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Université Paris-Saclay,

Evry, France
Joaquin.Garcia Alfaro@telecom-sudparis.com

Abstract—We address detection of attacks against cyber-
physical systems. Cyber-physical systems are industrial control
systems upgraded with novel computing, communication and
interconnection capabilities. In this paper we reexamine the
security of a detection scheme proposed by Mo and Sinopoli
(2009) and Mo et al. (2015). The approach complements the use
of Kalman filters and linear quadratic regulators, by adding an
authentication watermark signal for the detection of integrity
attacks. We show that the approach only detects cyber adversaries,
i.e., attackers with the ability to eavesdrop information from
the system, but that do not attempt to acquire any knowledge
about the system model itself. The detector fails at covering
cyber-physical adversaries, i.e., attackers that, in addition to the
capabilities of the cyber adversary, are also able to infer the system
model to evade the detection. We discuss an enhanced scheme,
based on a multi-watermark authentication signal, that properly
detects the two adversary models.

Keywords: Cyber-Physical Security, Critical Infrastructures,
Attack detection, Adversary Model, Attack Mitigation, Net-
worked Control System.

I. INTRODUCTION

In an effort of reducing complexity and costs, traditional
industrial control systems are being upgraded with novel
computing, communication and interconnection capabilities.
Industrial control systems that close the loop through a com-
munication network are hereinafter denoted cyber-physical
systems. The adoption of new communication capabilities
comes at the cost of introducing new security threats that are
required to be holistically handled, both in terms of safety and
security (in the traditional ICT sense). The recently coined
cyber-physical security term refers to the mechanisms that
address this specific challenge [1].

In this paper, we focus on the adaptation of physical-layer
failure detection mechanisms (e.g., systems for the detection
of faults and accidents) to handle, as well, attacks (e.g., replay
and integrity attacks conducted by malicious adversaries). We
reexamine the security of a specific scheme by Mo et al.
proposed in [2], [3]. This scheme relies on the adaptation of
a real-time failure detector based on a linear time-invariant
model of the system. Built upon Kalman filters and linear-
quadratic regulators, the scheme employs authentication wa-
termarks to protect the integrity of physical measurements
communicated over the cyber and physical control domains

of a networked control system (NCS). Without the protection
of the messages, malicious actions can be conducted to mislead
the system towards unauthorized or improper actions and affect
the availability of the system services.

The main contributions of this paper are summarized as
follows:

• We reexamine the security of the attack detector
proposed in [2], [3] under a new adversary model.

• We show security weaknesses in [2], [3] under the
new adversary model.

• An enhanced detector approach is presented and val-
idated via numerical simulations.

Section II provides the related work. Section III reviews the
detector scheme in [2], [3], provides a new adversary model
and reexamines the security of the detector under the new
adversary model. Section IV presents a novel multi-watermark
detection scheme that handles the uncovered limitations of the
previous construction. Section V concludes the paper.

II. RELATED WORK

Security of cyber-physical systems is drawing a great
deal of attention recently [1] after the infamous StuxNet
malware [4] uncovered the potential of successful security
attacks carried out against such systems. Several authors have
studied the requirements to take into account the new security
issues when designing security mechanisms for cyber-physical
systems. In [5], Cardenas et al. define the issue of secure
control by analyzing separately the problem first from a
information security point of view and then by looking at
specific control issues. In [6], Cardenas et al. also outline for
the first time the difference between corporate ICT security
and cyber-physical system security.

From a cyber perspective, the protocols for industrial
control systems built upon a networked control system must
cover regulation rules such as delays and faults [7]. Indeed,
most industrial control protocols (e.g., Modbus, DNP3, AGA-
12, PROFINET and Ethernet/IP), are not designed to provide
security from a traditional information or network perspec-
tive. Nevertheless, there are some protocols with security
extensions. AGA-12 uses cryptography to add integrity and



