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Learning to Communicate Underwater
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ABSTRACT

Underwater environmental parameters vary with time and can neg-
atively impact the quality of communication. The adaptive control
system suggested attempts to improve communication in underwa-
ter networks where environmental conditions are stochastic and
time-variant. Adaptive depth control is explored in limited mobility
underwater acoustic sensor networks. The adaptive control seeks
to leverage the acoustic properties along the thermocline sensors
anchored to the seabed in order to improve link stability in under-
water networks. The sensor is allowed two directions of movement,
either surface or dive, in order to avoid physical phenomena that
cause faults. The algorithm presented is capable of adapting to the
optimal performance depth in unimodal stochastic stationary and
non-stationary environments.
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1 INTRODUCTION

Mobile Ad-hoc Networks (MANETS) are a prominent topic of re-
search in terrestrial networks. The applications possible for MANETSs
in underwater environments is vast and can range from naval se-
curity to seabed mining operations. Currently, underwater applica-
tions of MANET: are limited, in part due to the physical difficulties
in establishing wireless communication networks underwater. The
stochastic nature of underwater acoustic environments creates
difficulties for communication [1]. Much of the existing work in
the routing of underwater communications focuses on fixed rule
algorithms for transmission that do not leverage the mobility of
agents, or utilize the opportunity to change their rule structure
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with changes in the acoustic environment [9]. An existing problem
in underwater communication is the fact that the acoustic qualities
of oceanic media have a tendency to change both seasonally and
with local weather phenomena [1, 11]. Although, these acoustic
properties are unavoidable, it is the goal of this work to demon-
strate that it may be possible for depth-varying anchored Limited
Mobility Agents (LMAs) to utilize adaptive rule learning strategies
to alter their depth in order to improve communication. Currently,
many of the sensor networks which allow for variable depth of an-
choring rely on human interaction to change node depths, a costly
process which results in few movements of the sensor with respect
to sensor operating lifespan. Replacing that human interaction with
a motorized component would allow limited mobility to network
elements which can be leveraged for sensing tasks and communica-
tions alike. Ultimately, the work herein seeks to provide a basis for
leveraging acoustic sound speed changes along the thermocline of
an underwater acoustic environment with the intent of improving
link stability in an Underwater Acoustic Sensor Network (UASN).

A learning strategy that allows LMAs to adapt to the best depth
of operation may not only be a tactic for fault avoidance in UASN,
but could also be an acceptable strategy to avoid collisions in UASNs,
since an adaptive strategy would not discriminate against the cause
of faults in the network. A significant motivator of using learn-
ing strategies to avoid faults in UASN is the fact that the agents
in UASNs are economically expensive. The cost of UASN agents
inspire network sparsity, and it is this agent sparsity which moti-
vates a scheme that can avoid faults, or link failures, in underwater
communication.

Partan et al. [10] describes a series of physical limitations to
underwater acoustic communication, among which are concerns
including shadow zones, multipath interference, and near surface
bubble cloud regions. These physical properties not only cause link
failure in UASNs, but are demonstrably characteristic of a time-
varying stochastic environment [2, 3]. Although the observation of
stochastic features like bubble clouds, caustic regions, and shadow
regions seems trivial, it is an important observation when consider-
ing the work of Narendra et al. into learning automata techniques to
improve communication in terrestrial telephone networks [5, 6, 8].
Narendra et al. [5, 6, 8] use a Mean Action Learning Automaton (M-
automaton) to create adaptive rule routing in a stochastic demand
telephone network and demonstrate improvements in performance
over traditional fixed rule routing. In a similar way, M-automaton
can be leveraged in 3D underwater network topologies where agent
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depth can be varied as described by Akyildiz et al. [1] in order to
leverage the properties of acoustics along the thermocline of a body
of water. At this time, the authors of this work are unaware of any
publication which seeks to take advantage of such properties of
underwater environments.

