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Abstract. As network attacks become more complex, defence strategies must
provide means to handle more flexible and dynamic requirements. The Multi-
protocol Label Switching (MPLS) standard is a promising method to properly
handle suspicious flows participating in such network attacks. Tasks such as alert
data extraction, and MPLS routers configuration present an entailment to activate
the defence process. This paper introduces a novel framework to define, gener-
ate and implement mitigation policies on MPLS routers. The activation of such
policies is triggered by the alerts and expressed using a high level formalism. An
implementation of the approach is presented.
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1 Introduction

Nowadays, protecting data and network resources requires a whole new set of pro-
cesses and technology challenges [30]. In [16] we presented HADEGA, a novel and
efficient mitigation technique to counter network attacks. HADEGA relies on MPLS
(Multiprotocol Label Switching [25]). The MPLS technology is widely used by ser-
vice providers (i.e. to establish VPN, or to maintain service level guarantees, etc.) and
presents a de-facto standard practice for Traffic Engineering and Differentiated Ser-
vices. In HADEGA, MPLS is used for the sake of network security: through the set-
tlement of various routing and QoS schemes on suspicious communications flowing
across service providers’ networks.

As it happens with many other mitigation technologies, HADEGA requires the en-
forcement of appropriate security rules triggered by adaptive defence processes (e.g.,
monitoring tools reporting incidents via alerts). However, in the original proposal of
HADEGA, the management aspect of the solution was omitted. The goal of this paper
is, therefore, to complement the HADEGA approach by addressing this crucial aspect.
Our goal is to develop a policy-based management tool that post-processes the output
of monitoring tools (e.g., incident alerts) and provide the appropriate mitigation scripts
necessary to configure MPLS routers. For this purpose, we use a high level formalism
based on the OrBAC model [21]. OrBAC is chosen for its expressiveness and transfor-
mation capabilities, which are rich enough to cover all the necessities of our approach.
The OrBAC model is used in a top-down fashion, to properly generate MPLS router
configuration rules from high-level (abstract) routing and QoS mitigation policies.



We validate our proposal by presenting an ongoing prototype developed under the
open source MotOrBAC framework [2]. MotOrBAC already provides some of the nec-
essary elements of our approach, such as the OrBAC policy editor and a powerful Appli-
cation Programming Interface (API) to extend the capabilities of the editor. In our case,
we extend such capabilities by adding (1) a new policy instantiation engine to provide
the mapping between OrBAC policies and alerts; and (2) a policy transformation engine
to translate the inferred rules into MPLS configuration scripts.

Paper organization — Section 2 elaborates further on our motivation problem and pro-
vides some background and state of the art literature. Sections 3 and 4 address the mod-
eling of MPLS reaction policies using the OrBAC formalism. Section 5 overviews the
ongoing development of a practical implementation of our approach. Section 6 presents
a discussion and some related work. Section 7 concludes the paper.

2 Background

2.1 HADEGA

In the normal context, an MPLS domain is responsible to direct packet flows along a
predetermined path in a per-route scheme. It also defines packets behaviour in a per-hop
scheme. These dual schemes are achieved in MPLS through Traffic Engineering [5] and
Differentiated Services [14] strengths. We presented in [16] HADEGA, a novel miti-
gation technique that benefits from these strengths to mitigate and reduce the impact
of suspicious flows. In HADEGA, each MPLS domain is seen as a single packet for-
warding component that first aggregates the suspicious flows, and second controls them
(e.g., de-prioritizes their treatment or points them to a blackhole). The network suspi-
cious flows are associated to suspicious traffic classes. The definition of these classes
relies on network and assessment information. Mapping the suspicious flows to these
classes is achieved via the data extracted from the alerts raised by monitoring tools.
Then, MPLS labels are associated to those suspicious flows. These labels bounded to
suspicious packets are used to make the treatment and forwarding decision all over
the MPLS domain. From a life-cycle perspective, HADEGA consists of the following
processes:

Planning Process: it consists of the definition of a pool of class of suspicious services,
paths and forwarding behaviour treatments. The suspicious class of services are fixed
based on security assessment attributes. The paths are distinguished by their distinct per-
route attributes (i.e., number of hops, minimum/maximum bandwidth, link colors, etc.).
The forwarding behaviour treatments have different per-hop attributes (i.e., scheduling,
dropping policy, etc.). These paths and forwarding behaviour treatments handle the sus-
picious flows. We call them suspicious paths and forwarding behaviour treatments. The
planning process is based on the predicted state of traffic load and existing traffic views.
It consists of long-term strategies. It is done off-line taking into account global network
conditions and traffic load.

