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Abstract. We present WebVisor, an automated tool to derive pat-
terns from malware Command and Control (C&C) server connections.
From collective network communications stored on a large-scale malware
dataset, WebVisor establishes the underlying patterns among samples of
the same malware families (e.g., families in terms of development tools).
WebVisor focuses on C&C channels based on the Hypertext Transfer
Protocol (HTTP). First, it builds clusters based on the statistical fea-
tures of the HTTP-based Uniform Resource Locators (URLs) stored in
the malware dataset. Then, it conducts a fine-grained, noise-agnostic
clustering process, based on the structure and semantic features of the
URLs. We present experimental results using a software prototype of
WebVisor and real-world malware datasets.

1 Introduction

Malware constitutes a serious threat to the Internet. Once it infects a termi-
nal, malware may perform a variety of actions, such as taking over the system,
connecting to Command and Control (C&C) servers, leaking information to a
dropzone, and recruiting the terminal to a botnet involved in activities such as
spam and denial of service. Efforts in the literature aim to handle malware both
at the system and network level. While traditional host-based malware detection
systems suffer from low detection coverage [19], network-based detection offers
a complementary approach to detect malware through its network activity [6,
7, 10, 12]. It usually adds network-level patterns, i.e., patterns referring to any
network activity triggered by malware instances. For instance, they can leverage
C&C activity, which is a key feature of malware operation. By comparing the
network traffic of different malware samples, it is possible to identify similar
patterns that can be further used for malware detection.

To keep pace with the large number of malware being collected daily, current
solutions aim at automatically classifying malware and extracting appropriate
detection signatures [20, 11, 24]. For example, the behavioral classification sys-
tem in [20] correlates HTTP traffic from different malware samples and extracts
network signatures for detection. It observes common HTTP artifacts in order



2 Kheir, Blanc, Debar, Garcia-Alfaro, Yang

to find trends that are shared among a large set of malware samples, and that
may characterize a given malware family. Another approach provided earlier by
[14] also observes network traffic for a large set of malware samples and iden-
tifies pattern signatures for detection. However, malware avoids being correctly
classified by these systems as it uses several network obfuscation mechanisms
such as encrypting its C&C traffic, injecting noise, using Domain Generation
Algorithms (DGA) [1], or embedding efficient failover strategies [17].

In this paper, we present WebVisor, an automated tool to classify malware
instances based on the features of their web-based C&C applications. These are
the set of web server applications that are installed by an attacker (i.e. botmas-
ter) in order to establish C&C communications with the remote infected bots.
WebVisor implements a behavioral-based approach that observes the network
activity of malware when executed in a sandbox. It classifies malware into fam-
ilies and generates family detection signatures. WebVisor targets malware C&C
communication channels supported by standard network protocols, such as the
Hypertext Transfer Protocol (HTTP). HTTP-based malware belonging to the
same botnet family connects to a shared infrastructure that involves the same
set of web C&C applications. Such malware C&C applications are uniquely iden-
tified and accessed using Uniform Resource Locators (URLs). The classification
process conducted by WebVisor assumes that malware belonging to the same
family shares similar C&C connection patterns, including similar sets of C&C
attributes, both in terms of parameter names, semantics, and values.

The benefits of WebVisor are threefold. First, it provides a behavioral ap-
proach that classifies malware into families based on features of their network
traffic, with no need to analyze the system-level activity of malware on the in-
fected terminals. Second, it provides a malware detection system that operates
semantical enrichment and density-based clustering in order to automatically re-
duce the impact of noise and common obfuscation mechanisms used by malware
up to a certain level. Third, it identifies URL features common to a given mal-
ware family. Such features are further used to detect and classify other malware
instances. To verify our claims, we present an experimental validation of a first
prototype against live Internet traffic collected from a large ISP provider.

This paper is organized as follows. Section 2 provides the background and
components underlying WebVisor. Section 3 describes our experimental results.
Section 4 surveys related work. Section 5 concludes the paper.

