
Ontology-based Attack Graph Enrichment

K. Saint-Hilaire1, F. Cuppens2, N. Cuppens2, J. Garcia-Alfaro1

1Institut Polytechnique de Paris, Télécom SudParis, France
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Abstract: Attack graphs provide a representation of possible actions that ad-
versaries can perpetrate to attack a system. They are used by cybersecurity
experts to make decisions, e.g., to decide remediation and recovery plans. Dif-
ferent approaches can be used to build such graphs. We focus on logical attack
graphs, based on predicate logic, to define the causality of adversarial actions.
Since networks and vulnerabilities are constantly changing (e.g., new applica-
tions get installed on system devices, updated services get publicly exposed,
etc.), we propose to enrich the attack graph generation approach with a seman-
tic augmentation post-processing of the predicates. Graphs are now mapped to
monitoring alerts confirming successful attack actions and updated according
to network and vulnerability changes. As a result, predicates get periodically
updated, based on attack evidences and ontology enrichment. This allows to
verify whether changes lead the attacker to the initial goals or to cause further
damage to the system not anticipated in the initial graphs. We illustrate the
approach under the specific domain of cyber-physical security affecting smart
cities. We validate the approach using existing tools and ontologies.

1 Introduction

Cybersecurity consists of protecting systems, networks, and programs against
cyber-attacks that aim to access, modify or destroy sensitive information, extort
money from users, or disrupt normal business processes. Cyber-attacks against
networks are rising. Computer and network attacks and their countermeasures
become more and more complicated [16]. The understanding of attack real-
ization against a system is essential. Attack graphs show possible paths that
adversaries can use to reach their goals successfully.

There exist various types of attack graph models, mainly [2]: logical, topolog-
ical, and probabilistic models. Logical models represent an attack as a logical
predicate requiring successful preconditions for the attack to be perpetrated.
This type of model accurately represents the process by which humans judge
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whether an attack is either possible or not. Topological models offer a higher-
level view of possible attacks in an information system, representing an attack
as a way of accessing new resources. Finally, probabilistic models, e.g., using
Bayesian theories, assign probabilities to nodes and attack steps.

In this paper, we choose to favor logical attack graphs. The rationale for
our choice is as follows. Both topological and probabilistic models provide less
precision than logical models, f.i., in terms of explainability about how attacks
were performed. Indeed, logical attack graphs illustrate the causes of the attacks
instead of snapshots of the attack steps [14]. This offers several advantages. For
instance, the size of the graph increases in a polynomial manner, whereas in
other approaches it can increase exponentially. Moreover, in a logical attack
graph, causality relations between adversaries and systems are already repre-
sented in the logical statements of nodes and edges. In the other approaches,
one may need to go through Boolean variables to identify the cause of an adverse
situation that allows adversaries’ actions in a stage, hence increasing processing
and inference complexity. In the case of logical attack graphs, the exploitation
of existing vulnerabilities on an asset is the main cause of the attack.

Our work aims to tackle the following question: how can real-time system
monitoring enrich a priori logical attack graphs by taking into account vulnera-
bility and network configuration updates? We claim that a posteriori enrichment
of the graphs would make possible to fulfill certain preconditions that were not
taken into account in the generation of the initial graph. The new process
may also allow to discover if the system is now exposed to different situations
that can augment the attacks from the initial goals to other detrimental events,
causing even further damages. The use of semantic information about system
vulnerabilities leads our analysis.

Cybersecurity operators often rely on CVE (Common Vulnerability and Ex-
posure) reports for information about vulnerable systems and libraries to pre-
vent vulnerabilities exploitation. These reports include descriptions, disclosure
sources, and manually-populated vulnerability characteristics. Characterizing
software vulnerabilities is essential to identify the root cause of the vulnera-
bility, as well as to understand its consequences and attack mechanisms. The
use of ontologies [19] is a proper way to represent and communicate facts and
relations between multiple agents. Several ontologies describing collections of
publicly known software vulnerabilities exist. Examples include the SEPSES
(Semantic Processing of Security Event Streams) ontology [11], which describes
vulnerabilities extracted from the CVSS1 (Common Vulnerability Scoring Sys-
tem) database; and the Vulnerability Description Ontology (VDO) [5], proposed
by the National Institute of Standards and Technology (NIST), in an effort to
characterizing software vulnerabilities in a standard manner. The inference abil-
ities of those existing ontologies justify their use for the enrichment of logical
attack graphs. Moreover, it can help to guarantee that the attack graph remains
faithful to system updates. This includes processing evidences of vulnerability
exploitation, i.e., mapping of monitoring alerts against semantic ontologies.