Reaction Process: it consists of responding to alerts on both network (i.e., perfor-
mance) and security (i.e., threat) levels. The reaction process is divided into two aspects:
(1) network adaptation and (2) flow admission control.



– Network adaptation control is a short-term aspect, limited to minutes or hours.
It is triggered by network performance alerts reporting significant changes in the
traffic load or the network topology, or the inability of the long-term strategies
defined in the planning process to adapt properly. It consists of employing certain
dynamic resources and route management procedures for the previously established
suspicious paths and forwarding behaviour treatments.

– Flow admission control extends throughout the reaction process. It is based on se-
curity alerts. The network attributes of security alerts, such as IP addresses and port
numbers, are used to define and control suspicious flows through Forward Equiva-
lence Class (FEC) definition. Assessment attributes, such as impact and confidence,
are used to map these flows to their corresponding path and forwarding behaviour.
Mapping these FECs to a single or a set of Next Hop Label Forward Entry (NHLFE)
—via FEC-to-NHLFE tables— permits the assignment of these suspicious packets
to the previously established suspicious paths and forwarding behaviour treatments.

The reaction process arises the essential need of an automated and adaptive man-
agement tool addressing both the network and security levels. A policy-based approach
is the adequate solution for the management of such tool. It permits the adaptability to
dynamic changes on both levels. It allows as well the application of the policy rules to
the MPLS large-scale networks and heterogeneous routers.

2.2 Policy-based Management

Policy-based management improves flexibility within the management system. Policies
can be considered as guidelines for the behaviour of a system [28]. The IT communities
are performing research and implementation activities of policy-based techniques in
several fields, such as: network, caching, security management and others. Two main
frameworks are relevant in our work: network and security based frameworks.

Network policy-based management frameworks are extensively adopted for QoS
matters. They aim at driving network devices and resources to meet system require-
ments, e.g., Service Level Agreement (SLA) assignments [17]. Several work has been
performed in the literature to consistently adapt to these assignments in a Differentiated
Service capable networks, such as the work of Snir et al. [29], Verma et al. [33] and
Stone et al. [31]. Other presented frameworks for representing MPLS policies, includ-
ing MPLS for traffic Engineering and QoS, such as the work of Isoyama et al. [19] and
Brunner et al. [6].

Security policy-based management frameworks focus on the protection of system
and network resources. They are commonly used to express access control or usage
policies. These policies define the high-level rules specifying the conditions under which
subjects are permitted to access targets [26]. For instance, RNBS [18] is a security
policy-based management frameworks based on the Role-Based Access Control (RBAC)
model [27] to manage access control rules on firewalls. Other examples such as [8]
and [15] include the use of the Organization Role-Based Access Control (OrBAC)
model [21] to refine and deploy global security policies into other network security
components, such as intrusion detection systems and VPN routers.



Policy languages are classified into different groups, according to their applica-
tion scenarios [17]. Network policy languages include Ponder [10], PDL [22] and oth-
ers. Security policy languages include XACML [32], REI [20] and others. Our policy
driven approach consists of expressing two reaction policies that handle the security
and the network management levels. The high level language needed has to be expres-
sive enough. It should be capable of expressing policies for both network and security
management. We base our approach on OrBAC to specify these reaction policies.

2.3 OrBAC

Organization is the centric concept in the OrBAC model [21]. An organization is con-
sidered any entity in charge of managing a security policy. The goal of the OrBAC
model is to specify security policies abstractly from implementation details. It proposes
reasoning with the roles that subjects, actions or objects play at an organizational level.
A subject is empowered into a role, an action is considered to implement an activity,
and an object is used in a view (cf. Listing 1.1 in Appendix A).