In the discussion of 3D underwater networks Akyildiz et al. [1]
proposes to anchor the depth varying network agents on the seabed
to improve surreptitious monitoring capabilities or to reduce the
hazard of collision with passing vessels. A further alteration to this
network architecture would be to allow the agents to autonomously
alter their depth of operation while anchored to the seabed. In other
words, allow the node itself to take action regarding the depth of
operation. This way a network agent may avoid faults caused by
physical phenomena, like caustics, air bubbles, and sound speed pro-
file changes along the thermocline [4, 11]. This level of autonomous
control is achieved by equipping each agent in the network with
a M-automaton. This application of a M-automaton can perform
up to three distinct tasks simultaneously. First, a M-automaton
operates by determining mean actions, therefore it can maintain a
probability vector of the approximate mean correlation between
the depth of sensor operation and the probability of link existence.
Secondly, the probability vector inherently contains information for
the depth or depths corresponding to the highest probability of link
existence. Finally, the M-automaton is able to avoid faults without
ever requiring change to the routing protocol used by the network
since it manipulates the link-state, thus reducing implementation
cost. The Maximum Award Stationary Transmission (MaSt) algo-
rithm, solves the best depth location, but does not maintain an
accurate probability vector of the approximate mean correlation
between depths and link existence, instead it maintains a vector of
the confidence in the best depth with respect to time.

The theory of Learning Automata (LA) is discussed in Section 2.
A network topology consisting of stationary network elements and
LMA:s is discussed in Section 3. In Section 4 the MaSt algorithm
is evaluated against a non-stationary stochastic environment in a
simulation. The simulation conducted consists of two stationary
stochastic environments, one unimodally distributed and the other
bimodally distributed applied to a Markovian Switching Process
(MSE) to create a non-stationary stochastic environment. Finally,
concluding remarks and open questions regarding the MaSt algo-
rithm are discussed in Section 5.

2 BACKGROUND ON LEARNING AUTOMATA

A common model in reinforcement learning is one in which there
is an environment, E, sometimes called the teacher, and a learner,
or LA. The environment is responsible for rewarding or penalizing
the LA. The purpose of the LA is to minimize the exposure to penal-
ties by learning to select the action most likely to be rewarded. In
the paradigm used in this work a M-automaton selects an action,
ar € {ap, a1, a2}, corresponding to movement control: dive, idle,
and surface, respectively. The environment responds depending on
the probability of a transmission timeout occurring along the unit
interval f(n) € [0, 1], as seen in Figure 1 [6, 7]. This type of environ-
ment is called a S-model environment. S-model environments are
desirable for adaptive control since the unit interval can correspond
to a normalized continuous performance value index [7]. In order

to control the depth of an underwater LMA a M-automaton would
have possible action probabilities correspond to control states and
the environmental response acts as a predictor of the next action.
In a fixed-rule control system, such a LMA may have two states,
dive and surface. However, the adaptive control counterpart would
have three control states: dive, surface, and idle in order to allow
for a surjective relationship between control states and LA actions,
as discussed in subsequent sections.

The application of reinforcement learning in adaptive control
of the operating depth of LMAs in an UASN requires that the LA
determines rewards by the successful reception of a confirmation
message, a type of message that must originate from a Fusion
Centre (FC), and is propagated to all agents in the network. A
penalty, then, is determined by a timeout failure. Timeout counters
are only initiated after a data message is sent by an agent, in this
way it does not matter which agent has originated the message. A
further discussion of the algorithm which utilizes reinforcement
learning in this manner is found in Section 3.

2.1 The Linear Reward-Penalty Scheme

There are many schemes for LA and the scheme being used in this
work is a type of Variable-Structure Stochastic Automata (VSSA)
known as a Linear Reward-Penalty (Lg p) scheme. This scheme
is chosen for several reasons, primarily because it is ergodic. It
allows the collection of useful metrics that can implicitly map the
environment as a probability vector; something that fixed-structure
automata schemes could not provide. Since the Lg p scheme is
ergodic it allows adaptation to changing environments including
seasonal changes, or the natural drift of FCs and LMA caused by
currents in the underwater environment [7, 11].