1https://www.first.org/cvss/
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To validate our approach, we conduct experimental work using the follow-
ing setup. We use a scanner of vulnerabilities (based on Nessus Essentials2)
to discover and list vulnerabilities in a given monitored system. The results
are consumed by Mulval [15], a logic-based attack graph engine. We add sys-
tem monitoring, using Prelude-OSS3, an opens-source Security Information and
Event Management (SIEM) system, enhanced with additional tools to trigger
and post-process attack alerts. We also instantiate precise attacks to change
the state of the system (i.e., exploitation of vulnerabilities) and use a recent
implementation of VDO4 to enrich the initial attack graph by augmenting the
predicates of the initial graph with the semantic data of VDO and the alerts
from Prelude-OSS. Alerts trigger a search within the graph, and expand those
paths related to a successful vulnerability exploitation.

Paper Organization — Section 2 provides a background of the subject and
some preliminaries on the use of attack graphs. Section 3 presents our attack-
graph enrichment approach. Section 4 provides the experimental results. Sec-
tion 5 surveys related work. Section 6 concludes the paper.

2 Background

2.1 Literature on Attack Graphs

Cyber-attacks are frequently represented in the information security literature as
attack graphs. The idea is to identify all those potential paths that an adversary
can take in order to perpetuate the exploitation of a series of vulnerabilities and
compromise an information system. Different approaches exist, with respect to
the way how we can construct and use such attack graphs.

Early literature on attack graphs used them to determine whether specific
goal states can be reached by an adversary who is attempting to penetrate a
system [13]. The starting vertex of the graph represents the initial state of the
adversary in the network. The remaining vertices and edges may represent the
actions conducted by the adversary, and the system changes due to the adver-
sary actions. Actions may represent adversarial execution of vulnerabilities in
the system. A series of actions may represent the adversary steps toward an es-
calation of privileges in the system, e.g., to obtain enough privileges on different
devices or network components in the system. Actions can be combined using
either OR (disjunctive) or AND (conjunctive) logic predicates [17], as well as
other attributes, such as the costs associated to the actions, their likelihood and
probability of success, etc. In the end, a complete attack graph is expected to
show all the possible sequences of actions that will allow the adversary to suc-
cessfully perpetrate the attack (e.g., to penetrate into the system). Some other
representations and uses are possible. For instance, instead of using vertices to
represent system states and edges to represent attack actions, we can represent

2https://www.tenable.com/products/nessus/nessus-essentials
3https://www.prelude-siem.com/en/oss-version/
4https://github.com/usnistgov/vulntology
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actions as vertices and system states as edges; instead of using single adversary
starting locations, we can also assume multiple adversary starting locations or
multiple targets and goals, etc.

Other models use directed graphs. For instance, topological attack graphs
directly use topological nodes to represent information about systems’ assets.
The edges represent an adversary’s steps to move from a topological parent node
to a topological child node. The type of attack (exploitation of a vulnerability,
credential thief, etc.) related to an attack step describes how the adversary
can move between nodes. The set of conditions associated with an attack step
depends on the type of attack. A sensor can be associated with an attack step,
a sensor that may alert that this attack has been detected. Similarly, prob-
abilistic models using Bayesian networks can also represent attack graphs via
directed acyclic graphs. Nodes represent random variables and edges represent
probabilistic dependencies between variables [3]. An example is BAM (Bayesian
Attack Model) [4], which builds upon Bayesian attack trees. Nodes represent
transitions, conditions, and sensors. Each node represents a Boolean random
variable with two mutually exclusive states. A Bayesian transition node rep-
resents the random variable that describes the success or fail of a transition.
A Bayesian condition node represents the random variable that describes if the
condition is fulfilled. A Bayesian sensor node is a random variable that describes
the state of a sensor. These nodes are linked with edges, which indicates that
the child node conditionally depends on the state of its parents.

Compared to Bayesian networks, logical attack graphs provide some practical
advantages. First, the use of acyclic graphs in Bayesian networks requires from
heuristics to suppress paths that an adversary can follow. The inference of a
Bayesian attack graph is very complex, since it needs to delve into the Boolean
variables and follow several steps upstream to identify the adverse situation
causes that enable an adversary’s action at a stage. This leads to performance
problems. In logical attack graphs, the causality is specified as graph edges.
Thus, the inference of a logical attack graph is straightforward. Logical attack
graphs are also more elaborated than topological attack graphs. In the sequel,
we elaborate further on logical attack graph modeling.