By adopting this abstract conception, each organization can then set security rules
which specify that some roles are permitted, prohibited or obliged to perform some
other actions. The activation of these security rules may depend on contextual stipula-
tions. To this end, the concept of context is explicitly introduced in OrBAC. By using a
formalism based on first order logic, security rules are modelled using a 6-tuple predi-
cate as per the following rule:

security_rule(type, organization, role, activity, view, context)

The type belongs to permission, prohibition, or obligation. Organization, role, ac-
tivity, view and context concepts can be structured hierarchically. Permission, prohibi-
tion and obligation rules are inherited through these hierarchies [9].

A context is used as a supplementary condition that must be satisfied to activate a
given privilege (i.e. permission, prohibition or obligation). Using this notion, the Or-
BAC model provides the means to deal with flexible and dynamic requirements. In [7],
they presented several types of context – temporal, spatial, prerequisite, user-declared
and provisional contexts – and explained how to model them in the OrBAC model.

In [12, 13], the OrBAC model is used to express reaction policies. A threat con-
text manages the intrusion detection alerts which are expressed in the Intrusion De-
tection Message Exchange Format (IDMEF) [11]. The threat context first specifies the
alert classification, and second triggers the activation and the mapping between alert
attributes and concrete entities of the OrBAC model. In [4], an extension to the previ-
ous approach is presented. The novelty is the use of dynamic organizations to ease the
definition and enforcement of more elaborated reaction requirements. The dynamic or-
ganization concept is used to map the alerts and the policy using entities at the abstract
level of the OrBAC model, through XPath expressions. In the sequel, we show how to
use these previous efforts based on the OrBAC formalism to properly generate MPLS
router rules to enforce the dual reaction policies of the HADEGA approach.



2.4 MPLS Reaction Policies using OrBAC
HADEGA relies on two reaction policies: (1) a network management policy and (2) an
access control policy. Figure 1 depicts the work-flow associated to each policy.

– Network management policy permits the adaptation of network resources. It is trig-
gered by performance alerts; these alerts are raised by network monitoring tools. A
performance context is activated to manage the given performance alert. The acti-
vation of this context specifies a network adaptation rule expressed as an obligation
security rule. This rule consists of establishing network management changes, such
as changing the routing and QoS scheme of paths inside the MPLS domain.

– Access control policy provides the flow admission control. It is triggered by security
alerts; when a security monitoring tool raises an alert, and the alert diagnosis data
identify a suspicious flow as a part of an attack, a flow admission rule expressed as
a permission security rule is activated. It affects the suspicious flow to the proper
routing and QoS scheme inside the MPLS domain. The process is set off by the
activation of a threat context that manages the given security alert.

Each type of reaction policy requires a different modelling due to different inputs
and entities involved in each aspect. Next, we develop the modelling of each policy.
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Fig. 1. Generation of MPLS configuration rules based on monitoring alerts



Concrete level Definition Attributes
Subject MPLS path ingress & egress router, identifier
Action reroute, deactivate, etc. explicit, implicit
Object routing and QoS schemes resource class, bandwidth set-up/hold priority, etc.

Table 1. Concrete entities

3 Network Adaptation Policy

The network adaptation is established via network management policies. These poli-
cies include modifying the path and/or the forwarding behaviour treatment for certain
packets. Such policies are established on the network-level. They are performed by the
ingress router and take effect on all the domain via MPLS paths. The network manage-
ment policies include also changing queue length or scheduler weight. These policies
are considered as device level; therefore the configurations apply for the specific de-
vice [6]. Although HADEGA proposes changes on these two levels, we address solely
the policy that takes effect on the network-level.

Let us consider the following network management policy statement: In the satu-
ration network phase, paths holding high level suspicious flows must be pointed to a
blackhole. The ingress router maintains this policy by triggering the process of path
and forwarding behaviour modification. Therefore, if a performance alert is received
with a classification that maps to the saturation performance context, then this context
is activated in the corresponding sub-organization and the network adaptation rule or
a subset of rules are activated. These rules are turned into configuration rules on the
ingress router of the MPLS domain suffering from saturation usage.

3.1 Concrete Entities

Table 1 summarizes our proposed set of concrete entities.

