinguish the case of an agent stuck
on a slow link/node (e.g., due to network traffic) from the case
where it died in a BH. Thus, in contrast to asynchronous networks,
in synchronous networks we can conclude that: (a) we can detect
whether there is a BH merely from an agent’s failure to move
within a given quantum of time; (b) traversing the whole network
in order to locate the BH is not necessary. Furthermore, when
scattered agents are used to locate the BH, the initial locations
and the wake up (i.e., being able to observe the environment,
compute and move) time of these agents are not known. Thus,
there is no communication between the scattered agents upon
waking up. Conversely, when two or more agents start from the
same node, namely agents are co-located, communication between
these agents upon waking up leads to guaranteed coordination.
Such coordination between the co-located agents can be achieved
through a whiteboard or tokens in asynchronous networks and
through time out [7] or whiteboard [16] or tokens [7,8] in
synchronous networks. But in fact, the ease with which agents can
be synchronized makes the distribution of the workload simpler
and more efficient in synchronous networks than in asynchronous
ones. And solving Bhs using scattered agents is a more general case
of Bhs than using co-located agents. (Clearly, when the scattered
agents all happen to wake up from the same node, the problem
becomes the co-located agents case.)

In the rest of this paper, we first prove that, in the context of
Bhs in an asynchronous network with co-located agents, the token
model can support the same cost as in thewhiteboardmodel. More
specifically, we offer solutions to Bhs for an asynchronous torus,
hypercube and complete network using tokens. With specific
knowledge of the network, the number of moves executed by a
team of two co-located anonymous agents can be reduced toΘ(n).
These solutions do not require the availability of a map and do not
assume FIFO on either nodes or links.

We then consider the use of scattered agents for Bhs in an
asynchronous torus and a complete network. We show that, using
3 scattered agents and 7 tokens in total, a BH can be located
with Θ(n) moves in an oriented asynchronous torus. Again, the
solution does not assume FIFO on the links and nodes. If the
number of scattered agents in a torus increases, cost is reduced
but communication between these agents becomes significantly
more complicated.Wepropose an algorithm that solves Bhsusing k
(k > 3) scattered agents, with only 1 token per agent, with O(k2n2)
moves.

Beyond proofs, in order to verify our solutions and evaluate
their performance, we developed simulations of an actual system
using Java and Omnet 4++, which we discuss last.

2. Model, assumptions and terminology

Let G = (V , E) denote a simple connected undirected graph,
where V is the set of vertices or nodes and E is the set of edges
or links in G. At each node x ∈ V , the incident edges are labeled
by an injective mapping λx. Hence, each edge (x, y) has two labels,
λx(x, y) at x, and λy(x, y) at y. λx(x, y) and λy(x, y) will be called
the port identifiers. We say a graph is oriented, if there is a global
consistency of such labeling (or sense of direction) of all the edges
(links), and un-oriented otherwise [18,19,3].

Operating onG is a set of k agents a1, a2, . . . , ak. The agents have
limited computing capabilities and bounded storage. They all obey
an identical set of behavioral rules (referred to as the ‘‘protocol’’),
and canmove from a node only to a neighboring node.Wemake no
assumptions on the amount of time required by an agent’s actions
(e.g., computation, movement, etc.) except that it is finite. Thus,
the agents are asynchronous [16]. Also, these agents are anonymous
(i.e., do not have distinct identifiers) and autonomous (i.e., each has
its own computing and bounded memory capabilities). Co-located
agents start at the same node, called homebase (H for brevity).
Scattered agents start at different Hs.

Wepostulate that,while executing a Bhs, the agents can interact
with their environment and with each other only through the
means of tokens. A token is an atomic object that the agents can see,
carry, place or remove from the middle or a port of a node. Several
tokens can be placed at the same location. The agents can detect
suchmultiplicity, but the tokens themselves are undistinguishable
from each other. Initially, there are no tokens in the network, and
each agent starts with O(1) number of tokens.

The basic computational behavior of an agent (executed either
when an agent arrives at a node, or uponwake-up) consists of three
actions called steps. First an agent is to examine its current node
and evaluate (as a non-negative integer) the multiplicity of tokens
at themiddle of the node and/or on its ports. Second, an agent may
modify tokens (by placing/removing some of the tokens present at
the current node). Third, an agent may either become Passive (or
equivalently, fall asleep) (i.e., temporarily stop participating in the
Bhs) or leave the node through a port. Finally, an agentmay become
DONE, inwhich case it stops executing the algorithm (andno longer
participates in the search). Each computational step is performed
as a single atomic (i.e., non interruptible) operation. We assume
that there is fair scheduling of the steps of the operation at the
nodes, so that, at any node at any time, at most one computational
step will take place, and every intended step is performed within
a finite time. This computation is asynchronous: the time an agent
sleeps or is in transit is finite but unpredictable.

All the agents are aware of the presence of the BH, but, at the
beginning of the search, the location of the BH is unknown. The
goal of this search is to locate the BH. At the end of the search, there
must be at least one agent that has survived (i.e., not entered the
BH) and knows the location of the BH.

3. Basic tool and technique

3.1. Cautious walk with token (CWWT)

During a CWWT, having a certain number of tokens on a port
indicates that the link of this port is currently being explored by
an agent. The exact number and location of tokens required to

1948 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
Fig. 1. Two agents executing Bypass on a dangerous ring using the safe ring.

determine that a port is being explored may vary between the
algorithms that use CWWT. Clearly, a port under exploration may
be dangerous, that is, one of its links may possibly lead to the BH.
Once a port is known to not lead to the BH, it is considered safe. To
prevent unnecessary loss of agents, we require that no two agents
ever enter the BH through the same link.

3.2. Bypass technique

The Bypass technique is used in the algorithms that we propose
to solve a Bhs for a hypercube and a torus. For these two
topologies, in contrast to a ring, each node hasmore than two links
adjacent to it. This significantly complicates the communication
between agents using tokens. But we notice the following key fact:
both hypercube and torus topologies contain one or more non-
intersecting ring subgraphs. Thus it is impossible that the BH is in
both ring a and ring b. We then call the ring without the BH a safe
ring; a dangerous ring otherwise.

The basic idea of the Bypass technique is to use the links and
nodes on a safe ring to create a bridge over an unknown node
(possibly BH) on the dangerous ring that is under exploration by an
agent. This bridge will allow a second agent to continue exploring
the rest of the dangerous ring. This technique ensures that: (a) two
agents do not explore the same node at the same time; and (b) all
the nodes in the network get traversed using O(n) moves, so that
the total number of moves for locating the BH stays linear.

Once in the ‘‘Bypass’’ procedure, an agent acts differently
whether advancing in a safe ring or in a dangerous ring. Let Ad
denote the agent that is exploring a node I in the dangerous ring,
and As denote the agent that is going to bypass node I through path
J, K , L,M,N (see Fig. 1). When As arrives at node J , it moves the
token(s) from port Jd to Js if Js iswithout a token. Otherwise, As picks
up the token(s) from port Jd, then As walks through Js to node K . As
then walks to nodeM through node L. If portMs iswith token, then
As moves the tokens from port Ms1 to port Ms2, then walks to the
next node on the safe ring. Otherwise, As leaves a token at portMd,
then it becomes ready to go back to the dangerous ring. From this
point on, As becomes an agent exploring the dangerous ring M ′

d in
the next stage. If the old Ad does not die in node I , then it becomes
an agent trying to bypass node N that is under exploration by the
other agent. Namely, in the new stage, agent Ad will become a new
A′
s. These two agents keep changing roles to bypass a node in the

dangerous ring that is under exploration, until one dies in the BH.

4. Bhs with co-located agents

4.1. Bhs in a hypercube—algorithm two rings

4.1.1. Basic idea
The followingwell-known property of a hypercube is the key to

our solution to Bhs in this topology:

Property 1. Qd consists of two (d−1)-hypercubes connected by 2d−1

links labeled as d.
Given this property, we find a way for twomobile agents (given
2 is theminimum team size for Bhs) to traverse the hypercubewith
tokens. The basic idea can be carried out using the following four
steps:

1. Both agents start from a common H . Each of them explore
a Hamiltonian Cycle (i.e., a ring) of each (d − 1)-hypercube
according to a specific permutation (see below) with CWWT.
More specifically, one agent stays in the ring (i.e., the
Hamiltonian Cycle of one of the two (d − 1)-hypercubes) in
which the common H lies, and the other agent moves to the
other ring through the connecting link using CWWT. After an
agent has finished exploring its ring, we call this ring a safe ring,
and call the other ring, which has not been fully explored, a
dangerous ring.