2.2 Logical Attack Graph Modelling

We define next some preliminary concepts such as Graph, Directed Graph, and
AND-OR Graph, as underlying requirements for logical attack graph model-
ing [1, 2].

Definition 1 (Graph) A Graph is a set V of vertices, and a set E of unordered
and ordered pairs of vertices, denoted by G(V ;E). An unordered pair of vertices
is an edge, while an ordered pair is an arc. A graph containing edges alone is
non-oriented or undirected; a graph containing arcs alone is called oriented or
directed.
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Definition 2 (Directed Graph) A directed graph G(V ;A) consists of a non-
empty set V of vertices and a set E of arcs formed by pairs of elements of V .
In a directed graph:

• The parent or source of an arc (v1; v2) ∈ A; v1 ∈ V ; v2 ∈ V, is v1.

• The child or destination of an arc (v1; v2) ∈ A; v1 ∈ V ; v2 ∈ V, is v2.

• The incoming arcs of a node v are all the arcs for which v is the child:
∀a = (v1; v) ∈ A,with v1 ∈ V .

• The outgoing arcs of a node v are all the arcs for which v is the parent:
∀a = (v; v2) ∈ A,with v2 ∈ V .

• the indegree deg (v) of a vertex v ∈ V is the number of arcs in A whose
destination is the vertex v: deg (v)= Card({vi;∀vi ∈ V ; (vi; v) ∈ A}).

• the outdegree deg+(v) of a vertex v ∈ V is the number of arcs in A whose
destination is the vertex v: deg+(v)= Card({vi;∀vi ∈ V ; (vi; v) ∈ A}).

• a root is a vertex v ∈ V for which deg (v) = 0 (no incoming arc).

• a sink is a vertex v ∈ V for which deg+(v) = 0 (no outgoing arc).

Definition 3 (AND-OR Graph) An AND-OR graph is a directed graph where
each vertex v is either an OR or an AND. A vertex represents a sub-objective
and according to its type (AND or OR), it requires either the conjunction or
disjunction of its children, to be fulfilled. A root node n of an AND-OR graph
can be called a precondition as it does not require any other node n to be fulfilled.

According to Definitions 1, 2, and 3, logical attack graphs are based on
AND-OR logical directed graphs. The nodes are logical facts describing adver-
saries’ actions or the pre-requisites to carry them out. The edges correspond
to the dependency relations between the nodes. Various operators can be tak-
ing in account in a logical attack graph depending on the approach. The more
popular operators are AND and OR. AND operator describes the achievement’s
requirement of all the facts of its children for the logical fact of a node to be
achieved. OR operator describes the achievement’s requirement of at least one
fact of its children for the logical fact of a node to be achieved.

3 Our Approach

We assume that after the generation of a (proactive) attack graph, using a
priori knowledge about vulnerabilities and network data, both networks and
vulnerabilities may evolve (i.e., the configuration of system devices may change,
software updates may be enforces, etc.). Hence, the network is not exposed to
the same vulnerabilities as the beginning of the attack graph generation process.
It is essential to update the attack graph according to systems’ changes. When
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updating a logical attack graph, causality relations between adversaries and
systems shall be represented in the logical statements of nodes and edges. We
propose a logical attack graph enrichment approach based on ontologies. Before
moving forward with our approach, we start by introducing a representative
use case that will help up to explain the rationale of our approach. Examples
based on the use case scenario are used to exemplify how our approach conducts
the generation and enrichment of attack graphs, as well as other tasks, such as
periodic monitoring and ontology analysis.

3.1 Use Case Scenario

This section describes a use case scenario provided by smart city stakeholders.
We provide first the general context associated to the scenario, then we focus
more in detail on possible attack consequences described by the stakeholders.

3.1.1 General Description

An infectious disease spreads across multiple continents. Health authorities
impose unexpected lockdowns on several countries. When the situation seems
over, politicians decide to apply some unpopular restrictions, to prevent new
spreading waves of the disease. The population gets furious. Violent groups
connected through the internet take it as an opportunity to launch attacks
against assets associated to public services. Their goal is to cause panic among
the population.