2 Background and System Overview

Network-based malware detection solutions can be classified into two main cat-
egories. First, solutions addressing network activities attributed to synchronized
botnet operations (e.g. [6, 15]). Second, solutions executing the malware and an-
alyzing its associated traces, to learn new malware techniques (e.g. [7, 11]). The
first category works only when multiple infected terminals are using the same
botnet architecture and are controlled by a single entity. Modern botnets avoid
this type of detection through the hiding of their C&C activity by, e.g., using
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fake connections and adding statistical inconsistencies in their network traffic
[21]. The second category assumes that malware belonging to the same fam-
ily (e.g., in terms of development tools) shares similar behavioral patterns that
reflect its origin and purpose [24].

WebVisor belongs to the second category. It observes HTTP traffic triggered
by malware during dynamic analysis, and identifies URL patterns that are shared
among samples of the same family. Hereinafter, we interchangeably use the terms
C&C patterns andURL patterns to refer to specific character strings in the URLs
triggered by malware during its execution in a sandbox. When these patterns
are shared among multiple variants of the same family, they characterize specific
features of their C&C applications. In the end, the patterns are used to build
appropriate detection signatures. Remaining malware URL instances that do not
convey shared C&C activity, and so they do not characterize specific malware
families, are automatically discarded by WebVisor and they are no longer used
during detection. We detail next the main blocks underlying WebVisor.

Input Data – The malware C&C communication channels addressed by We-
bVisor are supported by standard network protocols, such as HTTP, which is
the most common type of malware communication on the Internet today [4].
Malware using HTTP-based C&C channels may efficiently bypass firewall and
proxy settings, by hiding the C&C exchanges within benign HTTP traffic. Fur-
thermore, HTTP-based malware may also evade detection by leveraging infected
or legitimate websites, which makes the detection very challenging [9]. The in-
put HTTP data processed by WebVisor are the URL methods (e.g. Get, Post,
Head), the absolute paths, and the parameters of the URLs associated to the
C&C communication channels. They are captured during the dynamic analysis
of malware instances on a sandbox. Domain names from the stored URLs are
ignored, since they do not convey information about the structure and content
of the C&C applications. As opposed to domain names, URL paths provide the
precise applications at the C&C server to handle malware requests. This high-
lights common patterns that are likely to be shared among multiple variants of
the same malware family. In addition to paths, WebVisor also uses the URL
parameters, leveraging attribute names, their semantics and values. The stored
URLs handled by WebVisor are grouped into an initial set of coarse-grained
clusters, using the statistical clustering process that we outline next.

Statistical URL Clustering – This process partitions the input data into a
collection of coarse-grained clusters based on common URL statistical features.
URLs often include patterns (e.g., /images/, /adi/, /generate 204/) and key-
words (e.g., .php, .exe, .gif) that refer to the nature and type of resources
accessible on a remote server. WebVisor leverages the distribution of charac-
ters within URLs in order to group together malware URLs that include similar
or redundant patterns. It builds a features vector that captures the distribu-
tion of characters within the URL. Paths and parameters are handled sepa-
rately, since they hold different structural nature and semantics. In turn, the
parameters are separated into keys and values. For instance, the following URL
‘/doc/lat/widget?tp=2&nbr=1111&tag=11’, whose protocol identifier and do-
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main name are already removed, is split up into the path ‘/doc/lat/widget’;
keys ‘tp’,‘nbr’, and ‘tag’; and values ‘2’,‘1111’, and ‘11’.

Since high-level features such as the URL length, the number of paths and
number of attributes do not capture relevant pattern signatures, WebVisor lever-
ages string based features that capture shared patterns among different URL
instances. The frequency of occurrence of each single character in a given URL
is computed. For example, assuming the following path ‘/doc/lat/widget’, the
occurrence frequency of character ‘o’ is 1, ‘t’ is 2, ‘/’ is 3, ‘z’ is 0, and so on.
Following such a rationale, each URL is transformed into an m-ary vector that
captures the distribution of characters within the URL. Given that the HTTP
standard sets to 128 the number of acceptable ASCII codes for a character in
a given URL; and given that paths, keys and values in each URL are treated
separately, the value of m is settled to 384 (i.e., 3 × 128). Based on the m-ary
vector associated to each URL, the initial set is partitioned into coarse-grained
clusters. A vector quantization clustering method is used to drive the process.
For instance, the process can be conducted using incremental k-means [22], as
reported in Section 3. Finally, each coarse-grained cluster is further processed
by a second clustering process, to build the eventual fine-grained clusters whose
structure and semantic shall characterize common C&C applications. Density-
based clustering drives this second process that we outline next.