2. Let the agent that finished exploring the safe ring go to the other
ring through a connecting link. This agent will help the other
agent exploring the dangerous ring. It keeps walking on the
dangerous ring until it sees the marker of the other agent. The
two agents then repeat multiple stages of the bypass technique
until one agent dies in the BH and the surviving agent finishes
exploring all nodes but one in the entire hypercube. The only
node the surviving agent has not visited is the BH.

3. When an agent notices that one node is marked by a CWWT,
which means it is under exploration by the other agent, that
first agent will bypass through a safe ring to the next node on
the ring being currently explored.

4. The agent that explores n− 1 nodes will survive and report the
location of the BH.

The bypass technique will be used and only be used after one
of the two rings in the hypercube is fully explored, that is, once a
safe ring exists. The immediate detail we need to address is how do
wemake the agents onlywalk on an appropriateHamiltonian cycle
and 2d−1 links labeled as d, in a labeledQd. The following technique
makes it possible:

We define a permutation that can construct a unique Hamilto-
nian cycle when a starting node is given. Let Pd be a permutation
of length n : {p1, p2, . . . , pn/2, p1, p2, . . . , pn/2}. The sequence is
constructed as follows:

1. when d = 3, n = 22
= 4, P2 : {1, 2, 1, 2};

2. when d = 4, n = 23
= 8, P3 : {1, 2, 3, 2, 1, 2, 3, 2};

3. whend = 5, n = 24
= 16, P4 : {1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2,

4, 2, 3, 2};
4. whend = 6, n = 25

= 32, P5 : {1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2,
4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2}; If we let
P ′d denote the sequence from the second digit to the 2d−1th
digit of Pd, then:

5. when d = i − 1, n = 2i−1, Pi−1 : {1, P ′i−2, i −

1, P ′i−2, 1, P ′i−2, i − 1, P ′i−2}

6. when d = i, n = 2i, Pi : {1, P ′i−1, i, P ′i−1, 1, P ′i−1, i, P ′i−1}.

While d increases, each permutation Pd can be constructed by
executing the following two steps on permutation Pd−1:
(a) replace the secondoccurrence of ‘1’ found in the sequence by ‘d’;
(b) duplicate this modified sequence and append it to its own
end (effectively creating a sequence that consists of the modified
sequence followed by itself).

Given all the agents know the size of the hypercube n = 2d,
they can all come upwith such a permutation individually. All their
permutationswill be the same, because they construct it according
to the same rules. Each element in the permutation represents a
label of a link. Every such number indicates which link an agent is
going to explore next.

Theorem 1. Permutation Pd computed by an agent constructs a
Hamiltonian cycle of Qd.

W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958 1949
Proof. There is a Hamiltonian cycle in a d dimension hypercube,
when d ≥ 2. Hence we assume we intend to construct a Hamil-
tonian cycle of a d-dimensional (d ≥ 2) hypercube. When d = 2,
P2 : {1, 2, 1, 2}, it is obvious a Hamiltonian cycle is constructed
correctly. Nowassume thatwhen d = i, following the order of links
indicated in Pi : {1, P ′i−1, i, P ′i−1, 1, P ′i−1, i, P ′i−1}, a Hamilto-
nian cycle is constructed correctly.

When d = i + 1, we know there are two i-dimensional hyper-
cubes in the i+1 dimensional hypercube due to the characteristics
of the hypercube topology. We also know each i dimensional hy-
percube has a Hamiltonian cycle constructed according toPi as per
our assumption. As we can see, there are two links labeled 1 in the
Hamiltonian cycle constructed according to Pi. If we call the two
rings (i.e., Hamiltonian cycles) that have 2i nodes R−a and R−b,
we can merge R − a and R − b into one ring with 2i+1 nodes by
the following three steps:

1. Remove one of the two links labeled 1 in both R − a and R − b.
2. Link one of the two nodes currently adjacent to only i − 1 links

inR−a to one of the two nodes currently adjacent to only i−1
links in R − bwith a link labeled i+ 1 in the i+ 1-dimensional
hypercube.

3. Link the unique node currently adjacent to only i − 1 links in
R − a to the unique node currently adjacent to only i − 1 links
in R−bwith another link labeled i+1 in the i+1 dimensional
hypercube.

If we call this merged ring R − (i + 1), we can observe that
this R − (i + 1) includes all the nodes in the i + 1-dimensional
hypercube, because it includes all the nodes of R − a and R − b
which, in turn, include all the nodes of two sub-hypercubes of the
i+1-dimensional hypercube. Hence, when d = i+1, following the
order of links indicated inPi+1:Pi+1 : {1, P ′i, i+1, P ′i, 1, P ′i, i+
1, P ′i}, a Hamiltonian cycle can also be constructed correctly. This
concludes the proof that permutation Pd computed by an agent
constructs a Hamiltonian cycle of Qd (n = 2d).

4.1.2. Algorithm two rings: details
Two mobile agents a1 and a2 operate on Qd starting from the

same H . The agent that first wakes up, called a1, will explore
the ring Ra contained in Qd−1 according to the Hamiltonian cycle
construction rule explained earlier. Before it starts exploring this
sub-hypercube Qa, this agent leaves a token in the middle of its
H in order to inform the partner (we call it a2) to go to Rb and
start exploring there. a1 then explores its ring. When a2 wakes up,
it will explore Rb immediately. Recall that when an agent finishes
exploring its ring, this ring becomes a safe ring. Once a1 finishes
exploring Ra, if a2 has not waken up yet, then a1 will move the
token that it left in the middle of their H to the port that leads to
the link labeled n. To do so, a1 informs a2 to follow it to explore
Rb together. Once a2 wakes up, it will notice the token in its H .
Consequently it will go (with CWWT) to the ring (Rb) in the second
sub-hypercube Qb through the link labeled n, then start exploring
Rb. Each agent explores a ring using the CWWT technique, until it
notices its CWWT token is moved by the partner.

Given the BH can only be in one of the Hamiltonian cycles,
eventually one agent will finish exploring its ring. Let us assume
that agent a2 finishes exploring Rb first. Then a2 will go to ring
Ra to help a1 to finish its job. Agent a2 goes to look for a1 in Ra if
there is no token in their common H . Since, the Hamiltonian cycle
constructed according to what we proposed is unique given the
same starting node, a2 is able to follow a1 on Ra, instead of going
in the opposite direction. Once a2 catches up with (that is, sees the
token of) a1, the two of them will start using the bypass technique
until they locate the BH.
4.1.3. Correctness and complexity analysis

Property 2. Let R1 be one of the Hamiltonian cycles of Qd−1 in Qd
constructed according toPd−1, andR2 be the Hamiltonian cycle of the
other sub-hypercube of Qd. There is an isomorphism between rings
R1 and R2.
Proof. The hypercube has node and edge symmetry [22]. For any
pair of edges (u, v) and (u′, v′) in a d-hypercube Qd there is an
automorphism σ of Qd such that σ(u) = u′ and σ(v) = v′.
Such an automorphism can be found for any permutation π on
1, 2, 3, . . . , n such thatπ(k′) = kwhere k and k′ are the respective
dimensions of (u, v) and (u′, v′) [22,32]. We call v the symmetric
node of v′. From Theorem 1, we know that the technique we use to
construct aHamiltonian cycle froma label permutation of a (d−1)-
hypercube is unique. Let Q − A denote one of the two (d − 1)-
sub-hypercubes of Qd, and Q − B denote the other (d − 1)-sub-
hypercube of Qd. Given there is a automorphism between Q − A
and Q − B, there is also an automorphism between the two rings
constructed out of the same permutation.

Since the two rings have no nodes in common, then:

Lemma 1. Either R1 or R2 is a safe ring.

Lemma 2. Each one of the two rings will be explored by at least one
agent.
Proof. Once the first agent wakes up, it will explore the ring of the
d−1-sub-hypercube that containsH . Before it starts, it will leave a
token in themiddle ofH to inform the second agent to explore the
other ring in order to prevent them from exploring the same ring.
Only after an agent finds a safe ring, does it go to the other ring
to help the partner agent to finish exploring the other ring. Hence
each one of the two rings will be explored by at least one agent.

Lemma 3. One and only one agent dies in the BH.
Proof. Given:
1. Both agents construct a Hamiltonian cycle of a d − 1-sub-

hypercube based on the same permutation;
2. The two d−1-sub-hypercubes that are connected by 2d−1 links

labeled d, are automorphic.

We conclude that the two agents share the same sense of direction
on both rings. Once an agent, say a1 finds a safe ring, it will go to
the other ring and explore the node of the ring in the same order as
its partner, say a2, did. Agent a1 follows the route that a2 traversed
until it sees the CWWT token a2 left. Then the two agents will start
exploring the dangerous ring using the bypass technique. According
to this bypass technique, two agents never explore the same node
in that ring. The algorithm terminates as soon as an agent has
explored n − 1 nodes. Hence, only one agent dies in the BH.