3.1.2 Panic and Violence on a Transportation Service

Politicians decide to engage in another period of lockdown. Protesters are loudly
shouting outside a municipal building. Social media respond positively to the
movement. A mass of citizens arrives at the location. Public transportation
in the area is heavily affected, causing long delays. Tensions and altercations
rise with the increase of protesters. A fake alert, pretending to come from the
municipality network, force people to evacuate the area. People get injured.
Images and videos of altercations, evacuation, and car fires are posted on social
media. At the same time, a denial-of-service cyber-attack against the munici-
pality network is perpetrated. Machines and sensors get out-of-service, causing
further delays in the transportation service of the city. People trying to leave the
area start fighting, forcing the authorities to close all transportation services.
The mass of people in a given bus affects the health of several passengers.

3.2 Generation of the Attack Graph

The generation of a logical attack graph requires the definition of rules de-
scribing causality relations. As an example, we consider code execution. Code
execution on a machine allows an adversary to have access to a host. This
scenario corresponds to the logical implication detailed by the following rule:
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execCode(h, a) → canAccesHost(h)

where canAccesHost(h) is a logical rule describing the accessibility to host h,
and execCode(h, a) a fact assessing that an adversary a executed code in h. The
example can be extended as follows:

execCode(h, a) ∧ hasCredentialsOnMemory(h, u) → harvestCredentials(h, u)

where harvestCredentials(h, u) describes a series of credentials harvesting on
host h, execCode(h, a) the fact that an adversary a is executing code on host h,
and hasCredentialsOnMemory(h, u) the fact of storing the credentials on the
memory of host h. The example describes the fact of an adversary harvesting
the credentials of a previous user that logged onto the system, by finding them
in the memory of that precise system.

3.3 Monitoring the Information System

In order to update the attack graph based on the real-time state of the system,
we can also monitor the information system. The output of the monitoring
process can get continuously mapped with the initial nodes of the attack graph,
in order to find out if a vulnerability is being exploited. The mapping between
the monitored system and the attack graph is described bellow:

∀n ∈ N : (vulExists(h, x, y, z) ∧ networkServiceInfo(h, s, p, a, u) → F1

where (vulExists(h, x, y, z) describes the existence of a vulnerability x on host h
which allows action y resulting in z. Likewise, networkServiceInfo(h, s, p, a, u)
describes that user u has a session open on host h where a given service product
p is installed, using port a and protocol p.

The evaluation of a successful mapping implies finding further details about
specific vulnerabilities. We propose to use a vulnerability ontology to conduct
such a process, represented by F1. Next, we provide some more details about
this process using semantic information about concrete vulnerabilities.

3.4 Vulnerabilities and Ontologies

Vulnerability information is necessary for both the attack graph generation pro-
cess and the updates. Vulnerabilities enable the adversary to take actions to-
wards the initial adversarial goals, or alternative actions affecting the system
in different ways. Lists of uniquely identifiers in CVE (Common Vulnerabilities
and Exposures), a collection of publicly known software vulnerabilities, are com-
plemented with valuable descriptions about the vulnerability, its preconditions
and post-conditions, and practical ways to be exploited. The information con-
tained in CVE’s descriptions can also lead to other valuable characterizations,
for example, impact to the system if the vulnerability is exploited.

An ontology is a formal description of a field of knowledge and is represented
by descriptive logic. An ontology brings semantic support and unifies unstruc-
tured data. Ontologies have been widely used in the field of cybersecurity, for
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instance, to represent vulnerability classes and their inner relations. Table 1
shows an example, representing the classification of a given vulnerability listed
in CVE (with identifier CVE-2002-0392). Ontologies also offer inference abili-
ties, which we will use to enrich logical attack graphs when the exploitation of
a vulnerability is being reporting during the monitoring process of a vulnerable
system.

CVE-ID Product Type Action Impact

CVE-2002-0392 Apache remote Code Execution Privilege

Escalation

Table 1: Classification of CVE-2002-0392 characteristics.

3.5 Enrichment of Attack Graphs

Algorithm 1 represents our proposed approach for enriching attack graphs based
on a vulnerability ontology and monitoring system information. When a threat
exists on a vulnerable component of the monitored system, it is necessary to
look through the vulnerability characteristics to find its post-conditions. Those
post-conditions enrich the attack graph with new paths. The inference rules
allow knowing what those new paths can bring to the attack goal. As an exam-
ple, Algorithm 2 shows an inference rule based on the definition of a Directed
Graph in Definition 2, and deduces the consequence of restarting a device in
the scenario of Section 3.1 (i.e., a cyber-attack on a municipality network that
takes a given device out-of-service for a while). During the attack, the lack of
communication between an application and a server causes a problem in the
logistics of the transportation service. There is a delay in the bus service. This
scenario is not anticipated in the initial graph. It is necessary to update the
graph and add the new path that allows the adversary to reach the goal (i.e.,
cause panic and violence of people). Updating the graph will help the operators
to inform the authorities and explore the best remediation strategy to mitigate
the damages as soon as possible. Therefore, it is necessary to define inference
rules like the one shown in Algorithm 2, to update the graph in such a situation.