confidentiality protection, but with high deployment cost [8].
DNP3 has an extension named DNP3-SA (fifth version IEEE-
1815-2012), adding new security features to DNP3, ensuring
integrity and authentication for the message. Even so, current
NCSs use these protocols over TCP/IP or UDP/IP communi-
cation (e.g., Modbus and DNP3 over TCP, PROFINET over
TCP, Ethernet/IP over TCP or UDP). Over Ethernet network
communication, there is traditional ICT security until applica-
tion layer. In the application layer, we find the NCSs protocols,
such as PROFINET which has a new layer, PROFIsafe, but this
layer has been designed to ensure safety, hence protecting the
PROFINET protocol against malfunction (e.g., transmission
errors). It does not ensure security against intentional malicious
acts [9]. It is worth noting that most of the protocols of
application layer are modifications of serial protocols and do
not provide security. So, although transport and network layers
can provide some security elements, these mechanism are not
sufficient to ensure control-data protection [3]. To solve the
problem of control-data protection, cryptography could also
be used. However, without underestimating a cryptographic
solution, in this paper we revisit and analyze a complementary
and alternative solution proposed by Mo et al. [10], to ensure
the integrity and the authentication of control-data using also
the control domain of the networked-control system. This
security solution proves to be useful, e.g., in the case where a
cyber adversary bypasses a cryptographic solution, by adding
an additional protection layer.

The line of research that is more closely related to this
paper is the one that explicitly considers the interconnection
between cyber and physical control domains in networked con-
trol systems. Recently, the control system community started
to study security of cyber-physical systems both under the
methodological point of view and from a more technological
standpoint by looking at particular problems arising in, e.g.,
smart grids, power grids, water distribution systems. Figure
1 shows the way how an adversary conducting a cyber-
physical attack can be represented through a block diagram, a
representation typically used by the control system community.
The

⊕
symbol in the figure represents a summing junction,

i.e., a linear element that outputs the sum of a number of
input signals. In a nutshell, the figure represents the control
loop of a monitored system, and how an adversary succeeds at
modifying some of the readings, by recording and replicating
previous measurements corresponding to normal operation
conditions. Then, the adversary modifies the control input u to
affect the system state and disrupt normal operation conditions.
If, on one hand, the adversary is not required to have the
knowledge of the system process model, on the other hand
access to all sensors (i.e., it has access to all components of
the vector y) or insecure communication protocols is required
to carry out a successful attack. This type of adversary is
undetectable with a monitor detector which only verifies faulty
measurements.

Several studies have proposed the adaptation of fault
detection systems to detect as well attacks. Sophisticated
variations of the attack in Figure 1 include (i) bias-injection
cyber-physical attacks, in which the new data injected by the
adversary corresponds to a bias from the legitimate data, with
the aim of leading the system to wrong control decisions (e.g.,
to cause malfunction in the long-term); and (ii) geometric-
injection cyber-physical attacks, in which the bias is gradu-
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Fig. 1: Representation of a cyber-physical attack against a
networked control system.

ally injected. The attack may remain undetected when data
compatible with the system dynamics are injected, potentially
leading the system to irreversible damages. Teixeira et al.
propose in [11] a mathematical framework to model several
attack strategies. They show how to model each considered
attack policy within this framework with the goal of evaluating
its impact based on the mathematical concept of safe sets.
An alternative modeling approach is taken by Pasqualetti et
al. in [12], where the authors propose to employ the theory
of geometric control to model cyber-physical systems attacks.
Within this framework, a characterization of undetectable and
unidentifiable attacks is provided.

Techniques to prevent the aforementioned cyber-physical
attacks have been proposed in the literature. In [13], Franklin
et al. describe a signal-based detector method, using discrete
wavelet transformations. Brumback and Srinath study in [14]
strategies for handling cyber-physical attacks using statistical
detection methods. Mo et al. propose in [2], [3] the use
of watermark-based detection by adapting traditional failure
detection mechanisms (e.g., detectors to handle faults and
errors). In the following sections, we elaborate further on the
watermark-based technique by Mo et al., discuss about some
security limitations and propose an improved technique.

III. WATERMARK-BASED ATTACK DETECTION

In [2], [3], a watermark-based strategy is proposed with
the aim of detecting replay and injection attacks against cyber-
physical systems. The overall goal of this section is to provide
a brief review of the mechanism proposed in [2], [3] and to
assess its performance when a new adversary model, that we
name cyber-physical adversary, is employed. In particular, this
section is organized as follows: in Section III-A we provide
some necessary definitions and background concerning the
class of control systems considered in this paper; Section III-B
describes the attack detection scheme proposed in [2], [3]; in
Section III-C, we propose the cyber-physical adversary; in Sec-
tion III-D, we show a practical method that can be employed
by the adversary to guess the watermark; finally, we evaluate
the performance of the detection scheme when attacked by the
cyber-physical adversary via numerical simulations.