Theorem 2. The BH is correctly located by the surviving agent.
Proof. According to Lemmas 2 and 1, at least one agent will
eventually finish exploring a safe ring. As we mentioned in
Lemma 3, this agent will go to help the other agent exploring the
second ring using the bypass technique. We know from Lemma 3,
that there is one and only one agent that survives. The algorithm
terminates as soon as an agent has explored n−1 nodes. Hence the
BH is correctly located.

Lemma 4. Two tokens in total suffice to locate the BH in a labeled
hypercube with co-located agents.
Proof. First, when the algorithm starts, one token is needed for
the agent that wakes up first. Second, each agent needs one token
to do CWWT in both the exploring and the bypass stages. Last, the
token used by the first agent in order to inform the second agent
of its awakening can be reused by the second agent (which is the
one that wakes up later than the first agent). Hence, 2 tokens in
total suffice to locate the BH in a labeled hypercubewith co-located
agents.

1950 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
Lemma 5. O(n) moves in total suffice using Algorithm Two Rings.

Proof. If we break down this algorithm into ‘‘procedures’’, then
in procedure ‘‘Find a safe ring’’, each of the two agents requires
a maximum of 3 ∗ (n/2) moves to explore a Hamiltonian cycle
of a d − 1-sub-hypercube of Qd. So, O(n) moves are sufficient. In
procedures ‘‘Bypass’’ and ‘‘Back to the dangerous ring’’, for every
bypass, a linear number of moves is required. Therefore, even if
there are n/2 such bypass steps, a linear number of moves is still
sufficient. Hence, the total number of moves is linear.

According to the lemmas proved above, and following the lower
bound from the whiteboard model presented in [13], we can
conclude:

Theorem 3. Using 2 co-located agents, 2 tokens in total and Θ(n)
moves, the BH can be successfully located in a edge labeled hypercube
with n nodes.

4.2. Bhs in a torus—algorithm cross rings

As in the ring topology, in a torus, the number of edges adjacent
to each node is fixed regardless of the number of dimensions or
nodes. Informally, the torus is a mesh with ‘‘wrap-around’’ links
that transform it into a regular graph: every node has exactly four
neighbors. The ports of each node in the torus are consistently
labeled: East, West, North, South. Given these specific topology
characteristics, we develop an algorithm Cross Rings, to locate the
BH in a torus with co-located agents.

4.2.1. Algorithm ‘‘cross rings’’
Let R–NS denote a ring with only the links labeled South and

North in a labeled torus and, let R–EW denote a ring with only the
links labeled East andWest in a labeled torus. We also call R–NS a
north–south ring, R–EW an east–west ring. Starting from a node,
there are two obvious paths that allow an agent to traverse the
torus and go back to the starting node. They are (see Fig. 2):

1. the east–west ring that includes the starting node, plus every
north–south ring that starts with a node in this east–west ring;

2. the north–south ring that includes the starting node, plus every
east–west ring that starts with a node in this north–south ring.
It is clear that a north–south ring A and an east–west ring B

share exactly one node, say v. If node v is not the BH, we know
the BH cannot be on both A and B. We then get the following
observation:

Observation 1. Let 2 agents start from v. If we let one agent tra-
verse the north–south ring A, and another agent traverse the
east–west ring B , then there is at least one agent that survives its
traversal.

If only one agent finishes traversing a ring (i.e., the other agent
died in the BH), then we call this ring a Base ring. If both agents
finish traversing their rings, then we call the ring that is traversed
the earliest, a Base ring, which is also a safe ring.

Hereafter, we assume that the Base ring is a north–south ring.
(The algorithmwould be essentially the same if the Base ring were
an east–west ring.) Now, we let the surviving agent(s) (either one
or two) explore all the east–west rings, each of which starts from a
node on the Base ring. In order to prevent the two agents from both
dying in the BH, we let both agents explore a dangerous node using
CWWT with 1 token on a port.

Before one agent starts exploring an east–west ring R–EW , it
puts 1 token in themiddle of its homebase u. u is a node on both the
Base ring and the east–west ring R–EW . We call the east–west ring
with 1 token in the middle of u an RUE (Ring Under Exploration),
the 1 token in the middle of u, an UET (a token to indicate the ring
is under exploration). This agent then explores this east–west ring
R–EW .When this agent finishes exploringR–EW , it willmove the
UET (the single token it left in u) to the middle of the node next to
theNorth of u on the Base ring and, explore this east–west ring. This
agent continues exploring the east–west rings one by one, until it
sees a token in the next node. It then puts a second token in the
next node to the north, comes back to pick up the token it left in
the previous node, goes to the next node to the north again and
starts exploring a new east–west ring. Given there is only one BH,
and there is no commonnode(s) shared by any two east–west rings,
we obtain Lemma 6. Given one agent a1 will finish exploring all but
one east–west ring. The other agent a2 is either exploring the RUE
or died in the BH in the last RUE. Then a1 will go and help a2 to
explore the last east–west ring. Because we assumed that one of
the north–south rings is the Base ring, we say that an agent finishes
a stage as soon as it finishes exploring an east–west ring. An agent
a1 will not visit a RUE (by a2) until this is the only east–west ring
left. Also, a1 follows the path that a2 took on this last east–west ring,
until it sees the CWWT token of a2. Now a1 and a2 will execute the
procedure ‘‘Bypass’’ sketched out earlier. Eventually the algorithm
terminates when there is only one node left unexplored in the last
RUE. The only node left unexplored is the BH.

Lemma 6. Eventually all but one east–west rings are explored.

After a1 finishes exploring all but one east–west ring, it will go
and help a2 to explore the ring a2 currently explores. When one
agent finishes exploring a ring (e.g. a north–south ring), it will know
the number of nodes x of this ring. It can calculate the number of
nodes y in an east–west ring, given n is known. If a north–south is
the Base ring, we say that an agent finishes a stage once it finishes
exploring a non-Base ring.

An agent a1 will not visit an RUE until it has finished y−1 stages.
Also, a1 follows the path that a2 took on the RUE until it sees the
CWWT token of a2. Now a1 and a2 will execute procedure ‘‘Bypass’’.
Eventually the algorithm terminates when there is only one node
that is not explored in the last RUE. The only node left unexplored
is the BH.

The meaning of token(s) at different locations can be found in
Table 1.

4.2.2. Correctness and complexity analysis
According to Observation 1 and Lemma 6, we can obtain the

following Lemma:

Lemma 7. At least one agent will find a Base ring in the torus.

If we assume there are y nodes on an east–west ring, and x =

n/y nodes on a north–south ring, then:

Lemma 8. x − 1 east–west rings will be explored eventually.

Proof. According to Lemma 6, all but one east–west ring will be
explored eventually. Given there are x nodes on each north–south
ring, x − 1 east–west rings will be explored eventually.

Lemma 9. The UET advances on the north–south ring correctly.

Lemma 10. None of the east–west rings will be explored more than
once.

Lemma 11. At most 1 agent dies in the BH. And within finite time at
least 1 agent will determine the location of the BH.

Proof. From Lemmas 7 and 8we know that two agents will sooner
or later find a Base ring. Then both agents keep exploring the
east–west rings along the north–south ring (the Base ring) until
eventually one agent explores x − 1 east–west ring. According
to Lemma 10, there are at most x − 1 such explorations before
the two agents start to bypass each other on the last dangerous
east–west ring left using a safe east–west ring.We also observe that

W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958 1951
Fig. 2. Two paths that allow an agent to traverse all the nodes in a labeled 3 ∗ 4 torus.
Table 1
Token positions and their explanation in algorithm Cross Rings.

Token(s) position Meaning

One token in the middle of a node The east–west ring starts from this node is under
exploration (the north–south ring is the Base ring)

Two tokens in the middle of the H The Base ring is found

One token on a port An agent is exploring the next node in this ring (CWWT
token) the first agent is exploring the north–south ringTwo tokens on the north port of the H
from Lemma 11 at most one agent dies in the BH. Eventually the
surviving agent will stop the algorithm when it has explored and
bypassed y − 1 nodes on the last dangerous east–west ring.

Lemma 12. Two co-located agents with 5 tokens in total suffice to
locate the BH in a labeled torus.

Proof. According to Lemma 11, 2 agents suffice to locate the BH.
We now prove that a total of 5 tokens is sufficient for both agents
to locate the BH.

• When the algorithm starts, two tokens are needed for the agent
that wakes up first in order to determine what is the Base ring.
But once the second agent sees the Base ring is known, it can
pick up the 2 tokens and eventually reuse them.

• Each agent needs one token to do CWWT for exploring and
for bypassing (including the ‘‘Back to the Dangerous Ring’’
procedure). As we just mentioned in the previous bullet, the
second agent can reuse the 2 tokens in the middle of their H
once the Base ring is decided.