Algorithm 1: Enrichment of a proactive attack graph based on a
vulnerability ontology and monitored system information

h1: A threat exists on a vulnerable component of the monitored system.
h2: Post-conditions of the exploited vulnerability are found in the
ontology.

P1: Add new path on the attack graph.

(h1 ∧ h2) → P1
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Algorithm 2: Inference rule for mass on buses scenario

v1: Node corresponds to reboot of a machine.
v2: Node corresponds to mass on buses.
The child or destination of an arc (v1; v2) ∈ A; v1 ∈ V ; v2 ∈ V, is v2.

(v1 ∧ v2) → (v1; v2)

The inference rule is:
v1 v2
(v1; v2)

r

4 Implementation

4.1 Setup

In order to validate our approach, we instantiate the scenario depicted in Fig-
ure 1. It represents a cyber-physical system monitored by a Security Information
and Event Management (SIEM) system, based on Prelude-OSS5. We use a vir-
tual machine representing the starting device of the scenario, another machine
to instantiate the breach point, and a third one representing the critical asset.
We use Nessus Essentials6 to discover and list vulnerabilities in the monitored
system. Data from Nessus is consumed by MulVAL [15], a reasoning engine
based on logical programming, to generate a logic-based attack graph. We also
use a practical implementation7 of NIST’s Vulnerability Description Ontology
(VDO) [5], and Prelude-OSS to map the information contained in VDO into
the attack graph, upon reception of Prelude-OSS’ alerts.

The rationale of the scenario depicted in Figure 1 is as follows. An adversary
succeeds to execute arbitrary code on the starting device by connecting remotely
through RDP (Remote Desktop Protocol, a network service that provides users
with graphical means to remotely control computers). The adversary can then
read the memory of the starting device. The credentials of the administrator
are saved in the memory of the starting device. Then, the adversary harvests
those credentials. We assume that the administrator can connect to all the
machines in the domain, to remotely manage them. Then, an adversary capable
of reusing the credentials can log onto the breach point and remotely connect to
the critical asset. The adversary also perpetrates a DNS Poisoning attack [9],
in order to eavesdrop network traffic. The adversary also perpetrates some
integrity attacks, in order to modify application level information, such as the
bus schedule and routes, to perturb the influence of traffic and cause a congestion
increase. This causes citizens taking the wrong buses at the wrong time, leading
into the situation of panic and violence mentioned in Section 3.1. In parallel,

5https://www.prelude-siem.com/en/oss-version/
6https://www.tenable.com/products/nessus/nessus-essentials
7https://github.com/usnistgov/vulntology
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4 Domain Credentials

Starting Device
Sensor
172.0.100.20
Windows 7 SP 1.0

Breach Point  
Sensor 
172.0.100.5
Windows 7 SP 1.0

Critical Asset
Sensor 
172.0.100.7
Windows 7 SP 1.0

AKIA**6IN7
Access Key
908522078858
Active

5 Access Keys Stealer 6 User Compromise

UWG8PVPUFS4N
User 
908522078858
AIDA5HCBCYKFJNQTZWOI7

5 Alter information

6 Panic and violence 
on mass buses

Figure 1: Cyber-physical attack scenario. An adversary exploits the vulnera-
bility associated to CVE-2019-0708 on a Starting Device. Then, administrator
credentials are harvested from the memory of the device, and reused by the
adversary to take control over a critical asset. The attack affects both physical
and digital elements associated to the system (e.g., people and services).

the adversary reuses the domain credentials to steal some other access keys and
impersonate other users (shown in Figure 1 with steps Access Keys Stealer and
User Compromise). This parallel scenario leads to the exploitation of other
vulnerabilities and an eventual denial-of-service attack.