The Lg p scheme, and all VSSA automata, can be represented
as the set of {®, a, f, A, G}, where @ is the set of control states of
the automaton, « is the set of actions, f is the set of environmental
responses, A is the updating algorithm, and G is the output function
such that G : ® — a. The function A, concerns how penalty proba-
bilities ought to be updated. A general reinforcement scheme for a
Lg, p LA operating in a S-model environment such that g;(n) and
h;(n) are continuous functions for all n, with n representative of
iterable time. The function g;(n) can be viewed as the reward func-
tion, while h;(n) can be viewed as the penalty function. Essentially,
if the environment rewards «; by outputting f(n) < 0.5 the reward
function increases the probability of selecting «; in future action
requests, and the function G iterates over remaining actions a; # i
reducing the probability of selecting those actions proportionally
to the increase awarded to ;. Generally, G is chosen such that
the mapping from the set of control states ® to the set of action
probabilities « is surjective, allowing the functions g;(n) and h;(n)
to be simplified as follows in Eq. (1) and Eq. (2). When examining
the control states of the LMA in Section 3, this concept of surjective
mapping will be exploited through the use of an idle control state.
A state which could be viewed as redundant in fixed-rule control,
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Figure 1: Reinforcement learning model.

but valuable in adaptive-rule automation.

pi(n+1) = pi(n) = (1 = f(n)gi(p(n)) + f(Whi(p(n))  a(n) = a;

1)
pi(n+1) = pi(n) + (1= f(n)) Z 9i(p(n) = f(n)) a(n) # a;
j#i
@)

The updating algorithm relies on one Initial Condition (IC), the
initial action probability vector p;(n = 0), equivalently po, of the LA.
In general LA theory, the value of py can be any valid probability
vector, however, in a practical application of LA this vector should
be equal for all probabilities, since it is initially uncertain which
action is the best action in adaptive rule control.

3 A REINFORCEMENT LEARNING STRATEGY
FOR DEPTH CONTROL

We design a Lg p automaton with three actions a; € {a1, a2, a3}
such that the automaton can respond to the environment by telling
the LMA to choose one of three control states ¢; € {¢o, 1, P2} cor-
responding to dive, idle, or surface, respectively such that control
maps onto actions as: ¢g — @ corresponding the dive command,
¢1 — a1 corresponding to an idle command, and ¢2 — a3 corre-
sponding to a surface command. Since the automaton is ergodic,
essentially all actions are transient, however, we design the automa-
ton to inevitably tend toward a, idle, at the depth corresponding to
the maximum reward max (f(n)). This allows the LMA to find the
most stable link in a stochastic environment through adaptation
and is referred to as the MaSt algorithm; inspired by the procedure
of raising and lowering the masts of sailing vessels, seen in Algo-
rithm 1. The MaSt algorithm is ergodic, and therefore there are
no conditions for termination of this algorithm. The goal in the
design of this algorithm is not to have the LMA absorb an action,
but instead to continuously adapt as the operating environment
evolves with time. As long as the automaton is sending data the
MasSt algorithm is capable of learning, since an internal timeout
is reached. The use of a timeout prevents inconsistent links from
forcing the algorithm to fail to complete a state translation. Forcing
the timeout, allows dependency to be shifted from the reception of
a message onto the sending of a message, ensuring that a learning
action occurs at all iterations of the algorithm.