• As we explained in Lemma 9, before one agent picks up the UET
(one token) in the Base ring from node u, it goes to the next
node v to the north to put a second UET. Only after putting the
second UET, does the agent go back to node u to pick up the first
UET. Then it starts exploring the east–west ring fromnode v. We
observe that: (a) an agent can use the CWWT token to put this
second UET in node v and (b) an agent can reuse the picked up
UET in u to continue the exploration with CWWT. Hence, only
one extra token is used as a UET.

Lemma 13. O(n) moves is sufficient using algorithm Cross Rings.

Proof. In procedure ‘‘Find a Base ring’’, a Base ring is established
after agent a1 has explored the north–south ring that includesH or
a2 has explored the east–west ring that includesH . If the number of
nodes on anorth–south ring is x, the number of nodes on a east–west
ring is y, then x ∗ y = n. So, (x + y) ≤ n moves will be executed.
Hence, O(n) moves suffice.
In procedure ‘‘Bypass’’ in a torus, an agent a1 walks from the
dangerous ring, through 1 link connecting the north port, to the
safe ring. a1 is going to take y1 steps before it executes procedure
‘‘Back to the Dangerous Ring’’. Then, a1 executes y2 steps before
it walks back to the dangerous ring through 1 link. y1 + y2 ≤ y
such links are going to be traversed given there is a maximum of
y nodes on each east–west ring. So, it takes an agent O(n) moves,
even when using CWWT. Hence, on both a safe east–west ring and
the dangerous east–west ring on its north, n links in total are going
to be traversed in order to finish traversing the whole east–west
ring. So, O(n) moves are required for an agent during procedures
‘‘Bypass’’ and ‘‘Back to the Dangerous Ring’’. Hence, O(n) moves in
total are sufficient for two agents to locate the BH.

According to the lemmas listed above, and following the lower
bound from the whiteboard model presented in [13], we can
conclude:

Theorem 4. Using 2 co-located agents and 5 tokens in total, the BH
can be successfully located within Θ(n) moves in a labeled torus with
n nodes.

4.3. Bhs in a complete network—algorithm take turn

In this subsection, we present the solution to Bhs in a complete
network without using a sense of direction, that is, no ports of
any node are labeled. However, it is important to note that, even
without a common labeling, the co-located agents share a common
reference (e.g., indexing) mechanism for the n− 1 links of their H
and thus can share a common order of traversal of these links. For
simplicity, wewill say that the links are traversed ‘clockwise’ when
going from the lowest to the highest index, and ‘counterclockwise’
otherwise. (This is merely a convention and the actual order of
traversal could be defined differently, as long as it is shared by
the co-located agents.) A team of two co-located agents is used to
solve the problem.We can imagine the complete network as a star-
shaped networkwith a node (whichwewill take to be theH of this
pair of co-located agents) in the middle.

1952 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
The idea is very simple: once an agent a1 wakes up, it puts
one token on a port of its node, which it views as its H . a1 then
explores the node reachable from this port. When a1 comes back
to its H after exploring a node, if the token of a1 is still at the
port where it was left, then a1 will move this token to the next
port clockwise, and repeat this exploration step. Once the second
agent a2 wakes up, it moves the token of a1 to the port of the
next node clockwise, and explores the node accessible through
this port. When an agent comes back from the exploration of a
node, if it sees the token it left is missing, then this agent searches
clockwise until it finds the port with one token. It moves this
token to the next port clockwise and starts exploring another node
through this port. During this process, an agent keeps counting
the number of ports it visited (i.e., ports it used to access nodes to
explore) or passed (i.e., ports that are between the port this agent
just visited and the port that currently has a token). As soon as
one agent notices that this total (of ports being counted) reaches
n − 1, it terminates the algorithm immediately. It is important to
know that we use a variable bhlocation to record the location of
the BH. Each time an agent ai moves the token used by partner aj
to the next port, ai resets the variable bhlocation to 0, then keeps
increasing it by one each time it explores a new node. Also, a
variable nCount is incremented as ports are used. ai terminates the
algorithm as soon as it realizes nCount reaches n−1, atwhich point
bhlocation indicates the location of the BH: the bhlocationth port
counterclockwise leads to the BH.

4.4. Correctness and complexity

It is trivial to prove that any complete network has a subgraph
that allows one node connection to all the other nodes in a
complete network. Let Sn denote such a subgraph of complete
graph Kn. We will get:

Lemma 14. Each link in Sn will be traversed only once.
Lemma 14 and the fact that there is only one link in this

subgraph that leads to a BH, clearly leads to Lemma 15.

Lemma 15. There is at most one agent that dies in the BH using
Algorithm Take Turn. The surviving agent will locate the BH correctly.

Lemma 16. Two agents can locate the BH within Θ(n) moves.
According to the above lemmas, and following the lower bound

from the whiteboard model presented in [13], we conclude:

Theorem 5. Using two (2) co-located agents and one (1) token in
total, the BH can be successfully located in a complete network of n
nodes, with Θ(n) moves in total.

5. Bhs with scattered agents

5.1. In a complete network

The algorithm for locating the BH with scattered agents follows:
upon one agent waking up, it leaves a token in the middle of its
H and waits. This agent starts executing algorithm Take Turn as
soon as its token is moved to a port of its H . If an agent wakes
up in a node that has a token in the middle, then this agent starts
executing algorithm Take Turn immediately. Once an agent wakes
up in a node that has a token on a port of its H , it becomes
Passive immediately. Eventually, a maximum of n/2 pairs of agents
will execute algorithm Take Turn and finally locate the BH. Given
algorithm Take Turn requires n moves, n/2 ∗ n = n2 moves in
total suffice with n scattered agents. One token per agent for n
agents suffice to correctly locate theBH. Henceweget the following
theorem:

Theorem 6. Using n scattered agents, 1 token per agent and O(n2)
moves, the BH can be successfully located in an un-oriented complete
network Kn.
5.2. In a toruswith aminimumnumber of agents—algorithmmodified
‘cross rings’

Again in this subsection, we assume the torus under investiga-
tion is oriented. We also assume no agent wakes up in the BH. It is
possible that 4 agents could die immediately after the first move:
one enters the BH through the North port, one through the South
port, one through the East port, and one through the West port. In
order to minimize team size, we program eachmobile agent to en-
ter each node through only the South or West ports,1 and thus a
maximum of two agents die after the first move. Hence, we con-
clude:

Lemma 17. At least 3 scattered agents are needed to locate the BH in
an oriented torus.

The basic idea for solving BHs with scattered agents is to let
two of the three agents form a pair that executes algorithm Cross
Rings starting from the nodewhere they formed this pair (i.e., their
H). We will now explain how the agents form a pair and how a
pair of agents finds a Base ring. Then, the rest of the algorithm
is almost the same as algorithm Cross Rings. In algorithm Cross
Rings, there are only two agents working on the Bhs. But in the
scattered agents case, we need to find out a way to eliminate the
third scattered agent. Consequently, we work out a way for the
third agent to becomeDONE (i.e., stopworking) in order to simplify
the communication between the working pair: as soon as an agent
goes into a node with 2 tokens on any of a port (the indication of a
single agent), it will pick up all the tokens and then continue.
Procedures ‘‘initialization’’ and ‘‘single agent explores a north–south
ring’’: Upon waking up, an agent becomes a single agent and
it immediately executes procedure ‘‘Single Agent Explores a
north–southRing’’ to the north. In procedure ‘‘Single Agent Explores
a north–south Ring’’, an agent a1 explores the north–south ring
starting from node u (H), with CWWT (two tokens on the port).
a1 keeps counting the number of nodes in this north–south ring.
Case 1: When a1 goes into a node with one token in the middle of
a node, a1 becomes DONE immediately.
Case 2:When a1 goes into a node with two tokens on the east port,
it executes ‘‘Paired agent finds a Base ring’’ (see below) to the north.
Case 3: a1 goes into a node with two tokens on the north port, it
leaves one extra token in the middle of the node. It then executes
‘‘Paired agent finds a Base ring’’ to the east.
Case 4: When a1 comes back to the node where it left its CWWT
tokens, if two tokens are in the middle and at least one token on
the east port of the node, it then executes ‘‘Paired agent finds a
Base ring’’ to the north.
Case 5: When a1 goes into a node, if any of the following three
situations happens, a1 will become Passive immediately. All three
situations indicate that a pair was formed. The situations are:
either there is at least one token in the middle of the node (there
may be also token(s) on a port of that node), or there is a token on
the north port, or there is a token on the east port.
Case 6: When a1 finishes exploring the north–south ring, it then
executes procedure ‘‘Single Agent Explores an east–west Ring’’.
Case 7: When a1 comes back to the node where it left its CWWT
tokens, if all the CWWT tokens are no longer there, it becomes
DONE.
Case 8: When a1 finishes exploring one east–west ring, it imme-
diately explores the next east–west ring that starts from the next
node to the north on the north–south ring. a1 then executes proce-
dure ‘‘Single Agent Explores an east–west Ring’’ again.