4.1.1 MulVAL

Based on the scenario shown in Figure 1, we create input data for MulVAL, as
well as interaction rulesets associated to VDO. We encode the new interaction
rules as Horn clauses [15]. The first line corresponds to a first-order logic conclu-
sion. The remaining lines represent the enabling conditions. The clauses below
corresponds to the following statement from the scenario shown in Figure 1:
’the breach point credentials can be harvested on the starting device only if there
is previously an execution code exploit on the starting device and the credentials
of the administrator are saved onto the memory of the starting device’.

harvestCredentials(_host, _lastuser) :-

execCode(_host, _user),

hasCredentialsOnMemory(_host, _lastuser)

The clauses below represent the following facts: ’it is possible to log into the
breach point with the administrator credentials when these credentials have been
harvested and because the breach point and the starting device are on the same
network and can communicate through a given protocol and port.

logOn(_host, _user) :-

networkServiceInfo(_host, _program, _protocol, _port, _user),

hacl(_host, _h, _protocol, _port),

harvestCredentials(_h, _user)
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4.1.2 Ontology

We use VDO, an ontology of CVEs proposed by NIST. Figure 2, from [8], rep-
resents various attributes of the VDO ontology, for characterization of software
vulnerabilities. Various attributes, such as Attack Threater, Impact Method and
Logical Impact are mandatory. The value of Attack Threater characterizes the
area or place from which an attack must occur. Impact Method describes how
a vulnerability can be exploited. Logical Impact describes the possible impacts
a successful exploitation of the Vulnerability can have. For each CVE affecting
the monitored system, we can fulfill the classes of information from the ontology,
according to the description and metrics of the CVE.

Figure 2: The NIST Vulnerability Description Ontology (VDO) [8]. This fig-
ure represents the different classes of NIST vulnerability ontology with their
properties.

A simplified description of CVE-2019-0708 according to VDO would state,
among other details, that ’a remote code execution vulnerability exists in Remote
Desktop Services, formerly known as Terminal Services, which can be exploited
by an unauthenticated attacker connecting to the target system using TCP or
UDP traffic and sending specially crafted requests.

4.1.3 Prelude-ELK

We use an extended version of Prelude-OSS with ELK (Elasticsearch, Logstash,
and Kibana). The code is available online8. Elasticsearch allows us indexing
and processing unstructured data. It also provides a distributed web interface
to access the resulting information. Logstash is the parsing engine associated
with Elasticsearch for collecting, analyzing, and storing logs. It can integrate

8https://github.com/Kekere/prelude-elk
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Vulnerability: cve.mitre.org CVE-2019-0708

Provenance: https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0708

Scenarion:1 The first scenario

Product:

cpe:2.3:o:microsoft:windows 7:-:sp1:*:*:*:*:*:*

cpe:2.3:o:microsoft:windows server 2003:-:sp2:*:*:*:*:x64:*

cpe:2.3:o:microsoft:windows server 2003:-:sp2:*:*:*:*:x86:*

cpe:2.3:o:microsoft:windows server 2003:r2:sp2:*:*:*:*:*:*

cpe:2.3:o:microsoft:windows server 2008:-:sp2:*:*:*:*:*:*

cpe:2.3:o:microsoft:windows server 2008:r2:sp1:*:*:*:*:itanium:*

cpe:2.3:o:microsoft:windows server 2008:r2:sp1:*:*:*:*:x64:*

cpe:2.3:o:microsoft:windows vista:-:sp2:*:*:*:*:*:*

cpe:2.3:o:microsoft:windows xp:-:sp2:*:*:professional:*:x64:*

cpe:2.3:o:microsoft:windows xp:-:sp3:*:*:*:*:x86:*

Scenario 1 is in relation to the operating system

Attack Theater: Remote

Remote Type: Internet Crafted requests are sent to the target remotely using RDP.

Barrier: Privilege Required The adversary does not need any authorization to the HostOS.

Privilege Level: Anonymous

Relating to Context: Host OS

Context: HostOS One of the Contexts with recognized impacts due to the

vulnerability

Entity Role: Primary Authorization

Entity Role: Vulnerable The Host OS is the initial authorization scope and is also the

vulnerable Context

Impact Method: Trust Failure

Trust Failure Type: Failure of Inherent Trust

Impact Method: Code Execution Unauthentificated RDP connection to target system allows

remote code execution. This code execution can lead to denial of

service or modification of memory

Logical Impact: Service Interrupt

Service Interrupt Type: Panic

Scope: Limited

Criticality: High

Service Interrupt Type: Reboot

Scope: Limited

Criticality: High

Logical Impact: Write(Direct)

Location: Memory

Scope: Limited

Criticality: High

Logical Impact: Read(Direct)

Location: Memory

Scope: Limited

Criticality: High

Table 2: Table of attributes characterization for CVE-2019-0708

16

Table 2: Attributes associated with CVE-2019-0708.

many sources simultaneously. Finally, Kibana is a data visualization platform
that provides visualization functionalities on indexed content in Elasticsearch.
Users can create dashboards with charts and maps of large volumes of data.