– Subject: we call it MPLS path. This path supports Diff-Serv e.g., the L-LSP or E-
LSP (defined in [14] to map DiffServ treatment into MPLS paths). The MPLS path
is distinguished by its start and end point which are the ingress and egress router
and by certain identifier e.g., the NHLFE (the LSP Next Hop for a particular FEC
is the next hop as selected by the NHLFE table entry [25]).

– Action: the basic network operation significant for Traffic Engineering and Diff-
Serv. It can be a reroute, establish, deactivate, etc. Such action can be performed
(1) explicitly by including all or some hops or (2) dynamically via certain path
computation engine and signalling protocols.

– Object: represents the routing and QoS schemes that model the MPLS path. It is
defined by different attributes like bandwidth, set-up priority, hold priority, link
color affinity, scheduling/queuing priority, discarding policy, hops, etc.

3.2 Abstract Entities

Table 2 summarizes our proposed set of abstract entities. We assume the following
entities in the network adaptation policy:



Abstract level Definition Examples
Role path and forwarding behaviour gold_path, suspicious_path

Activity operation modify, remove
View network resources nodes, links, bandwidth

Table 2. Abstract entities associated to the DomainAdapt organization

– Organization: Domain adapt (DomainAdapt) can be inherited from higher organi-
zation associated to the service provider. This organization is in charge of adapting
the MPLS domain.

– Role: abstraction of the path and forwarding behaviour. They reflect different level
of QoS provided inside a single MPLS domain. For instance, suspicious paths pro-
vide degradable quality inside the MPLS domain.

– Activity: abstraction of the operations that can be performed on paths and forward-
ing behaviours. Such abstraction can be seen as a modification or removal of spe-
cific paths.

– View: abstraction of resources presented in the network. We call it network re-
sources. Such abstract resources include nodes, links, bandwidth, scheduling, etc.

3.3 Performance Contexts

We consider the scenario adopted in [16]. We assume three different performance con-
texts. The default context corresponds to a stable core network. The critical context re-
flects network critical phase. The saturation context corresponds to network saturation
phase. The default context consists of the long-term strategies established in the plan-
ning process. The critical and saturation context are the triggers of short-term strategies
of the reaction process. These contexts are initiated by performance alerts sent by net-
work monitoring tools.

For instance, when a performance alert Alerti is generated signalling a saturation
phase, a new sub-organization under the DomainAdapt — called saturation domain
adaptation and denoted as SatDomainAdapti — is created to manage it (cf. List-
ing 1.2 in Appendix A). The saturation assessment context SatAssContext is acti-
vated in SatDomainAdapti to manage the performance alert triggering a network
saturation phase. This context is activated for every triple {subject, action, object} with
the reception of a performance alert (i.e. Alerti) with a network.status attribute equal
or equivalent to saturation (cf. Listing 1.3 in Appendix A).

3.4 Generation of Network Adaptation Rules

In the saturation phase, we consider that the service provider strategy consists on point-
ing the third level and second level suspicious paths to a blackhole. The following two
network adaptation rules, based on OrBAC obligations, reflect this strategy:

security_rule(obligation,DomainAdapt, TLSusPath,Modify,Blackhole,

SatAssessContext)



Concrete level Definition Attributes
Subject Source AS number, user ID, country, etc.
Action MPLS path ingress and egress router, identifier
Object Flow IP source + IP destination + [Protocol | SPort | DPort | . . .]

Table 3. Concrete entities

security_rule(obligation,DomainAdapt, SLSusPath,Modify,Blackhole,

SatAssessContext)

These security rule means that in the saturation performance context, third level and
second level suspicious paths (i.e., set of MPLS paths) are rerouted to a blackhole capa-
ble node. The activated rules for alert Alerti are deleted when the performance context
is deactivated (i.e., when the network load is stable) by destroying the organization
SatDomainAdmiti. As a result, the organization DomainAdapt is rolled-back to the
DefaultContext (i.e., long-term strategies implemented during the planning process). A
similar modelling approach is applied to the network critical phase.

4 Flow Admission Policy

The definition of suspicious flows and their mapping to the corresponding path and
forwarding behaviour is done at the entry point of each domain, the ingress router. The
configuration of an ingress router contains the policy enforcement that regulates the
access of suspicious flows to a given MPLS domain resources.