Density-based URL Clustering – After the statistical coarse-grained pro-
cess, a fine-grained density-based clustering is conducted within each of the sta-
tistical coarse-grained clusters. The process starts by an enrichment procedure
that adds meta-data to characterize the type and semantics of each URL value
field, based on the types listed in Table 1. The first column in table 1 introduces
a shortlist of the attribute types used by WebVisor, column 2 illustrates some
examples, and column 3 provides a brief description. Such meta-data is further
used to build fine clusters where URLs are associated to semantically equivalent
instances. This way, and instead of comparing values as strings via, e.g., string
distance functions, the density-based clustering process considers that two val-
ues are similar when they share the same semantics (e.g., both are timestamps).
The rationale behind this configuration is that botnets usually add encryption
and use URL encodings to evade network detection signatures, since it alters the
entropy of characters distribution in a URL. The proposed enrichment process
aims to handle such evasion techniques and remove the encoded values when it
compares two different URLs. Other non-encoded parameters in the URL, such
as IP or MAC addresses, country code and timestamps, are also compared se-
mantically. A ’No Type’ entry is introduced in order to handle unknown types.
After the semantic enrichment process, fine-grained clusters are built up using a
density-based classifier. For instance, assuming a density-based classifier based
on DBScan [5], WebVisor builds up a similarity matrix containing the distance
between each couple of URLs. Inputs to the URL distance function include the
URL method (e.g., Get, Post, Head), the URL path, and the URL parame-
ters. The similarity between two URLs is computed by using the Jaro-Winkler
distance [8] to compare URL paths as string chains, and by comparing the pa-
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Type Example Description

URL redirection http://example.com Phishing attacks or obfuscation using
URLs similar to legitimate websites

File path C:\test.txt File location on the victim terminal

SHA1 97d07314f735998585bb-
8e2d6b5acb5ac7956690

Cryptographic hash function including 40
hexadecimal characters

Base64 dG90bw== Encoding schemes that represent binary
data using ASCII or UTF-8 formats

MD5 4f863423326e85d44aae-
147d2d86e1c0

Cryptographic hash function consisting of
32 hexadecimal figures.

MAC address 0a:00:27:00:00:01 MAC address of the infected terminal

IP address 192.168.0.10 IP address of the infected terminal

Serial number 06AE-B34D The volume serial number on the infected
terminal

Timestamp Mar 30 2014 00:30:08 The local time on the victim terminal

No type utv42 Any value not matching a previous type

Table 1. Non-exhaustive list of types used during the semantic enrichment process

rameters and values semantically, i.e., two parameters in two different URLs are
similar in case they have the same key and the same semantic type.

Generation of Signatures – Detection signatures are created by extracting
the longest common substrings for all URLs in a given dense cluster, using the
Generalized Suffix Trees algorithm [3]. It builds a token-subsequence starting
with the longest token in the ordered list of longest common substrings. Selected
tokens are further used as input to the Best Alignment Algorithm [18] in order
to build a pattern-based signature that characterizes all URLs that belong to
the same dense cluster.

WebVisor Prototype – A software prototype of WebVisor is available for
testing purposes at http://j.mp/WVProto. It implements all the processes in-
troduced in this section, i.e., statistical clustering, semantic enrichment, density-
based clustering, and signature generation processes. The prototype has been
used in order to process some real-world malware datasets that we describe in
section 3, with the objective of generating detection signatures. The set of signa-
tures has also been tested against live Internet traffic from a large ISP provider.
Results and discussions about our findings are provided in the following section.

3 Experimental Results

Experiments were conducted using the WebVisor prototype, on an Intel 8-core
2.67Ghz server, with 16Gb RAM. The statistical URL clustering process was
conducted using incremental k-means [22] and Euclidean distance to compare
the feature vectors. The density-based URL clustering process was conducted
using DBScan [5]. Finally, a python script is used to transform the fine-grained
clusters into regular expressions as detection signatures.