A. Definitions and Background

We consider plants of industrial control systems that can be
mathematically modeled as discrete linear time-invariant (LTI)
systems. It is worth mentioning that a mathematical model
provides a rigorous way to describe the dynamical behaviour
of a given system. Such class of systems can be described as
follows:

xt+1 = Axt +But + wt (1)

where xt ∈ Rn is the vector of the state variables (or state) at
the t-th time step, ut ∈ Rp is the control signal, and wt ∈ Rn
is the process noise that is assumed to be a zero mean Gaussian
white noise with covariance Q, i.e. wt ∼ N(0, Q). Moreover,
A ∈ Rn×n and B ∈ Rn×p are respectively the state matrix
and the input matrix.

A static relation maps the state xt to the system output
yt ∈ Rm:

yt = Cxt + vt (2)

where C ∈ Rm×n is the output matrix. The value of the output
vector yt represents the measurement produced by the sensors
that is affected by a noise vt assumed as a zero mean Gaussian
white noise and covariance R, i.e. vt ∼ N(0, R).

For such a class of systems, a widely used control tech-
nique is the Linear Quadratic Gaussian (LQG) approach. The
overall goal of an LQG controller is to produce a control law
ut such that a quadratic cost J , that is function of both the
state x and the control input u, is minimized:

J = lim
n→∞

E

[
1

n

n−1∑
i=0

(xTi Wxi + uTi Uui)

]
(3)

where W and U represent positive definite cost matrices [15].

It is well-known that such a control problem has, under
some technical conditions, an optimal solution that, thanks to
the separation principle, is made of two components that can
be designed independently:

1) a Kalman filter that, based on the noisy measure-
ments, produces an optimal state estimation x̂t of the
state x;

2) a Linear Quadratic Regulator (LQR) that, based on
the state estimation x̂t, provides the control law ut
that solves the LQR problem (3).

Let us briefly illustrate how these two components are
designed. The Kalman filter estimates the state as follows:

• Predict (a priori) system state x̂t|t−1 and covariance:

x̂t|t−1 = Ax̂t−1 +But−1

Pt|t−1 = APt−1A
T +Q

• Update parameters and (a posteriori) system state and
covariance:

Kt = (Pt|t−1C
T )(CPt|t−1C

T +R)−1

x̂t = x̂t|t−1 +Kt(yt − Cx̂t|t−1)

Pt = (I −KtC)Pt|t−1

where Kt and Pt denote, respectively, the Kalman gain and
the a posteriori error covariance matrix, and I is the identity
matrix of appropriate dimensions.

The optimal control law ut provided by the LQR is a linear
controller:

ut = Lx̂t (4)

where L denotes the feedback gain of a linear-quadratic
regulator (LQR) which minimizes the control cost (3) and it is
defined as follows (see [2], [3] for further details):

L = −(BTSB + U)−1BTSA,

with S being the matrix that solves the following discrete time
algebraic Riccati equation:

S = ATSA+W −ATSB[BTSB + U ]−1BTSA.

B. The χ2 Detector

This section briefly describes the detection scheme pro-
posed in [2], [3]. The procedure is applicable to discrete
LTI plants controlled by a LQG controller as detailed in
Section III-A.

Before presenting the detection scheme, we provide a
definition of the adversary model considered in [2], [3]:

Definition 1. An attacker that has the ability to eavesdrop all
the messages containing the sensor outputs yt and to inject
messages with a signal y′t to conduct malicious actions is
defined as a cyber adversary.

Remark. It is important to notice that the definition given
above does not suppose that the attacker possesses (or makes
attempts to gather) any knowledge about the system model,
reason why we name such attacker a cyber adversary.

In the following, we will denote with u∗t the output of the
LQR controller given by Equation (4) and with ut the control
input that is sent to the plant (see Equation (1)). The idea is
to superpose to the optimal control law u∗t a watermark signal
∆ut ∈ Rp that serves as an authentication signal. Thus, the
control input ut is given by:

ut = u∗t + ∆ut (5)

The watermark signal is a Gaussian random signal with
zero mean that is independent both from the state noise wt and
the measurement noise vt. Such an authentication watermark
is expected to detect replay and integrity attacks modeled
by the cyber adversary defined above. Now that the optimal
control law u∗t is equipped with the authentication signal ∆ut,
a detector – physically co-located with the controller – can be
designed having the goal of generating alarms when an attack
takes place. Towards this end, [2], [3] propose to employ a χ2

detector, a well-known category of real-time anomaly detectors
classically used for fault detection in control systems [16], for
the purpose of attack detection.