1 In order for an agent to traverse an oriented torus, each agent must visit at least
two ports of each node.

W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958 1953
Procedure ‘‘paired agent finds a base ring’’: As a single agent, as soon
as a1 sees two tokens on a port of a node (the CWWT) of another
single agent a2, it modifies the token configuration in this node and
becomes a paired agent immediately. After a1 becomes a paired
agent, it executes procedure ‘‘Paired Agent Finds a Base Ring’’. Once
an agent a2 becomes a paired agent (after seeing the modified
token configuration a1 left to it) it also executes procedure ‘‘Paired
Agent Finds a Base Ring’’.We call this nodewith themodified token
configuration the homebase (H for brevity as used earlier) of these
two paired agents. It is worth repeating that if a1 executes ‘‘Paired
Agent Finds a Base Ring’’ to the north, then a2 will execute ‘‘Paired
Agent Finds a Base Ring’’ to the east, or vice versa.

Upon starting ‘‘Paired Agent Finds a Base Ring’’ to the north. A
paired agent a1 keepswalking to the northwith CWWT, until it goes
back to the H of this pair. It is possible to have the following token
configurations in this node:

1. There is 1 token on the north port and two tokens in the middle
of their H (and maybe another token on the east port if the
other paired agent a2 is exploring the node to the east after
being a paired agent). In this case, the north–south ring becomes
the Base ring. a1 informs a2 of this result by picking up the token
on the north port.

2. There are 2 or 3 tokens in the middle of the node. In this
case, 2 tokens in the middle of the H shows that the second
agent a2 finished exploring the east–west ring before a1 finished
exploring the north–south ring. So, the east–west ring becomes
the Base ring.

In either case, a1 then keeps walking to the east until it sees
1 token in the middle of a node. It then executes algorithm Cross
Rings to the east port. If there are 3 tokens in the middle (a2 is
exploring the first east–west ring as a paired agent), a1 executes
algorithm Cross Rings to the east port immediately. When agent
a2 walks back to the H of this paired agent after exploring an
east–west ring, there are either:

– 1 token on the north port of the pair’s H , then a2 makes the
east–west ring a Base ring by picking up the token on the north
port of the pair’s H . a2 then executes algorithm Cross Rings to
the east.

– 2 tokens in the middle of the H (a1 informed a2 that the
north–south ring is the Base ring). So a2 keeps walking to the
north until it arrives in the node with a token in the middle. It
then executes algorithm Cross Rings to the north; or

– 3 tokens in themiddle of theH or 1 token on the north port and
2 tokens in the middle of their H (this means that not only a1
informed a2 that thenorth–south ring becomes theBase ring, but
also that a1 is exploring the east–west ring that a2 just finished).
Then a2 will execute algorithm Cross Rings to the north.

During the execution of procedure ‘‘Paired Agent Finds a Base
Ring’’, there are two other possible scenarios: (1) as soon as a1 or
a2 goes into a node with 2 tokens on any of a port, it will pick up all
the tokens then continue. (2) as soon as a1 or a2 notices its CWWT
token is moved, it will continue using the Bypass technique as a
paired agent.

5.2.1. Correctness and complexity analysis

Lemma 18. One pair will be formed within finite time.

Proof. According to the algorithm, as long as one single agent sees
the tokens of another single agent, it will be able to modify the
tokens immediately and become a paired agent consequently. If
the other agent has already died in the BH and thus never comes
back, we still say a pair is formed. Otherwise, the other agent will
come back to pick up its CWWT token sooner or later. Eventually
it will see the modified token configuration and, in turn, become
a paired agent consequently. Now we only need to prove that at
least one single agent will see the tokens of another single agent.

Assume there is no such single agent that will see the tokens of
another single agent before the algorithm terminates. According
to procedure ‘‘Paired Agent Explores a north–south Ring’’, once an
agent wakes up, it is a single agent, and it will try to explore the
north–south ring starting from the node in which it wakes up. If
this single agent finishes exploring the north–south ring without
dying in the BH; or seeing the token(s) of another agent (if it sees
two tokens on a port then it forms a pair with that agent, if it sees
one token on a port or one token in the middle of a node, then it
becomes passive); or being eliminated by a paired agent (having its
CWWT tokens stolen), it is going to explore all the east–west rings
until it:
• either dies in the BH; or
• forms a pair with another single agent upon seeing the tokens

of it; or
• becomes Passiveupon seeing one token on a port or one token in

the middle of a node or, noticing its CWWT tokens were stolen;
or

• terminates the algorithm upon finishing exploring n − 1 nodes
(n − 2 links).
Weknow that all three (minimumteamsize) agents execute the

same algorithm and, all single agents walk with CWWT. According
to the assumption: if no single agent sees the token of another
single agent before the algorithm terminates, these agents must
have died in the BH. We also know that if a single agent only leaves
through the north and/or east ports of a node, it can only go into a
BH through a link connecting to the south and/or west ports of the
BH.

Consequently, one single agent will see the CWWT token of
another single agent that died in the BH either in the node to
the west of the BH or to the south of the BH. This contradicts the
assumption we made at the beginning of this proof: ‘‘there is no
such single agent that will see the tokens of another single agent
before the algorithm terminates’’. So, the assumption is wrong.We
therefore conclude that sooner or later at least one single agent
will see the tokens of another single agent before the algorithm
terminates. We also already proved that as long as one single
agent sees the tokens of another single agent, they can form a
pair correctly. Hence, eventually there will be a pair formedwithin
finite time.

Lemma 19. At least one agent will find a Base ring in the torus.

Lemma 20. A single agent will not interfere with the progress of any
paired agent.

Proof. In procedures ‘‘Single Agent Explores a north–south ring’’
and ‘‘Single Agent Explores an east–west ring’’, as soon as a
single agent sees one of the following token configurations, it will
immediately become Passive:
• Case 1: if there is only one token on a port.
• Case 2: as long as there is one token in the middle of a node.
• Case 3: its CWWT tokens were stolen. Namely, it no longer has

2 tokens on a port.
The above token configurations cover all the token configura-

tions relevant to a pair agent.
Then, in all the procedures that a paired agent executes, we

have added ‘‘eliminate single agent’’ steps. Such steps ensure that
when either a paired agent encounters a single agent, or a single
agent encounters a paired agent, the single agent will become
Passive eventually. Hence, a single agent will not interfere with the
progress of any paired agent.

Lemma 21. Bypass can be correctly executed by a pair of agents.

Proof. The only modification we make to procedure ‘‘Bypass in
Torus’’ in algorithm Cross Rings is that we add one token in the

1954 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
middle of a nodewhen one agent notifies the other agent to bypass.
This extra token is used to eliminate the single agent (once the
single agent sees a token in the middle, it will become Passive
immediately), and it is used every time one agent bypasses another
agent.

As we mentioned above, a paired agent uses one token on the
port to continue its CWWT. When a single agent sees a token on
a port, it immediately becomes Passive. When a paired agent sees
there is only one token in a node and it is in the middle of this
node, it will pick up the token before it continues exploring the
next node. Hence, there is no possibility of having a token in the
middle and a token on the port of a node, except for a paired agent
trying to bypass another paired agent.

Lemma 22. At most 2 agents die in the BH.

Proof. Assume a single agent died in the BH first, and had its
CWWT token left in the neighbor node of the BH. Normally no agent
can go through a portwith CWWT token(s), according to the CWWT
rules defined in Section 3. But according to algorithm Modified
‘Cross Rings’, when a paired agent encounters the 2 CWWT tokens
that a single agent left, it will pick them up and continue executing
the algorithm. If this happens, this paired agentwill leave its CWWT
token on the port where the CWWT tokens of that single agent
were picked up, and this paired agent will die in the BH. According
to Lemma 11 in algorithm Cross Rings at most 1 agent dies in the
BH when there are two co-located agents. Hence, at most one of
the two paired agents will die in the BH, and thus at most 2 agents
die in the BH during AlgorithmModified ‘Cross Rings’.

Lemma 23. Within finite time 1 agentwill determine theBH location.

Proof. As shown in Lemma 19, a pair will be formed within finite
time. After a pair is formed, its agents execute the procedures in
algorithm Cross Ringswith a little modification, namely: eliminate
the single agents. It is obvious that this step takes O(1) time. And
recall thatweproved in Lemma11 thatwithin finite timeone agent
will determine the location of the BH using algorithm Cross Rings.
Hence, within finite time, an agent will determine the location of
the BH using algorithmModified ‘Cross Rings’.