The malware URL C&C communication dataset used to generate the detec-
tion signatures was collected from multiple public and private sources, including
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commercial feeds, public repositories (e.g., http://malware.lu/ and Malicia
[16]), and HTTP traces triggered by malware from the Anubis database [2]
(during their execution in a dynamic analysis environment). Almost a quarter
million malware samples were considered, and more than two million HTTP
traces were collected, from which duplicates and empty URLs were excluded.
The MD5 hashes of malware binaries associated to each URL were also used to
label our dataset. To ease the analysis, the dataset was divided into three sepa-
rate categories, according to the year of collection of the URLs (24 months, from
June 2011 until July 2013). Using WebVisor, we separately processed each cate-
gory, and generated the corresponding family clusters and detection signatures.

Year Samples Families URLs Get Post Head
Coarse
Clusters

Signa-
tures

Process
Time

2011 75,398 127 886,077 68% 20% 12% 27 120 1h15min

2012 87,648 129 592,104 65% 24% 11% 27 182 2h01min

2013 85,597 84 848,998 76% 17% 7% 29 315 2h50min

Table 2. Dataset summary

To properly validate the experiments, ground truth labels indicating malware
families were generated. More than two-hundred distinct families, including each
more than a dozen malware samples, were settled by using AntiVirus (AV) sig-
natures from services such as VirusTotal (cf. http://virustotal.com/). No-
tice that AV editors usually assign conflicting signatures for the same mal-
ware sample. For example, the SpyEye malware has a kaspersky signature of
Trojan-Spy.Win32.SpyEyes and a McAfee signature of PWS-Zbot.gen.br. To
avoid errors, the AV labels were associated to multiple keywords, and common
prefixes such as W32, Mal and Trojan were discarded. Generic malware iden-
tifiers, such as Heur, Worm, Gen, and malware, were also discarded. The site
http://spywareremove.com/ was used to group together all aliases of a given
family. For example, the signatures win32.spammy by kaspersky and W32/Sality

by McAfee were identified as aliases for the same sality malware, and consid-
ered as part of the Sality family. Multiple malware families may cover two or
more years, including examples such as Zeus, ZeroAccess, and Sality. This
overlap in families between years is explained by the fact that samples of the
same malware family can be distributed through multiple infection campaigns.

Table 2 summarizes some of the above information, as well as the time re-
quired for WebVisor to generate the detection signatures. We provide in the
following sections a more elaborated analysis of the experimental results, such
as evaluation of the obtained clusters and signatures, and evaluation of the sig-
natures against live Internet traffic.

3.1 Cluster Validation

The malware clustering problem is assumed to be a classification subproblem. We
use two distinct quality metrics, precision and recall, to evaluate the quality of
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each individual behavioral cluster. A cluster family is defined as being the ground
truth label associated with a maximal number of samples in a cluster. Note that
malware belongs to a cluster when it has at least one URL that is classified
by WebVisor into this same cluster. Moreover, malware may belong to multiple
clusters in case it interacts with multiple C&C applications during analysis,
and whose associated URLs are classified by our system into different clusters.
The cluster precision captures the level of mis-classifications within the cluster,
which is the rate of samples in the cluster that are not associated with the cluster
family. Let ηc be the number of malware samples in cluster c, and |Sigc| ≤ ηc the
maximal number of samples in c that have the same ground truth label. Then,

the precision index of c is computed as Pc = |Sigc|
ηc

. The cluster recall captures
the proportion of samples that should belong to a cluster, but misclassified into
other clusters. Let |Sigc| be the number of samples in the ground truth dataset
that should be classified in c, but that were misplaced into other clusters. Then,

the cluster recall index of c is computed as Rc = |Sigc|
|Sigc|+|Sigc|

. Tables 3 and 4

contain the distributions of the cluster precision (Pc) and recall (Rc) coefficients
for the 617 fine-grained clusters provided by WebVisor during our experiments
(cf. Table 2, fine-grained clusters used to generate the detection signatures of
the 2011, 2012, and 2013 subsets). Left columns provide the index ranges. Right
columns provide the percentage of clusters having similar indexes. With regard to