The addition of the ELK stack into Prelude-OSS allows the injection and
visualization of third-party logs received from both system and network compo-
nents via TCP/IP messages. The collection of data can still be combined with
the classic collection and visualization tools of Prelude-OSS. For instance, we
can keep using Prelude’s LML (Log Monitoring Lackey) and third-party sensors
to monitor and process Syslog messages generated from different hosts on het-
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erogeneous platforms. In addition, we also extend Prelude-OSS with Suricata9,
as a third-party sensor reporting alerts on the exploitation of known vulnerabil-
ities. We install Rsyslog Windows Agent 10 and Suricata on each of the virtual
machines, in order to monitor them with the ELK extension of Prelude-OSS.
Logstash inserts the alerts into Elasticsearch (in JSON format). The results are
processed in real-time, mapping the alerts and VDO’s data while conducting
our attack graph enrichment process.

4.1.4 Web Interface

We create a web interface using PHP, Javascript, JQuery, D3.JS, and HTML,
where we upload the XML outputs of Mulval. The inference engine converts
the XML into JSON. From this JSON, the engine displays a web visualization
of the attack graph. The server consults the Elasticsearch index in real-time.
The last alert’s IP address, port, and protocol match the attack graph. When
a vulnerability is likely to be exploited, the engine consults the vulnerability
ontology to find other post-conditions for the vulnerability. The tool updates
the attack graph according to the ontology.

4.2 Results

Figure 3(a), represents the attack graph generated for the scenario depicted in
Figure 1. The goal, represented by Node 1, is to cause panic and violence (see
use-case scenario described in Section 3.1). A red node represents the existence
of a vulnerability on a device. An orange node represents network configu-
ration, e.g., characteristics of a device, connection between two deices in the
network, etc. When the preconditions are respected, a yellow node represents
the inference rules leading to a fact. Facts are represented by green nodes. For
instance, Node 26 represents remote connectivity of the Starting Device in Fig-
ure 1, which can be remotely accessed using RDP (Remote Desktop Protocol)
services. Node 27 concerns the location of the adversary in the network. Node
25 represents the rule that leads the adversary to gain direct network access
(i.e., Node 24) on the starting device, when preconditions on Nodes 26 and 27
are met. Node 29 concerns the existence of the vulnerability CVE-2019-0708
on the starting device. CVE-2019-0708 consists of a remote code execution vul-
nerability. Node 28 concerns the network configuration of the Starting Device.
Some other practical details encoded in the graph correspond to the operating
systems (Windows 7), open TCP ports (3389), and identity of the user at the
Starting Device (username olivia). Finally, Node 23 has Nodes 24, 28, and 29
as main preconditions.

Alerts are processed with Prelude-ELK (cf. Section 4.1.3) in real-time. The
inference engine finds exploited nodes based on network information associated
to a victim device (i.e., the Starting Device in Figure 1), such as IP address,
protocol, and port. The service consults VDO (i.e., our vulnerability ontology)

9https://suricata.io/
10https://www.rsyslog.com/windows-agent/
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(a) Initial attack graph. The adversary gains network access on Node 25. When all the pre-
conditions are met on each stage, the adversary can take actions represented by green nodes to
reach Node 1, which represents the adversarial goal (i.e., panic and violence on mass buses).

(b) Enriched attack graph. A new path towards Node 1
(panic and violence on mass buses), is discovered using
the ontology. The adversary can now take a much shorter
path to reach the final goal.