Lemma 24. Three agentswith amaximumof seven (7) tokens in total
are sufficient to locate the BH in a labeled torus with scattered agents.

Proof. According to Lemmas 22 and 23, 3 agents are sufficient to
locate the BH. We now prove that a maximum of 7 tokens are
sufficient in order for three agents to locate the BH. Before all,
we must make a difference between the CWWT tokens of a single
agent and those of a paired agent, because of the following two
facts:

1. We have to have at least 3 agents in the torus when these are
scattered in order to have one agent survive and eventually
locate the BH.

2. Algorithm Cross Rings locates the BH correctlywith 2 co-located
agents.

We can either use 2 tokens on a port as the CWWT tokens of a
single agent and 1 token on a port as the CWWT token of a paired
agent, or vice versa. We arbitrarily decided to choose the first of
these two alternatives for our algorithm. The tokens are used in
the following situations:

• When the algorithm starts, two tokens are needed for a single
agent to explore the north–south ring then all the east–west
rings. Hence, 3 ∗ 2 = 6 tokens are required in total for three
single agents.

• Two tokens are used to form a pair. The agent a1 that initiates
forming a pair will use the 2 CWWT tokens of the other single
agent. The fact is that as soon as an agent becomes a paired
agent, it only uses 1 token as its CWWT token. So, beyond the 1
token a1 is going to use forCWWT as a paired agent, therewill be
one extra token that can be reused in other situations.When the
other single agent a2 comes back from its CWWT, it becomes a
paired agent upon seeing themodified token configuration. One
token (the CWWT token) is needed for a2 to continue as a paired
agent. Given the 2 CWWT tokens of a2 are used for finding a Base
ring, 1 additional token is required by a2. It is also possible that
by the time a1 formed a pair with a2, a2 has already died in the
BH. In this case, the extra token is not required.

• One token is used as a UET. This is because an agent can
always use temporarily the CWWT token as the secondUET (see
Lemma 12). Given a1 has an extra token and leaves it in the
middle of the new H , this extra token can be used as a UET.

• One token is used for the ‘‘Bypass’’ (including step ‘‘Back to
the Dangerous Ring’’) procedure. This bypassing is only going to
happen once all but one north–south/east–west ring has been
explored. So, there is no need to keep the UET. The UET will be
reused for bypassing.

Hencewe conclude: seven (7) tokens in total are sufficient to locate
the BH in a labeled torus with 3 scattered agents.

Lemma 25. O(n) moves suffice using algorithm Modified ‘Cross
Rings’.

Proof. We know from Lemma 18 that within finite time 1 pair will
be formed before the algorithm terminates. In the worst case, each
single agent traverses the whole torus before it either dies in the
BH or forms a pair with another single agent. So, it takes at most
3nmoves for an agent to traverse the torus using CWWT. For three
single agents, it costs 3 ∗ 3n moves in total. It is important to
observe that none of themodifications we introduced to algorithm
Modified ‘Cross Rings’ affect the number of moves. And we know
that once an agent becomes a paired agent, O(n) moves suffice to
locate the BH, according to Theorem 4 in algorithm Cross Rings.
Hence, O(n) moves in total are sufficient for the three agents to
locate the BH.

According to the lemmas above, and following the lower bound
from the whiteboard model presented in [17], we can conclude:

Theorem 7. Using 3 scattered agents and 7 tokens in total, the BH
can be successfully located using Θ(n) moves in a labeled torus with
n nodes.

5.3. In a torus with k scattered agents—algorithm single forward

In this section, we study BHs in a labeled torus with k (k > 3)
scattered mobile agents. Here, k is not known to any of the agents.
The number of nodes n in this torus and the dimension of the torus
x × y are known to all the scattered agents. In this section, we do
require that all the links and nodes obey the FIFO rule.

5.3.1. General description
The agents are in three basic states: single, forward and checking.

Each agent tries to explore the whole torus on its own. An (either
single or forward or checking) agent always goes for an unexplored
node reachable from its current location using only north and east
links. An agent will never go through a west or south port unless
it knows that port is safe. This (together with CWWT) ensures that
at most two agents enter the BH. An agent is able to remember the
number of nodes that it explored.

Every agent as wakes up as a single agent. It becomes a forward
agent, only when it finds a token on the port that as intends to go
through. In other words, when an agent arrives at a node, if further
progress is blocked (i.e., at least one of the unsafe north/east ports is

W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958 1955
blocked (with token)), that port becomes a Check Point for agent as. If
there is no other unsafe north or east port available (without token),
single agent as remains as is and waits in the node after putting
one token in the middle. as continues as a single agent if the port it
wants to use becomes without token.

A forward agent af continues exploring the torus until it
goes into a node u, with at least one token in the middle. We
say this node is the second Check Point of this forward agent.
af immediately becomes a checking agent ac that checks the
availability (at least one port is without token) of these two Check
Points. If both are unavailable then ac chooses one Check Point to
wait. When either of the two Check Point becomes without token,
ac continues as either a forward agent or a single agent. Eventually
an agent that exploredn−1nodeswill terminate the algorithmand
locate the BH. The whole algorithm can be summarized as follows:
1. single agent: has no Check Point, explores and becomes forward

if blocked;
2. forward agent: has one Check Point, explores and becomes

checker if blocked again;
3. checking agent: has two Check Points, sits at one Check Point

and upon any change checks the other Check Point. Becomes a
forward agent when one of the Check Points unblocks without
token, a single agent if both of them become unblocked.

5.3.2. Correctness and complexity analysis

Lemma 26. Within finite time at least one agent will survive and
determine the location of the BH.

Lemma 27. One token per agent suffices using algorithm Single
Forward to locate the BH.

Lemma 28. k (k > 3) scattered agents can locate the BH after
executing O(k2n2) moves using Algorithm Single Forward.

Proof. During the entire lifespan of an agent a1, a1 can explore no
more than n−1 nodes. a1 can also be blocked in a node by another
agent (that may have died in the BH). Once a1 is blocked, it will
either continue its exploration or go back to the previous Check
Point to check the availability of that node (i.e., whether it still has
tokens in it). Each such check takes at most nmoves. Only a change
in the number of tokens can possibly trigger such a check. And only
the entry or exit of a single or forward agent will trigger a change
in the number of tokens, because no token is used for a checking
agent to execute a check. In each node, there is a constant number
of entry and exits preceding the visit of a single or forward agent.
So there are at most k such checks, because there are k agents in
total. Hence, O(k2n2) moves in total are executed by k agents.

Theorem 8. Using k (k > 3) scattered agents and one token per
agent, the BH can be successfully located using O(k2n2) moves in a
labeled torus.

6. Simulation results

We present in this section the experimental results obtained
from a series of Java simulations of algorithms Cross Rings, Mod-
ified Cross-Rings, and Single Forward. Each simulation is inspired
by middleware platforms such as Agilla [23,2] and implements a
given population of mobile agents (from a population size of 2
up to 7). Mobile agents execute the algorithms within a network
of interconnected nodes that follows a torus topology. The imple-
mentation consists of a simple discrete event, time-step based sim-
ulation engine, in which every agent executes the aforementioned
algorithms at every step of simulated time. The simulation engine
implements a discrete event scheduler, a graphical view, a data-
collection system, and the simulated objects themselves, that is,
network nodes and mobile agents. The simulation system consists
of more than 4600 lines of Java code. A sample simulation video is
available online at http://goo.gl/bJ3Ky/.

For the sake of comparison,we simulated aswell a randomcase,
hereinafter denoted as RandomWalk algorithm. An agent running
the Random Walk case simply chooses the next port in a torus
at random. Instead of using tokens, this algorithm is based on a
whiteboardmodel: the agent keeps track of themap using the local
memory allocated in each node. Every agent running the random
walk algorithm also knows the total number of nodes in the
system. Contrarily to algorithmsCross Rings,Modified Cross-Rings,
and Single Forward, theRandomWalk algorithmconsiders failures,
i.e., the algorithm does not guarantee successful termination of
a simulation with at least one agent alive and reporting the BH.
Therefore, a simulation based on the random walk algorithm
(a) successfully terminates when at least an agent realizes that
there is just one node that has not been visited (this node being the
BH) or (b) ends with a failure if all the agents die at the BH. Finally,
given the random nature of the process, agents can visit the same
node more than once.