An alarm signal gt is computed based on the residues rt =
yt−Cx̂t|t−1 generated by the estimator. Then, gt is compared
with a threshold γ to decide whether the system is in a normal



state. The threshold is tuned to minimize false alarms [2], [3].
The alarm signal gt is computed as follows:

gt =

t∑
i=t−w+1

(yi − Cx̂i|i−1)TP−1(yi − Cx̂i|i−1) (6)

where w is the size of the detection window and P =
(CPCT + R) is the co-variance of an independent and
identically distributed (i.i.d.) Gaussian input signal from the
sensors.

The system is considered not under attack if gt < γ,
otherwise if gt ≥ γ the system is considered to be under attack
and the detector generates an alarm.

C. Cyber-Physical Adversary

Let us assume the system employs the detector described
in Section III-B, so that the controller superposes its output
with an authentication watermark ∆ut. At steady-state, i.e.
after the transient has been exhausted, the output of the system
can be considered as the sum of its steady-state value and a
component that is due to watermark signal that shall be only
known by the controller.

Let us now introduce an enhanced adversary that is aware
of the fact that the system employs the χ2 detector presented
above. Since the detector is based on the watermark signal
∆ut, we will show that an adversary that is able to extract a
stationary signal ∆ut, from the signal ut is able to conduct a
replay attack while remaining undetected.

Definition 2. An attacker that, in addition to the capabilities
of the cyber adversary, is also able to eavesdrop the messages
containing the output of the controller ut with the intention of
improving its knowledge about the system model is defined as
a cyber-physical adversary.

Let us consider a cyber-physical adversary that wants to
carry out a replay attack. Signals u′t and y′t are assumed to
be respectively the output of the controller and the output of
the measurement when a replay attack is taking place. We
denote with ∆u′t the watermark guessed by the cyber-physical
adversary. For the time being, we do not consider the
algorithm employed by the adversary to guess the watermark.
See Section III-D for such details.

Proposition. A cyber-physical adversary that is able to exactly
estimate the watermark signal injected by the controller cannot
be detected by the χ2 detector (6).

Proof: We consider an attack is started at time T0 and we
compute the residues rt for t ∈ [T0, T0 + T − 1]:

rt = y′t − Cx̂t|t−T (7)

Moreover, it is easy to show that the following holds:

x̂t|t−T = x̂′t|t−T +At−T0(x̂T0|T0−1 − x̂′T0|T0−1)

+

t−T0−1∑
i=0

(AiB(∆ut−1−i −∆u′t−1−i)) (8)

where x̂′ is the estimated state when the system is under attack
and A = (A + BL)(I − KC) is a stable matrix [2], [3].
Substitution of (8) in (7) yields:

rt = y′t − Cx̂′t|t−T︸ ︷︷ ︸
First term

− CAt−T0(x̂T0|T0−1 − x̂′T0|T0−1)︸ ︷︷ ︸
Second term

− C

t−T0−1∑
i=0

(AiB(∆ut−1−i −∆u′t−1−i))︸ ︷︷ ︸
Third term

Let us consider separately the three terms in the equation
written above: the first term follows the same distribution of
(yt − Cx̂t|t−1); since A is asymptotically stable – i.e. all its
eigenvalues are inside the open unit disk of the complex plane
– the second term converges exponentially fast to zero. In fact,
the entries of At−T0 converge exponentially fast to zero. Now,
if the third term would be equal to zero, the dynamics of rt
would recover the dynamics of the residues when no attack is
undergoing and thus, the attack would not be detected. Under
the hypothesis of this proposition, the adversary knows exactly
the watermark signal and thus ∆ut = ∆u′t which makes the
third term equal to zero and concludes the proof.

D. Acquiring the Watermark Signal

Motivated by Proposition III-C, we show now a practical
method that can be used to acquire the watermark signal ∆ut.
In particular, we propose an adversary that employs an adaptive
Least Mean Square (LMS) filter with the purpose of running an
online identification of the system model. With the identified
model, it is possible to obtain the watermark and, finally, using
it to authenticate messages with the aim of driving the system
to an undesired state.