Figure 3: Sample results. (a) Attack graph generated for the scenario of mass on
buses. (b) The same attack graph, once enriched with data from the ontology.
In both graphs, a red node represents the existence of a vulnerability on a given
resource. An orange node represents network configuration (e.g., characteristic
of a machine or connection between two machines in the network). When pre-
conditions are respected, a yellow node represents an inference rule that leads
to a fact (represented by a green node).
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to find other post-conditions associated with CVE-2019-0708. For instance, it
compares the operating system associated to the victim device against the list
of products listed in CVE-2019-0708. As a result, an enriched attack graph
is derived. Figure 3(b) represents such an enriched attack graph. The four
nodes highlighted with the red square correspond to the new nodes added to
the enriched attack graph. They represent the logical impacts derived from
the ontology. Node 33 describes the Starting Device being restarted. Node
35 describes a system crash of the Starting Device (i.e., Starting Device stops
functioning properly). The consequence of Nodes 33 and 35 (i.e., Starting Device
restarting or unavailable) leads to the mass on buses scenario (i.e., by inference,
Nodes 33 and 35 are targeting now Node 2, which is the rule concerning mass
on buses). In Figure 3(b), the four added nodes represent a new path that the
adversary can take to cause panic and violence. As we can see, the enriched
graph is now an acyclic graph. The new path is shorter than the predicted one.
The adversary can reach the goal, represented by Node 1, much sooner than
expected. This difference would makes operators aware that it is more urgent
to apply a remediation plan.

5 Related Work

5.1 Attack Graph Generation Approaches

Work by Ghosh and Ghosh [7] propose a planning-based approach for attack
graph generation and analysis. In this approach, initial network configuration
and description of exploits serve as input for the minimal attack graph genera-
tion. Shirazi et al. [18] present an approach for modeling attack-graph genera-
tion and analysis problems as a planning problem. They present a tool called
AGBuilder that generates attack graphs using the Planning Domain Definition
Language (PDDL) from extracted vulnerability information.

Roschke et al. [16] present an approach of vulnerability information extrac-
tion for attack graph generation using MulVAL. The proposal integrated attack
graph workflows with SIEM alerts in terms of data fusion and correlation. Alerts
are filtered based on vulnerability and system information of the attack graph.
The correlation process can reveal a new way the network can be attacked. In
such a case, the attack graph is updated.

Compared to those aforementioned approaches, we monitor the network to
update the attack graph based on state change of the network and generate
attack graphs based on network information received from Nessus scans. We
also enrich the attack graph based on vulnerability information from CVEs
and alerts received from a SIEM. We use a logical attack graph generation
approach instead of a planning-based attack graph generation one. With a
logical approach, the inference is more straightforward. Moreover, the semantics
abilities enhance attack graph enrichment with ontology. We use a vulnerability
ontology to correlate alerts with the system and vulnerability information.

15



5.2 Ontology and Attack Graph Generation

Falodiya et al. [6] propose an ontology-based approach for attack graphs. The
idea is to use an exploit dependency attack graph, an equivalence of logical
attack graphs. The work presents an algorithmic solution to traverse the attack
graph and add the extracted data into the ontology.

Lee et al. [12] also propose an approach for converting an attack graph into
an ontology. Their formalism is based on an attack-graph approach by Ingols et
al. [10]. The extraction of semantics from the graph is then labeled to build an
RDF (Resource Description Framework) graph. Using RDF schema is beneficial
for inferences from data and enhance searching. Wu et al. [20] propose as well an
attack graph generation approach based on the inference ability of cybersecurity
ontologies.

In our approach, we use these abilities of semantic languages to enrich log-
ical attack graphs easily. We use a NIST standardized ontology (VDO, for
Vulnerability Description Ontology) as the primary source of such vulnerability
semantics. VDO corresponds well with the logical attack graph approach. It
provides mandatory classes such as Logical Impact and Product, which we use
to map alerts with attack graph nodes. New attack paths can be discovered
when looking for other logical impacts of a given CVE in VDO. With this ap-
proach, we avoid recomputing the attack graph from scratch in the reasoning
engine each time the system state change. The semantic abilities of logical at-
tack graphs and ontologies also allow us to take an incremental approach to
update the graphs. This improves the automation of the enrichment process
(i.e., cybersecurity operators do not have to manually modify inputs to update
the attack graphs).

6 Conclusion

We have proposed an ontology-based approach for attack graph enrichment.
We use logical graph modeling, in which attacks are represented with predi-
cates. Successful precondition validation represents successful attack perpetra-
tion. Compared to other similar approaches, such as topological and probabilis-
tic attack graphs, our approach simplifies the inference process, since graphs’
edges specify now causality. We have implemented the proposed approach using
existing software. We have validated the approach based on a cyber-physical
use-case, proposed by smart-city stakeholders. We have validated the full ap-
proach, from the generation of an initial attack graph (using network vulner-
ability scans), to the enrichment of the graph (mapping monitoring alerts and
ontology semantics in real-time). The predictions of the initial graph get success-
fully updated into the enriched graph, based on attack evidences and semantic
augmentation.
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