Index Range Percentage

0.98 ≤ Pc < 1.0 65%

0.96 ≤ Pc < 0.98 15%

0.94 ≤ Pc < 0.96 8%

0.92 ≤ Pc < 0.94 7%

0.00 ≤ Pc < 0.92 6%

Table 3. Cluster precision index results

Index Range Percentage

0.6 ≤ Rc < 1.0 4%

0.4 ≤ Rc < 0.6 6%

0.2 ≤ Rc < 0.4 21%

0.04 ≤ Rc < 0.2 14%

0.00 ≤ Rc < 0.04 55%

Table 4. Cluster recall index results

the cluster precision metric, we can observe that almost 94% of the fine-grained
clusters held more than a 92% precision index. In other words, 92% of malware
in each fine-grained cluster is properly classified in the correct malware family.
This validates the accuracy of the clustering process of WebVisor. Concerning
the cluster recall metric, 67% of the fine-grained clusters hold a recall index
lower than 10%. This means that only 10% of malware were misclassified by
WebVisor into other clusters. Most of the remaining 33% of the fine-grained
clusters held a recall index ranging between 20% and 40%. A manual analysis
of these clusters revealed that certain clusters included different versions of the
same malware family (e.g., different versions of the conficker malware family).
Some other clusters were also associated with generic ground truth labels such
as Heur and Agent. These anomalies rather depend on the quality of the ground
truth labels. Therefore, they should not be considered a weakness of the system.
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3.2 Evaluation of the Detection Signatures

To verify the quality of the detection signatures generated by WebVisor, we
evaluate them in terms of false positives and false negatives. We recall that
in density-based clustering, a cluster represents an area that has a relatively
higher density in the dataset, whereas the noise concept is represented as iso-
lated objects that belong to sparse areas in the same dataset. DBScan [5], used
by WebVisor to conduct the fine-grained clustering process, is a density-based
algorithm that implements the aforementioned concept. It takes as input the
minimum number of objects in a cluster and the maximum neighborhood radius
between two objects. Although these parameters affect the total number of clus-
ters, the latter is a result of the clustering process and is not required as input
of the process. DBScan creates multiple clusters. Each cluster represents a dense
area in the initial dataset. URLs belonging to sparse areas are grouped into a
single noise cluster which is further discarded by WebVisor. Each dense cluster
includes similar URLs that are shared among multiple variants of a malware
family, and that characterize a specific C&C application. Therefore, and since
WebVisor automatically discards noise into separated clusters, we also evaluate
the corresponding noise clusters.

The coverage of the signatures is evaluated by analyzing their ability to
detect malware communication not included in the experimental dataset. We
separately processed the malware samples at our disposal by the year of collec-
tion. We tested each set of signatures against the input dataset, and the datasets
collected in the following years. Due to space limitations, we discuss only the
evaluation in terms of the 2011 traffic collection. Similar results were obtained
with the other collections. Table 5 illustrates the distribution of URLs across the

URL Range Percentage

0 to 2000 14%

2000 to 4000 37%

4000 to 8000 11%

more than 8000 38%

Table 5. Distribution of statistical clusters

Noise Rate Percentage

less than 0.02 33%

0.02 to 0.1 30%

0.1 to 0.2 22%

more than 0.2 15%

Table 6. Noise rate distribution

27 statistical clusters. The left column represents the number of distinct URLs
in each statistical cluster. The right column represents the percentage of clusters
having similar number of URLs. We recall that the 2011 dataset (cf. Table 2)
contains 75, 398 distinct malware samples. According to the ground truth labels,
these samples were classified into 127 distinct families. We use the incremental
k-means algorithm for statistical clustering. It starts from one centroid and in-
crementally adds new centroids when the distance between a new entry and all
existing centroids exceeds an input threshold τh. Incremental k-means iterates
over the input dataset until k - which is the number of output clusters - reaches
its optimal value based on the value of τh.