Let us assume the following high-level policy statement: any suspicious flow must
be given a de-prioritized path and forwarding behaviour. The ingress router is assumed
to maintain this policy requirement by being a single point through which all commu-
nication between the networks and the MPLS domain must pass and get controlled.
When a security alert is received with an assessment classification that maps to a threat
context, this latter is activated. Moreover, a mapping between network alert attributes
and concrete entities is established to define the newly discovered suspicious flows. The
activation of the context and the definition of these concrete entities are performed into
dynamic sub-organizations. A flow admission rule is activated in order to affect the sus-
picious flow to its routing and QoS scheme inside the MPLS domain. This security rule
is turned into configuration rules on the MPLS ingress router.

4.1 Concrete Entities

Table 3 summarizes our proposed set of concrete entities. We assume the following
entities:

– Subject: source identifier of a flow of packets. It can be the Autonomous System
(AS) number of an Internet Service Provider (ISP), a country, a user ID, etc.

– Action: the MPLS path characterized by its identifier and the ingress and egress
routers.

– Object: any suspicious flow of packets. We characterize such flows by their IP
destination, IP source, port source, and port destination, etc.



Abstract level Definition Examples
Role origin customer, outsider

Activity path and forwarding behaviour gold_path, suspicious_path
View session VoIP_session, BestEffort_session

Table 4. Abstract entities associated to the DomainAdmit organization

4.2 Abstract Entities

Table 4 summarizes our proposed set of abstract entities. We assume the following
entities in the flow admission policy:

– Organization: Domain admit (DomainAdmit), which in turn can be inherited from
higher level organizational structures, such as the organization associated to an ISP
network in charge of the affected MPLS domains.

– Role: abstraction of the origin of traffic flows. For instance, customers of the ISP
subscribed to certain QoS services, or outsider customers sharing the resources of
the ISP.

– Activity: abstraction of the path and forwarding behaviour. They reflect different
level of QoS provided inside a single MPLS domain.

– View: abstraction of traffic flow. Such abstraction can be seen as session, character-
ized by destination port numbers, such as VoIP sessions, best effort sessions, or by
certain predefined IP addresses such as critical sessions.

4.3 Threat Contexts

We model the management of threat contexts based on the construction of the original
HADEGA proposal presented in [16]. This way, the contexts are based on the alert
attributes: Impact Level (IL), and Confidence Level (CL). Table 5 shows an example
based on such construction.

We assume the reception of security alerts. Each alert transports diagnosis data:
assessment and network attributes. A new sub-organization under the DomainAdmit is
created to manage each alert. For instance, the sub-organization FLDomainAdmitj
manages the alert Alertj (cf. Listing 1.4 in Appendix A).

The first level assessment context, denoted as FLAssessContext, is activated in the
FLDomainAdmitj context to manage a given alert Alertj if the definition matches
the classification of the alert. The context is active for every triple {subject, action, ob-
ject}. The classification of the alert is inferred from its assessment attributes (i.e. IL, and
CL). For instance and in case of IDMEF alerts [16], the first level assessment context is
reported by alerts with (1) an impact.severity low or medium and (2) a confidence.rating
low (cf. Listing 1.5 in Appendix A).

We introduce an additional abstract entity, view, in this sub-organization. We call it
first level suspicious flow and denoted as FLSusFlow. The mapping between the alert
Alertj and the FLSuSFlow is done through the view definition. The definition of the
flow, is inferred from the network attributes of the alert (i.e., IP source, IP destination,
port source, etc.). For example and in case of an IDMEF alert, the target.address field
provides the IP destination of the flow (cf. Listing 1.6 in Appendix A).



hhhhhhhhhhhhhhhContext

Assessment Attributes
IL CL

low low
First level assessment med low

low med
low high

Second level assessment med med
high low
med high

Third level assessment high med
high high

Table 5. Context definition, based on the Impact Level (IL) and Confidence Level (CL) alert
attributes.