We denote with p the LMS filter order and with µ its
step size. The step size µ is upper bounded by 2/λmax,
where λmax is the maximum eigenvalue of the auto-correlation
matrix R = E[XXH ], where XH is the Hermitian transpose,
or conjugate transpose, of X . Observe that if µ is chosen too
small, the time to converge to optimal weights tends to be
large [17]. The adversary initializes the weight matrix W to
be equal to the zero matrix. Then, the adversary’s algorithm
shown in Algorithm 1, is run online. It is worth noting that
in this algorithm; X is the input signal, e is the error, ē is its
complex conjugate, and d is the desired output signal.

Once the system model has been identified, the adversary
is able to extract the watermark and to carry out the replay
attack. In particular, the adversary follows the steps described
below:

1) Eavesdropping of ut and yt and decomposition:
The adversary captures both the control law ut and
the sensors output yt to make the decomposition
between the information data and the watermark
using the LMS filter as a noise cancellation adaptive
filter. With this first step, we are able to separate
u∗t and the watermark ∆ut starting from ut. Notice



Algorithm 1 Cyber-Physical Adversary Algorithm

1: procedure ADVERSARY ALGORITHM
2: k← length of eavesdropped data
3: p← filter order
4: j ← p
5: top:
6: if j < k then i← 1.
7: loop:
8: if i 6 p then
9: ini← j − p+ 1.

10: e(ini)← d(ini)−WTX[x(ini), ... x(j)].
11: W ←W + µē(ini)X[x(ini), ... x(j)].
12: j ← j + i.
13: i← i+ 1.
14: goto loop.
15: close;
16: goto top.

that, since the system is linear, it follows from the
superposition principle that yt = y∗t + y∆u

t , being y∗t
the output due to u∗t and y∆u

t the output due to the
watermark ∆ut.

2) Acquiring the weight matrix, W: The adversary uses
the LMS adaptive filter described before, as a system
identification method.

3) Computing the attack sensor measurement y′t: The
adversary attacks the system by sending fake sensor
measurements y′t, where y∆u

t is computed using the
watermark ∆ut as follows:

y∆u
t =WT∆ut

and y′t = y∗t−1 + y∆u
t .

In the remainder of this section, we show via numerical
simulations that the detection mechanism proposed in [2], [3]
is not sufficiently robust and is not able to detect cyber-physical
adversaries (see Section III-C) that are able to identify the
system model by eavesdropping the data channel.

In order to simulate the NCS, we have employed a sim-
plified version of the Tennesse Eastman control challenge
problem [18] also used as a benchmark in [19]. This system
simulates a MIMO system of order n = 7 with p = 4 inputs
and m = 4 outputs. In particular the model of the discrete
LTI system described by Equations (1)-(2) is defined by the
following matrices:

A=



0.987 0 0 0 0 0 0
0 0.895 −0.025 0 0 0 0
0 0.036 0.999 0 0 0 0
0 0 0 1 −0.008 0 0
0 0 0 0.005 0.960 0 0
0 0 0 0 0 0.999 0
0 0 0 0 0 0 0.990


,

B=



0.149 0 0 0
0 0 0 0.071
0 0 0 0.001

0.380 0 −0.096 0
1.000 0 −0.096 0
0 0.038 0 0
0 0 0 0.075


,
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Fig. 2: Cumulative distribution function (CDF) of the detection
ratio associated to the χ2 detector (see Section III-B), obtained
by measuring the DR metric (see Equation 9) for 500 simu-
lations (both cyber and cyber-physical adversary cases).

C=

0.151 −0.076 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0.040 0
0 0 0 0 0 0 0.133

.

Moreover, the co-variance matrices are equal to Q = 0.01I
and R = I , whereas the cost matrices are W = 1.5I and
U = 10I .

In order to quantify the detector performance, we define
the DR (Detection Ratio) metric as follows:

DR =

∑T0+Ta

t=T0
1gt≥γ

Ta
(9)

where Ta is the attack duration, and 1 is the indicator function
whose output is equal to 1 if the Boolean condition given as
its argument (gt ≥ γ) is true; or it is equal to 0 otherwise.
In a nutshell, DR ∈ [0, 1] can be considered as an efficiency
index for the detector: DR is equal to one when the attack
is always detected; and it is equal to zero when the attack is
always undetected.

Figure 2 shows the CDF (Cumulative Distribution Func-
tion) of the detection ratio obtained by measuring DR for
500 simulations both in the case of the cyber-physical and the
cyber adversary. The figure shows that the detection scheme
proposed in [2], [3] is able to provide a median detection
ratio that is larger than 0.9 when a cyber adversary attacks
the system. However, using a cyber-physical adversary that
acquires the watermark, the median detection ratio drops
to around 0.2. This quantitatively shows that the detection
strategy proposed in [2], [3] is not sufficiently robust for
security.