The output of the statistical clustering, using an experimental threshold τh =
0.15, includes 27 clusters. Almost 14% of clusters in table 5 contained less than
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two-thousand URLs, mostly including very short URLs such as ‘/a/ ’, ‘/2/ ’,
and ‘/?src=integer ’. These are irrelevant URLs that were later discarded as
noise by the density-based clustering. In terms of outliers, 6 clusters were also
discarded. These outliers contained more than twenty thousand URLs. Because
of their small number, these clusters were manually analyzed. Almost all URLs
in these clusters were associated with generic web operations, including URLs
like ‘/json?c=resolution ’, and ‘/addserver/www/... ’.

After the statistical clustering, URL enrichment and density-based clustering
was applied to each statistical cluster. An overall number of 120 distinct fine-
grained clusters (represented as detection signatures in Table 2) were generated.
The processing of each statistical cluster during the density-based clustering led
to a stable average of noise rate. We recall that noise here represents those URLs
that were further classified during the density-based clustering, by DBScan, as
noise clusters. Table 6 summarizes these results. The left column provides the
rate of noise in each statistical cluster, and that were further discared by Web-
Visor. The right column provides the percentage of statistical clusters leading to
similar noise rates. Few outlier clusters, mostly consisting of very small clusters
or including a large number of URLs, contained noise rates exceeding 20%. The
resulting 120 signatures were identified by WebVisor as being associated with
URLs that carry true C&C activity. They only describe fine-grained clusters
including URLs that have almost identical structure and semantics.

Detection Rate – We cross-validated the set of signatures against the initial
malware dataset. A signature is considered to detect malware when it matches
at least one URL during its dynamic analysis. Note that we would not expect
100% detection rate as WebVisor is grouping irrelevant URLs that belong to
sparse areas in the dataset into noise clusters during the fine-grained clustering,
and so it may mistakenly discard relevant C&C URLs during this process. Table
7 illustrates the detection rates that we obtained during the experiments. Ac-
cording to Table 2, the whole dataset was divided into three subsets (from year
2011 to 2013), according to the year at which malware samples were collected.
A 10-fold experiment was applied, where a 10% of the samples from the initial
dataset were repeatedly removed before building the detection signatures. Each
set of signatures was matched against the samples collected during the corre-
sponding year, as well as for the remainder years. The goal is to evaluate the
ability of WebVisor for detecting malware that belongs to the families defined
in the initial training dataset. The ability of the signatures to detect samples
that were unknown at the time of generating such signatures was also evaluated.
As a result, it was obtained that WebVisor achieves near 84% average detection
rates when tested against the same year dataset. This means that the remaining
16% of undetected malware had their C&C activity mistakenly classified into
noise clusters (discarded by WebVisor). The detection rate drops to near 60%
for malware collected in the next year following the signatures generation, and
to almost 20% in the third year. The decrease in detection rates is explained by
new emerging malware families that use new C&C applications. To overcome
such weakness, WebVisor can be continuously fed with streams of new malware
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Signa- Malware Dataset
tures 2011 2012 2013

2011 87% 64% 21%

2012 NA 86% 57%

2013 NA NA 81%

Table 7. Detection rates

Signature Family

POST /includes/inc/helps/[.*].php Zeus

GET /logos[.]*.gif?[0-0,a-z]6=[0-9]* Sality

GET /streamrotator/thumbs/[a-z]2/[0-9]*.jpg Srizbi

GET /generate/software/?[A-Z]3RND=[0-9]* Zango

Table 8. Samples signatures generated by WebVisor

HTTP traffic. New malware families that appear in the wild would have their
HTTP traffic processed by WebVisor to update its signatures database.

The experiment proves the ability of WebVisor to capture URL patterns
that are shared among samples of the same malware family, and that character-
ize common features of their C&C applications. In fact, binary polymorphism
modifies the malware signature but it does not affect the network behavior of
malware, including the web toolkit that is shared among samples of the same
family. While network obfuscation, including fake connections, attacks and con-
nectivity checks, makes generic network signatures less efficient, WebVisor elim-
inates noise using density-based clustering. It discards noise into separate sparse
clusters and builds detection signatures only for the main C&C connections
which are shared among samples of the same malware family.