4.4 Generation of Flow Admission Rules

The generation of flow admission rules consists on defining security rules for each
context. The FLAssessContext is now active, security rule associated with this context
is triggered. The following security rule matches this context:

security_rule(permission,DomainAdmit, Any, FLSusPath,

FLSusF low, FLAssesscontext)

This permission rule means that in the threat context first level assessment, any
first level suspicious flow is affected to the previously established first level suspicious
path FLSusPath. When the flow is not suspicious any more, the threat context is de-
activated by simply deleting the organization FLDomainAdmitj . By destroying this
organization, all related entities disappear and, therefore, the flow receives back a nor-
mal treatment. Similar modelling is applied to the second and third level assessment
contexts.

5 Implementation

We present in this section a practical implementation of our approach. It is based on
the open source MotOrBAC framework [2]. The ongoing prototype already allows the
specification of our modelling approach, and its transformation into security rules for
MPLS-linux routers [3]. From an implementation point of view, the reaction policies
(both flow admission and network adaptation policies) can be executed in the same
way but with different entity and organization definition. The flow admission control
is more complicated because it involves the creation of dynamic entities in the sub-
organizations and invokes mapping a long list of attributes from alerts to policies. We
overview in this section the implementation of the flow admission reaction policy. A
sample screen-shot of such an implementation is shown in Figure 2. We show in the
screen-shot how a concrete OrBAC policy, instantiated via a series of IDMEF alerts,



is processed and transformed into MPLS-linux configuration rules. In the sequel, we
detail the specific steps associated to the enforcement depicted in Figure 2.

5.1 Policy Instantiation via Mapping of Alerts and Policies

The process for mapping alerts and policies relies on the use of the OrBAC API, avail-
able at the MotOrBAC website [2]. All the necessary functions for the definition of
threat organizations and dynamic abstract entities are directly obtained via such an API.
The combination of threat organizations, dynamic abstract entities and remainder Or-
BAC elements (as defined in Section 4) enable the complete specification of our pol-
icy modelling and corresponding predicates (e.g., permissions). The mapping between
alerts, threat organizations and dynamic entities is done via XML and XPath methods
already available in OrBAC API. Once established, the policy instantiation engine ob-
tains the complete list of security attributes, activates the list of threat contexts, and
instantiates the abstract entities. Finally, and based on the inference engine provided by
the OrBAC API, the complete series of concrete rules are generated and provided as
input to the transformation component of the prototype.

(b)	
  (a)	
  

(c)	
   (d)	
  

Fig. 2. Prototype system developed under the MotOrBAC framework. (a) Dynamic organizations
created upon reception of IDMEF alerts. (b) Concrete permissions inferred from active contexts.
(c) Concrete entities and alert attribute containers. (d) Transformation results, displaying the final
MPLS-linux configuration rules.



5.2 From Inferred Rules to MPLS Configurations

The translation of concrete rules into MPLS-linux routers’ configurations has been im-
plemented as an OSGi bundle plug-in [1] for MotOrBAC. The plug-in receives as in-
put the instantiated policy and collaborates with the OrBAC API to generate concrete
MPLS routers instructions. The transformation engine relies on the concept of classes
and attributes already provided by the OrBAC API. We described and encapsulated into
generic OrBAC definitions all the complete network semantic required by the reaction
policy. We also encoded a translator into a Java Class. This translator is responsible of
generating MPLS-linux routers’ configurations. The transformation engine parses the
concrete rules and generates the configurations adapting to the mitigation strategy.

6 Discussion and Related Work

The adaptive policy-based framework proposed in this paper has a dual management
aspects: the network management through implementation of network adaptation rules,
and the security management through the flow admission rules.

Most of existing work on network QoS-based policy management [33, 31, 19, 6]
does not support policy rules that can be dynamically triggered by events. Moreover,
the work of IETF policy specification [19, 6] is based on directories to store policies
but not for grouping the entities involved in the policies. In another word, it does not
have the concepts of subjects and targets to specify to which components the policy ap-
plies. The work of [29, 33, 31] aimed more specifically on the management of DiffServ
network solely. The work whose motivation is close to ours was proposed in [23, 24]
to specify the network QoS policy. While this work provided an adaptive framework to
answer events on the network level, the abstraction of different entities invoked in the
policies was absent due to the usage of Ponder language [10]. In some policies’ defi-
nition the action and its target were concrete and clear, in some other their definitions
remained very ambiguous. Moreover, there was a mixing between the Policy Enforce-
ment Point and the subject entity of the policy. Through the obligation security rule, we
used the OrBAC to model network management policies. We defined a well-structured
two-level grouping using abstract and concrete entities; thanks to OrBAC model [21].
It completely distinguishes between the Policy Enforcement Point on which we imple-
ment the configurations and the subject/target on which we are supposed to apply the
policy. The model provides answer to adaptive changes on network level. It supports as
well the roll-back and the update of normal context i.e., long-term strategies modifica-
tion.