IV. MULTI-WATERMARK BASED ATTACK DETECTION

In the previous section we have shown that the watermark-
based detection scheme in [2], [3] is able to properly handle



attacks carried out by cyber adversaries, but it fails at detecting
cyber-physical adversaries. In this section, we propose a de-
tection scheme that extends the one presented in Section III-B
and overcomes the limitations shown in the previous section.

A. The Proposed Multi-watermark Signal

The goal of the new detection scheme is to increase the
difficulty in retrieving the authentication watermark ∆ut from
the control signal ut, so that the probability of detecting an
attack from a cyber-physical adversary can be increased. We
assume that the NCS employs exactly the same LQG controller
and the same detection strategy presented in Section III. The
only difference in the proposed detection scheme is the way
the watermark signal ∆ut is generated. The control input ut, as
in the case of the detection scheme presented in Section III-B,
is computed as the superposition of the optimal control signal
u∗t produced by the LQR controller and the multi-watermark
signal ∆ut. The idea is to construct the watermark signal by
switching between N different and independent processes with
different co-variance and average (offsets). More precisely, the
non-stationary watermark, ∆ut, is obtained by periodically
switching, with a period T , between N signals ∆u

(i)
t , with

i ∈ I = {0, 1, . . . , N − 1}, extracted by different stochastic
processes. Hence, the watermark signal ∆ut can be formalized
as follows:

∆ut = ∆u
(s(t,T ))
t (10)

where s : N × R → I is a static function that maps the time
sample t and the switching period T to an element of the index
set I, defined as follows:

s(t, T ) =

⌊
1

T
mod (t,NT )

⌋
(11)

where mod (x, y) is the modulo operator and b·c is the floor
function.

By using the proposed watermark (see Equation 10), we
now have an adaptive protection mechanism with two main
configurable parameters: the number of distributions N and
the switching frequency f = 1/T . It is worth to notice that the
original watermark signal described in Section III is recovered
when f → 0 and when ∆u

(0)
t being a stationary zero mean

Gaussian process.

B. Validation

This section validates through numerical simulations the
detection scheme proposed in Section IV-A. In particular, we
aim at showing that the proposed watermark signal is able
to detect cyber-physical adversaries (see Section III-C) with
a higher detection ratio with respect to the one obtained with
the watermark proposed in [2], [3]. Towards this end, we start
with a system described by the following matrices:

A =

[
0.5 0.8
0 0.8

]
, B =

[
0
1

]
, C = [ 1 0 ] . (12)

and co-variance matrices equal to Q = 0.8I and R = I . The
positive definite cost matrices W and U are both equal to the
identity matrix. The simulation uses a Simulink NCS model
under a cyber-physical adversary starting the attack at t =
700s. We have used N = 3 different distributions switched

TABLE I: Sample parameters used in the multi-watermark
Simulink model.

Distribution Co-variance Offset
Gaussian 2.560 0.0

Rician 1.113 2.401
Rayleigh 0.576 1.500

at random: a Gaussian, a Rician and a Rayleigh distribution.
Table I shows the co-variance and offset configured in the
simulations for each distribution.

To validate the proposed attack detection scheme, we com-
pare the system dynamics considering two different switching
frequencies. We have simulated a high frequency switching
watermark configured to switch each 7 time samples, and a
low frequency switching configured to switch each 20 time
samples. Figures 3(a) and (c) show the plant dynamics and the
dynamics of the states estimated by the controller in the case of
a switching frequency watermark configured to 7 time samples
and a cyber-physical adversary attack. Figure 3(a) shows that
the adversary is able to drive the states to an undesired value.
Nevertheless, the controller misled by the adversary, does not
perceive such situation (see Figure 3(c)). Figures 3(b) and
(d) show the plant dynamics and the dynamics of the states
estimated by the controller when the watermark is switched
each 20 time samples. The dynamics show exactly the same
behavior described above.

Figures 3(e) and 3(f) show the dynamics of the alarm signal
gt produced by the detector, respectively in the case of high and
low switching frequency. Notice that switching the watermark
distributions at a high frequency provides better detection per-
formances compared to the case of a low switching frequency.