False Positives – To evaluate false positives, we collected one day of network
activity, at March 2014, from a well protected corporate network. Terminals con-
nected to this network are all equipped with updated antivirus software. Access
to this network is possible only through firewall gateways and monitored using
web proxies. Although we cannot rule out the possibility of few terminals being
infected, these would be limited with respect to the large set of terminals being
connected. Hence, we may still reasonably consider this traffic to include only
benign web activity. We further developed a python script that extracts URLs
and matches them against our signatures. We collected near 1.8 million distinct
URLs, including both regular web activity and scheduled software updates, and
that we tested against our entire set of 617 signatures. The collected dataset
includes all distinct URLs that are triggered by up to 3, 500 active network ter-
minals. It includes URLs towards thousands of distinct remote domains. Almost
9% of URLs were dedicated to Google search queries, while remaining URLs in-
cluded regular browsing activity such as webmails, advertising, media websites,
social networks and content downloads. Although our malware dataset is rela-
tively old compared to the benign traffic at our disposal, this does not affect our
experimental setup as we are only considering false positives. We consider all
matching signatures to be false positives. In the end, 72 alerts out of the initial
1.8 million URLs were matched with only 21 distinct signatures. Hence, WebVi-
sor achieved 0.004% false positives, and we only identified 3.4% weak signatures
(i.e., signatures that triggered false positives during evaluation). We recall that
a main property of our system is that WebVisor does not need to implement a
pruning step in order to eliminate rogue signatures. This is a tedious step as it
would require a large set of benign traffic, as well as an automated process to
generate valid ground truth from the collected benign traffic.
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3.3 Evaluation Against Live Internet Traffic

We tested WebVisor against two days of real live Internet traffic from a large ISP
network. More than 150 GB of anonymized traffic, collected during September
2013, and including the entire network communications for near ten thousand
distinct IP addresses, was analyzed. We extracted URLs using the same Python
scripts that we used for the previous experiment, and we tested against our
entire set of 617 signatures. Our system triggered 173 alerts, associated with
19 distinct signatures that were matching with 93 distinct IP addresses. Since
the traffic at our disposal was few months old, we checked the domain names
reputation using the domain search functionality on services like virusTotal, and
searched for evidence on the Internet about the matching URLs. Unfortunately
we could not check the status on the infected terminals since all traffic at our
disposal was anonymized, and the ISP did not offer to contact infected clients
in order to validate our findings.

We could not verify 95 alerts that were triggered by 15 detection signa-
tures, including 9 weak signatures that triggered false positives in our previ-
ous experiment. Domains contacted through these URLs seem to be benign
domains. We could not find signs of infection on the remote websites. Possi-
bly these websites have been used temporarily or as stepstones through web
or system vulnerabilities. Since we could not validate the exactness of these
alerts, we considered them as false positives. In addition, the 4 signatures in
Table 8 triggered almost 78 alerts, associated with 11 IP addresses. The first
signature was matching with 3 IP addresses. The detected URLs were all associ-
ated with the domain name marytraders.in, which is identified by Zeus Tracker
(cf. https://zeustracker.abuse.ch/) as a C&C domain. The second signature was
triggered by two IP addresses (and associated with the Sality-A label in the
dataset). The corresponding domain included pornographic content and is asso-
ciated with botnet activity according to Google safe browsing. We also detected
six other IP addresses that matched with the two remaining signatures. They
were confirmed malware infections, validating the reliability of WebVisor.