Our simulation sets consist of 30–100-node networks. Agents
start as co-located agents for the simulations associated with
the Cross Rings algorithm and Random Walk with two agents,
and as scattered agents for the remaining simulations. We
consider that the execution of a simulation is successful if the
BH is discovered by at least one surviving agent. Otherwise, the
simulation is counted as a failure. For each successful simulation,
we compute the percentage of moves that are necessary to
discover the BH. All data is calculated from 100 independent
successful runs of each setting with random initial agent and
BH placement. Algorithms Cross Rings, Modified Cross Rings, and
Single Forward guarantee that only 100 executions are necessary
in order to obtain 100 independent successful runs. However,
the random walk simulations require a higher number of runs
to obtain the required data, given the possibility of failures.
Table 2 summarizes the number of independent runs that were
required during our experiments to obtain 100 successful tests
in the random walk case. Fig. 3 illustrates the average move
results and the 95% confidence intervals obtained during the
initial experimental series, in which populations of two co-
located agents and populations of three scattered agents executed,
respectively, algorithms Cross Ring, Random Walk and Modified
Cross Ring. Results confirm that O(n) moves suffice to locate the
BH in all simulations. Notice that those simulations executing
algorithm Cross Rings with populations of two co-located agents
and 5 tokens in total obtained the lowest number of moves;
while simulations executing algorithm Modified Cross Rings with
populations of three scattered agents and 7 tokens in total reported
the highest number of moves. Simulations executing the Random
Walk algorithm, with zero tokens but requiring the allocated
memory of each node to map the system, provide intermediate
results in terms of moves. However, they present a very high
rate of failures (cf. Table 2) in comparison with algorithms Cross
Rings andModified Cross Rings—which guarantee the termination
process with zero failures. Fig. 4 compares the results obtained
with the execution of the Modified Cross Ring algorithm with the
average move results and the 95% confidence intervals obtained
during the execution of algorithm RandomWalk with populations
ranging from4 to 7 agents over the 30–100-node networks. Results
confirm that O(n) moves suffice to locate the BH in all Random
Walk simulations, but at the cost of O(n) memory on each node
(i.e.Whiteboardmodel) and failures, as reported in Table 2. Finally,
Fig. 5 shows the same comparison with the last experimental
series, where a population from 4 to 7 agents with a single token
per agent execute algorithm Single Forward over the 30–100-node
networks. Results confirm that O(k2n2) moves suffice to locate the
BH in all those simulations based on the execution of the algorithm
Single Forward.

http://goo.gl/bJ3Ky/

1956 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
Table 2
Number of independent runs required to obtain 100 successful tests with algorithm random walk.

of agents # of nodes
30 40 50 60 70 80 90 100

2(co-located) 861 1281 1267 1789 1697 2004 1846 2265
3(scattered) 372 418 597 589 628 681 690 582
4(scattered) 206 237 243 286 288 360 283 321
5(scattered) 142 172 194 181 185 204 208 212
6(scattered) 121 123 139 142 153 149 162 165
7(scattered) 111 116 120 123 111 143 142 129
Fig. 3. Cross Ring and Modified Cross Ring vs. RandomWalk Algorithmwith 2 and
3 agents.

Fig. 4. Modified Cross Ring with exactly three agents vs. RandomWalk with more
than 3 agents.

Fig. 5. Modified Cross Ring with exactly three agents vs. Single Forward withmore
than 3 agents.
Discussion
Both theoretical analysis and simulation results show that, a

BH can be located with Θ(n) moves in an oriented asynchronous
torus using only 3 scattered agents. And such a solution does not
assume FIFO on the links and nodes. Contrary to our intuition that
the moving cost maybe reduced by using more agents, we observe
from the theoretical analysis that, when the number of scattered
agents in a torus increases, communication between these agents
becomes significantly more complicated. It consequently leads to
a more expensive move cost, that is to O(k2n2). Therefore, we did
experiments to compare the move costs of algorithm Modified
Cross Ring (using 3 scattered agents) and algorithmSingle-Forward
that uses 4, 5, 6 and 7 agents respectfully. The result is presented
in Fig. 5. This result confirms our observation that with more (than
3) agents the number of moves increases from linear to quadratic.

7. Conclusion

In this paper, we have developed a set of token-based
algorithms for locating a BH in three interconnected network
topologies: hypercube, torus and complete network.We presented
solutions with both co-located agents and scattered agents. In
Table 3, we list the six algorithms discussed in this paper. We
have shown that the complexity of the general algorithm for an
arbitrary network can be considerably improved using instead an
algorithm designed for a specific network topology. We compare
the similarities and differences between the results obtained for
these specific topologies and analyze the impact of topology and
other performance factors on Bhs.

From this table and the conclusions drawn in [18,17] we can
make the following observations:

1. When we use co-located agents to solve Bhs:
• minimum team size (2 agents) is achieved on all three

topologies.
• one more token is sufficient to eliminate all the extra agents

when there are more than 2 (i.e., minimum team size) agents
in the network.

• the token cost is proportional to the connectivity for the
three studied interconnected topologies, namely: Torus,
Hypercube and Complete Network.

• being the sparsest bi-connected graph and the one for which
the cost (in terms of number of moves) for Bhs using white-
boards is theworst, the ring topology still has the highest cost
(both for number of tokens and number of moves).

2. Within one topology, using scattered agents always requires
more agents than using co-located agents.

3. For co-located agents, the cost of solving Bhs in the Ring
topology is the worst.

4. Unlike when using co-located agents, for scattered agents, the
cost of solving Bhsworsens as connectivity increases.

Clearly, our algorithms need to be further investigated in order
to be improved towards the lower bound associated with each of
their parameters. This should be feasible in the short term.

W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958 1957
Table 3
Comparative evaluation table—complete network, hypercube and torus.

Algorithm name Complete network Hypercube Torus
Co-located agents Scattered agents Co-located agents Co-located agents Scattered agents
Take turn Modified ‘take turn’ Two rings Cross Rings Modified ‘Cross Rings’ Single forward

Orientation No No No No Yes Yes
FIFO No No No No No Yes
Team size 2 n 2 2 3 3 or more
Token cost 1 in total 1 per agent 1 per agent 5 in total 7 in total 1 per agent
Move cost θ(n) O(n2) θ(n) θ(n) θ(n) O(k2n2)
Moreover, in Section 5, we demonstrate that Bhswith a team of
scattered agents (a problem not addressed in whiteboard models)
is rather complex but solvable in some dense graphs. We are now
exploring an optimal solution for Bhs in a hypercube using scattered
agents.

Finally, in this paper we have considered Bhswith only one BH.
Wewould like to study the problemwithmultiple black holes. But,
clearly, in such a case, agents may be isolated into segments of
the topology unreachable from the majority of the nodes. In other
words, the solvability of Bhs in the case of multiple black holes
appears to depend directly on connectivity in a specific network.
We believe this complex problem must be tackled once, and only
once we have carried out the previously suggested future work.

References

[1] J.L. Adler, G. Satapathy, V. Manikonda, B. Bowles, V.J. Blue, A multi-
agent approach to cooperative traffic management and route guidance,
Transportation Research Part B 39 (4) (2005) 297–318.

[2] Agilla: A mobile agent middleware for wireless sensor networks.
http://mobilab.cse.wustl.edu/projects/agilla/.

[3] L. Barrire, P. Flocchini, P. Fraigniaud, N. Santoro, Rendezvous and election of
mobile agents: impact of sense of direction, Theory Computing Systems 40 (2)
(2007) 143–162.

[4] C. Bel, W. van Stokkum, A model for distributed multi-agent traffic control,
in: Multiple Approaches to Intelligent Systems, Proceedings, in: LNCS, vol.
1611, 1999, pp. 480–489.

[5] J. Blum, A. Eskandarian, Enhancing intelligent agent collaboration for flow
optimization of railroad traffic, Transportation Research Part A 36 (10) (2002)
919–930.

[6] C. Braz, Mobile agents for wireless e-commerce applications, Master Thesis.
February 2003, Universit de Montral.

[7] J. Chalopin, S. Das, A. Labourel, E. Markou, Black hole search with finite
automata scattered in a synchronous torus in: Proc. of 25th International
Symposium on Distributed Computing, DISC’11, 2011, pp. 432–446.

[8] J. Chalopin, S. Das, A. Labourel, E. Markou, Tight bounds for scattered black
hole search in a ring in: Proc. of 18th International Colloquium on Structural
Information and Communication Complexity, SIROCCO’11, 2011, pp. 186–197.

[9] B. Chena, H.H. Chengb, J. Palen, Integrating mobile agent technology with
multi-agent systems for distributed traffic detection and management
systems, Transportation Research Part C: Emerging Technologies 17 (1) (2009)
110.

[10] D.M. Chess, Security issues in mobile code systems, in: Proc. of 1998 Conf. on
Mobile Agent Security, MAS’98, LNCS, vol. 1419, 1998, pp. 1–14.