To quantify the effectiveness of the proposed detection
scheme, we compute the detection ratio DR as a function
of the switching frequency. In particular, for each considered
frequency f we run 500 Monte Carlo simulations (with ran-
domly generated system parameters) both in the case of the
cyber-physical and the cyber adversary, and we compute the
CDF of the detection ratio.

Let us now confront the performance obtained with the de-
tection strategy based on multiple watermark signals proposed
in this paper with that proposed in [2], [3] in both the case
of a cyber-physical and a cyber adversary. In the case of the
proposed multi-watermark strategy we consider two switching
frequencies fL = 0.05Hz (switching watermark each 20 time
steps) and fH = 0.14Hz (switching watermark each 7 time
steps). The results of this comparison are shown in Figure 4.
Let us focus on the detection strategy proposed in [2], [3]:
as shown before, the detector is able to consistently detect
cyber attack but it performs poorly when a cyber-physical
adversary attacks the system. On the other hand, the proposed
detection strategy based on multiple watermarks is able to
provide a higher detection ratio: in particular we notice that the
detector employing a higher switching frequency fH provides
better performances with respect to the case of using the lower
switching frequency fL.
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(a) Plant states under a cyber-physical adversary attack and
switching frequency set to 0.14Hz, meaning that every 7 time
steps, the controller changes the distribution associated to the
watermark.
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(b) Plant states under a cyber-physical adversary attack and
switching frequency set to 0.05Hz, meaning that every 20
time steps, the controller changes the distribution associated
to the watermark.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Time(s)

V
a
lu

e
 o

f 
st

a
te

s

Controller

 

 

State 1

State 2

(c) Estimated states in the controller under a cyber-physical
adversary attack and switching frequency set to 0.14Hz.
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(d) Estimated states in the controller under a cyber-physical
adversary attack and switching frequency set to 0.05Hz.
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(e) Detector results, switching frequency set to 0.14Hz.
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(f) Detector results, switching frequency set to 0.05Hz.

Fig. 3: Simulation results where State 1 and State 2 are the temperatures of two different chemical processes. Attacks start at
t = 700s. (a),(b) The dynamics of the states vector in the plant under a cyber-physical adversary attack and switching frequency
configured with two different configurations (0.14Hz and 0.05Hz). (c),(d) The dynamics of the states vector estimated in the
controller, under the same scenarios. (e),(f) The dynamics of the alarm signal gt produced by the multi-watermark based detector,
under the same scenarios.
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Fig. 4: Confronting the performance of the two detectors. (a)
χ2 detector in [2], [3], and cyber adversary. (b) χ2 detector and
cyber-physical adversary. (c) Multi-watermark detector with
switching frequency set to 0.14Hz, and cyber-physical adver-
sary. (d) Multi-watermark detector with switching frequency
set to 0.05Hz, and cyber-physical adversary.

V. CONCLUSION

We have addressed security issues in industrial control
systems. We have focused on the adaptation of failure detection
mechanisms. The goal is to handle, in addition to faults and
errors, the detection of cyber-physical attacks. Cyber-physical
attacks refer to malicious activities conducted over industrial
control systems with upgraded computing, communication
and interconnection capabilities. In other words, they refer to
threats against industrial environments that close their loops
through networked control systems.

We have revisited a watermark-based attack detection
scheme. The approach relies on the adaptation of a failure
detector, by adding a complementary authentication watermark
signal for the detection of the malicious activities. The ap-
proach only requires to inject the watermark from the system
controller. The monitored system continues to work regardless
of the added watermark signal. This way, the strategy is free
from desynchronization. Nevertheless, we have shown that the
detection strategy is not sufficiently robust from a security
standpoint. Indeed, we have quantitatively shown that the
approach only detects cyber adversaries, i.e., attackers with
the ability to eavesdrop information from the system, but that
do not attempt to get any knowledge about the system model
itself. We have validated that the detector fails at covering
cyber-physical adversaries, i.e., attackers that, in addition to
the capabilities of the cyber adversary, are also able to infer
the system model to evade the detection.

We have then presented a multi-watermark based adaptive
detection scheme with two main configurable parameters:
number of distributions and switching frequency. The novel
multi-watermark proposal succeeds at properly detecting both
cyber and cyber-physical adversaries under the assumption
that the watermark distributions change frequently. The
rationale is that, even under the presence of adversaries with
knowledge about the system dynamics, the detector succeeds
at reducing their chances of acquiring the authentication

watermark and bypass the detector. Numerical simulations
validate the detection performance of the new construction.
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