Concerning the security management scheme, most of existing work addressed the
management of firewalls for the simple reason that they form the principal network se-
curity component [18, 8, 15]. In this paper, we proposed a management framework for
controlling the admission of flows to the MPLS domain through the permission security
rule. Therefore, the ingress MPLS router of the domain is seen as a security component.
While this work is considered the first assuming the MPLS routers as a security compo-
nents, there were some works that addressed mapping the traffic specification e.g., Ser-
vice Level Specification (SLS) assignments into certain established QoS scheme inside
the MPLS domain such as [6, 33]. Differently from this work, we provided an adaptive



framework for handling alerts and map its diagnosis data into certain flow classification
and QoS scheme. The model took in consideration the SLSs by providing two entities
that abstract source of flows e.g., gold customer, and the session type e.g., voice session.
Moreover, the use of the dynamic sub-organization concept provided the possibility to
create views for the suspicious flows. Therefore, the roll-back of suspicious flows to the
normal treatment was simply performed by deleting the given sub-organization.

7 Conclusion

We have introduced an adaptive policy-based framework for handling suspicious flows
via MPLS policies. The framework builds upon the OrBAC formalism. The result is
a top-down enforcement of mitigation policies and its automatic transformation into
MPLS router configuration rules. The framework is divided into two aspects: flow ad-
mission and network adaptation control. In each aspect, different modelling was estab-
lished. We have also presented the implementation of our approach for the generation
of configuration rules for MPLS-linux routers triggered by IDMEF alerts and OrBAC
policies. Future work will aim on managing the conflicts that can be originated from the
selected reaction policies, as well as reducing the complexity in suspicious flows defini-
tion; by including topology-related attributes in dynamic organizations definitions. We
will also study more complex policies by introducing a list of SLSs.
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A Sample OrBAC Security Rules used in HADEGA

Listing 1.1. Roles assignment
empower(org, subject, role): means that in organization
org, subject is empowered in role.

consider(org, action, activity): means that in
organization org, action is considered an implementation
of activity.

use(org, object, view): means that in organization org,
object is used in view.

Listing 1.2. Performance context management
performance_context_management(Alerti,SatDomainAdapti)

Listing 1.3. Activation of saturation performance context
hold(SatDomainAdapti,-,-,-,SatAssessContext)

∧ threat_context_management(Alerti,SatDomainAdapti)
∧ Alerti(network.status)
∧ network.status=saturation

Listing 1.4. Threat context management
threat_context_management(Alertj,FLDomainAdmitj)

Listing 1.5. Activation of first level assessment context
hold(FLDomainAdmitj,-,-,-,FLAssessContext)

∧ threat_context_management(Alertj,FLDomainAdmitj)
∧ Alertj(Assessment)
∧ (Impact(Assessment, ’IL’) ∧ (IL=low ∨ IL=medium))
∧ (Confidence(Assessment, ’CL’) ∧ CL=low)

Listing 1.6. Mapping between the IDMEF alert and View entity
use(FLDomainAdmitj, flow, FLSusFlow)

∧ threat_context_management(Alertj, FLDomainAdmitj)
∧ Alertj(Source, Target)
∧ (Address(Source, ’IP_Src’)
∧ flow.IP_Source = ’IP_Src’)
∧ (Address(Source, ’Port_Src’)
∧ flow.Port_Source = ’Port_Src’)
∧ (Address(Target, ’IP_tgt’)
∧ flow.IP_Destination = ’IP_tgt’)
∧ (Address(Target, ’Port_tgt’)
∧ flow.Port_Destination = ’Port_tgt’)