[11] C. Cooper, R. Klasing, T. Radzik, Searching for black-hole faults in a network
usingmultiple agents, in: M. Momenzadeh, A. Shvartsman (Eds.), Proc. of 10th
Int. Conf. on Principles of Distributed Systems, OPODIS’06, in: LNCS, vol. 4305,
2006, pp. 320–332.

[12] J. Czyzowicz, D. Kowalski, E. Markou, A. Pelc, Complexity of searching for a
black hole, Fundamenta Informatica 71 (2–3) (2006) 229–242.

[13] S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, N. Santoro, Optimal
search for a black hole in common interconnection networks, Networks 47
(2006) 61–71.

[14] S. Dobrev, P. Flocchini, R. Kralovic, N. Santoro, Exploring an unknown
dangerous graph using tokens, Theoretical Computer Science 472 (2013)
28–45.

[15] S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Searching for a black hole in
arbitrary networks: optimal mobile agent protocols, Distributed Computing
19 (1) (2006) 1–9.

[16] S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Mobile search for a black hole
in an anonymous ring, Algorithmica 48 (1) (2007) 67–90.

[17] S. Dobrev, R. Kralovic, N. Santoro, W. Shi, Black hole search in asynchronous
rings using tokens in: Proc. of 6th Conference on Algorithms and Complexity,
CIAC’06, 2006, pp. 139–150.

[18] S. Dobrev, N. Santoro, W. Shi, Scattered mobile agents searching for a black
hole in an unoriented ring using tokens, International Journal of Foundations
of Computer Science 19 (6) (2008) 1355–1372.
[19] S. Dobrev, N. Santoro, W. Shi, Scattered black hole search in an oriented ring
using tokens, in: Proc. of 9thWorkshop onAdvances in Parallel andDistributed
Computational Models, APDCM’07, IEEE International, 2007, pp. 1–8.

[20] T.A. El-Ghazawi, Characteristics of the MasPar parallel I/O system, in: Proc.
of the 5th Symposium on the Frontiers of Massively Parallel Computation,
Frontiers’95, 1995, p. 265.

[21] P. Flocchini, D. Ilcinkas, N. Santoro, Ping Pong in dangerous graphs: optimal
black hole search with pebbles, Algorithmica (2011) 1–28.

[22] P. Flocchini, B.Mans, Optimal election in labeledhypercubes, Journal of Parallel
and Distributed Computing 33 (1) (1996) 76–83.

[23] C.L. Fok, G.C. Roman, C. Lu, Agilla: a mobile agentmiddleware for self-adaptive
wireless sensor networks, ACM Transactions on Autonomous and Adaptive
Systems 4 (3) (2009) 26.

[24] P. Fraigniaud, D. Ilcinkas, Digraph exploration with little memory, in: V. Diek-
ert, M. Habib (Eds.), Proc. of 21st Symp. on Theoretical Aspects of Computer
Science, STACS’04, in: LNCS, vol. 2996, 2004, pp. 246–257.

[25] W. Glover, J. Lygeros, A stochastic hybrid model for air traffic control
simulation, in: Hybrid Systems, Computation and Control, Proceedings 2993,
pp. 372–386.

[26] R.S. Gray, G. Cybenko, D. Kotz, R.A. Peterson, D. Rus, D’Agents: applications and
performance of a mobile-agent system, Software - Practice and Experience 32
(6) (2002) 543–573.

[27] M. Greenberg, J. Byington, D.G. Harper, Mobile agents and security, IEEE
Communications Magazine 36 (7) (1998) 76–85.

[28] J. Herbert, J. O’Donoghue, G. Ling, K. Fei, C.L. Fok, Mobile agent architecture
integration for a wireless sensor medical application, in: Proc. of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, 2006, pp. 235–238.

[29] J.Z. Hernandez, S. Ossowski, A. Garcia-Serrano, Multiagent architectures for
intelligent traffic management systems, Transportation Research Part C. 10
(56) (2002) 473506.

[30] R. Klasing, E. Markou, T. Radzik, F. Sarracco, Hardness and approximation
results for black hole search in arbitrary networks, Theoretical Computer
Science 384 (2–3) (2007) 201–221.

[31] D.B. Lange,M.Oshima, Seven good reasons formobile agents, Communications
of the ACM 42 (3) (1999) 88–89.

[32] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, M.I.T. Press, 1992.

[33] W.G. Li, M.V. Pinheiro, Method to balance the communication among multi-
agents in real time traffic synchronization, in: Fuzzy Systems and Knowledge
Discovery, Part 1, Proceedings vol. 3613, pp. 1053–1062.

[34] F. Logi, S.G. Ritchie, A multi-agent architecture for cooperative inter-
jurisdictional traffic congestion management, Transportation Research Part C
10 (56) (2002) 507–527.

[35] R. Oppliger, Security issues related to mobile code and agent-based systems,
Computer Communications 22 (12) (1999) 1165–1170.

[36] H. Proenca, E. Oliveira, MARCS: multi-agent railway control system, Advances
in Artificial Intelligence 3315 (2004) 1221.

[37] W. Shi, Black Hole Search with tokens in interconnected networks, in: Proc.
of 11th International Symposium on Stabilization, Safety, and Security of
Distributed Systems, SSS’09, 2009, pp. 670–682.

[38] E. Mercadal, S. Robles, R. Martí, C. Sreenan, J. Borrell, Heterogeneous
multiagent architecture for dynamic triage of victims in emergency scenarios,
Advances on Practical Applications of Agents and Multiagent Systems (2011)
237–246.

Wei Shi is an assistant professor of Computer Science,
specialized in safety and security issues in distributed sys-
tems, at the University of Ontario Institute of Technology.
She is also an adjunct professor at Carleton University. She
holds a Bachelor of Computer Engineering from Harbin
Institute of Technology in China and received her Ph.D.
in Computer Science from Carleton University in Ottawa,
Canada. Prior to her academic career, as a software devel-
oper and project manager, she was closely involved in the
design and development of a large-scale Electronic Infor-
mation system for the distribution of welfare benefits in

China, as well as of aWorldWideWeb Information Filtering System for China’s Na-
tional Information Security Centre.

http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref1
http://mobilab.cse.wustl.edu/projects/agilla/
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref3
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref4
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref5
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref9
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref11
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref12
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref13
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref14
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref15
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref16
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref18
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref19
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref21
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref22
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref23
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref24
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref26
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref27
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref29
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref30
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref31
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref32
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref34
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref35
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref36
http://refhub.elsevier.com/S0743-7315(13)00164-0/sbref38

1958 W. Shi et al. / J. Parallel Distrib. Comput. 74 (2014) 1945–1958
Joaquin Garcia-Alfaro is a research fellow at TELECOM
Bretagne, Institut Mines-TELECOM. He graduated in Com-
puter Science Engineering from the Universitat Autonoma
de Barcelona in 2002 and he received his Ph.D. in 2006
from the Universitat Autonoma de Barcelona and TELE-
COM Bretagne. He has been an associate professor in the
Department of Computer Science at the Universitat Oberta
de Catalunya and postdoctoral fellow at Carleton Univer-
sity. His research interests include a wide range of net-
work security problems, with an emphasis on security
management, analysis of vulnerabilities, and enforcement

of countermeasures. He has published more than 60 technical papers in refereed
conference proceedings and journals.
Jean-Pierre Corriveau holds a Ph.D. in Artificial Intel-
ligence from the University of Toronto. He is an asso-
ciate professor of Computer Science at CarletonUniversity,
working in Agile and Model-Based Software Testing for
large scale distributed software systems. Before joining
Carleton, he worked at Nortel, where he was one of the
original creators of the ObjecTime CASE tool (now IBM
Rational Software Architect). He also taught extensively
about Object-Oriented Technologies in industry. In re-
cent years, with his research group, he has developed a
contract-based tool for the automated instrumentation

and testing of implementation-independent requirements into a system under test.

	Searching for a black hole in interconnected networks using mobile agents and tokens
	Introduction
	Motivation
	Main results

	Model, assumptions and terminology
	Basic tool and technique
	Cautious walk with token (CWWT)
	Bypass technique

	Bhs with co-located agents
	Bhs in a hypercube---algorithm two rings
	Basic idea
	Algorithm two rings: details
	Correctness and complexity analysis

	Bhs in a torus---algorithm cross rings
	Algorithm ``cross rings''
	Correctness and complexity analysis

	Bhs in a complete network---algorithm take turn
	Correctness and complexity

	Bhs with scattered agents
	In a complete network
	In a torus with a minimum number of agents---algorithm modified `cross rings'
	Correctness and complexity analysis

	In a torus with k scattered agents---algorithm single forward
	General description
	Correctness and complexity analysis

	Simulation results
	Conclusion
	References