3.4 Resilience to Malware Evasion

To evaluate the resilience of our system against noise, we trained WebVisor us-
ing a dataset that we obtained by adding random benign URLs to the malware
dataset. We used for this purpose the traffic that we collected from the cor-
porate network. We computed the average cluster precision and recall indexes
for different values of Signal to Noise Ratio (SNR). Our main assumption is
that malware can use fake benign URLs in order to evade our detection system.
Therefore, we evaluate the ability of our system to discard fake URLs and keep
only common C&C patterns as input to build detection signatures. As described
in [21], malware may also trigger specific noise patterns in order to evade our
system. However, there still need to be multiple samples of such malware in our
dataset in order to interleave with our dense clusters. Although it is interesting to
evaluate the resilience of our system against such specific evasion techniques, we
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focus in this paragraph only on random noise patterns. We plan in future work
to conduct a deeper evaluation of WebVisor against targeted evasion techniques,
taking into account the fact that malware herders may be aware of the process
implemented by our system. The results of our experiments are illustrated with
the ROC curve in Figure 1. WebVisor has an overall good resilience against noise.
While its performance decreases at slow rate for decreasing values of SNR, Web-
Visor achieves almost 80% cluster precision for SNR values around 40%. Yet, we
noticed a significant degradation of the quality of our malware families for noise
rates exceeding 50%. The degradation of the precision index is mainly due to the
threshold τh that we use for statistical clustering. Since we experimentally set the
value of this threshold using our malware dataset, adding 50% benign URLs to
this dataset alters its statistical consistency. WebVisor would thus classify URLs
that are associated with similar C&C activities into different statistical clusters.
While the degradation of malware clusters comes as a reasonable consequence to
the increasing noise ratio, our system still achieves stable clustering results for
up to 40% noise in our initial malware dataset. This is a main contribution of
our system compared to other state of the art solutions where a pruning process
is usually required in order to eliminate rogue signatures.

Another property of WebVisor is that it processes URL parameters using
regular expressions that characterize all attributes shared between malware and
its remote C&C applications. Although WebVisor captures specific obfusca-
tion mechanisms such as encodings (e.g., base64) and hash functions (MD5 or
SHA-1), it would be unable to correctly build expressions for URLs that have
their entire set of parameters encrypted within a single chain of characters.
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Fig. 1. ROC curve and SNR ratios

It associates these parameters with
the ’No type’ label, and handles
them as string values. Note that the
density-based clustering process may
still identify shared patterns in case
they appear in all encrypted URLs
for a given malware family, as previ-
ously shown in [14]. However, malware
that fully encrypts its URLs, with no
shared patterns between URLs of the
same family, would be unlikely to be
detected using our system, and so it is
more likely to be dropped into noise
clusters. This is a common limitation
to all network-based malware detec-
tion systems, as long as they are unable to access the content of malware com-
munications with its remote C&C applications.

4 Related Work

Multiple contributions in the literature propose the use of supervised machine
processing to classify malware activities and build behavioral models for detec-
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tion. Solutions in this category include tools such as Firma [23], PhishDef [13],
and JackStraws [7]. As opposed to them, WebVisor uses an unsupervised clus-
tering approach. It does not require an initial set of benign network traffic to
train the classifier prior to generating detection signatures. This is an important
issue, since obtaining valid ground truth labels for benign network activity is a
tedious task that cannot be easily automated.

Similarly to WebVisor, Perdisci et al. propose in [20] the use of unsupervised
clustering processing to analyze malware HTTP connections and build detection
signatures. As opposed to our work, their approach classifies malware families
using all kinds of HTTP requests triggered by malware executed in a sandbox.
This includes not only C&C traffic, but also any other kinds of malware activ-
ity such as benign connectivity checks. Therefore, the approach is not robust
against malware obfuscation, since it may reduce the accuracy of the resulting
detection signatures. To handle the issue, i.e., to avoid a high rate of false pos-
itives, Perdisci et al.’s approach requires to carefully verify all those generated
signatures against benign web activity. This is a tedious and error prone task.
First, obtaining a large-scale representative ground truth dataset of benign net-
work traffic to prune out unnecessary signatures is very challenging. Second, it
makes infeasible to automatically build and deploy effective detection signatures.
WebVisor offers an alternative approach to classify malware using only relevant
C&C traffic. Although it is difficult to detect C&C connections during a single
malware analysis, the C&C activity becomes more apparent when observing a
larger set of malware. Furthermore, WebVisor automatically discards noise and
identifies common C&C requests used by variants of the same malware family.

5 Conclusion

We have presented WebVisor, an automated tool for the generation of malware
detection signatures. WebVisor targets HTTP malware belonging to the same
family, e.g., malware that uses the same C&C applications and equivalent sets
of URLs. We have outlined the main design properties underlying WebVisor and
evaluated a software prototype against real-world malware datasets. Our exper-
iments verify the capability of WebVisor at identifying the main and invariant
features of malware C&C activity.
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