WUWNET’ 17, November 6-8, 2017, Halifax, NS, Canada

Algorithm 1 Maximum Award Stationary Transmission (MaSt)

INITIALIZE

lastWait « timeoutMax

SENDING

beginTimer()

if currentWait = timeoutMax then
doPenalty(currentAction)

end if

lastAction « currentAction

currentAction « pickNextAction()

move(currentAction)

currentAction < ay

RECEIVING

if currentWait < lastWait then
doReward(currentAction)

else
doPenalty(currentAction)

end if

lastAction « currentAction

currentAction « pickNextAction()

move(currentAction)

3.1 The automaton of the MaSt algorithm

The MaSt automaton maintains knowledge of the best depth so
far and the last action chosen. Eventually, and with respect to the
environmental reward f(n) € [0, 1] the action probability vector
pi(n) will be biased to favour the action ay for the depth where
B(n) = max(f). Considering our assumptions, it is not necessary
that the timeout value we choose is actually output on the unit
interval. What matters is that it is possible to normalize this output
to fit the unit interval. This becomes clear when we consider that
the S-model environment must have a valid Probability Density
Function (PDF).

4 SIMULATION RESULTS

In the current version of the MaSt algorithmn the LMA moves
a constant depth increment after selecting either ¢o or ¢, note
that the automaton need not move for ¢; since it is the idle state.
Prior to discussing movement intervals it is prudent to note that
it appears counter-intuitive to assign a control system state for
an idle action; this state is chosen to allow a surjective mapping
from control states on to LA actions, a necessary simplification.
Constant movement increments provide an expedient solution to
the initial problem of finding the depth of maximum performance
in stochastic environments where the environment PDF is either an
unimodal distribution, or a multimodal distribution as depicted in
Figure 2. Constant movement increments also solve the problem of
non-stationary stochastic environments. Ultimately, the practical
goal is to have variable movement of the LMA to expedite the search
process in a manner similar to that of telephone network learning
systems [6]. In addition to expedience in solving the unique max-
imum or local maxima problem, the constant movement interval
retains an intuitive error window. For a constant movement interval
of k meters, the error window simply becomes *k of the learned
depth. The actual best depth of operation may lay along the interval
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Figure 2: Solved environment PDFs.

of one dive or one surfacing away from the learned depth. Any
learning outside of this range would be a failure. The performance
metric used for learning in this simulation is the maximum power.
The maximum power may not be the most effective performance
metric for all applications, and there may be situations where an-
other metric is more desirable. The MaSt algorithm is designed to
allow for customization in the selection of the learning metric. The
question of which metrics are the most effective for the algorithm
remains an open question.

4.1 Learning operating depthina
non-stationary environment

The MaSt algorithm is set against a non-stationary stochastic en-
vironment modelled as a Markov switching process with two sta-
tionary environments which switch at 10 0000 units of iterable
time. In this context the non-stationary environment describes a
learning environment, however it is also symbolic of an acoustic
environment that experiences a change in acoustic properties after
10 000 time units. This significantly represents common changes
in underwater environments and could represent a change in sea-
son, or variation in background noise from human interactions like
shipping.

The LMA is placed at a random depth in the integer interval
[0..70] representative of a range between the surface at 0 m and

a seabed at 70 m. The movement function is set to a constant
value of 1 m creating a suitably narrow error window of +1 m
from the learned depth. Initially, the automaton is exposed to the
environment of Figure 2a where the best depth is situated at 45 m
and the decay from the maximum is normally distributed. Figure 3
shows that the MaSt algorithm has learned the best depth to be
44+1m. Despite the fact that the true best depth exists at 45 m, this
result is still correct within the error window, since the automaton
is limited to movement intervals of 1 m any learned depth varying
by 1 m from the true depth is a success. At n = 10 0000 time units
the MSE switches the environment to have two equal maxima, one
at 15 m and the other at 45 m, Figure 2b, such an environment could
be used to represent a special condition of operation like shipping
noise, or perhaps a variation in season.

Due to the expedient movement function, a multimodal distribu-
tion with multiple true maxima may not generate an equal confi-
dence for all maxima in a non-infinite ensemble. This results since
linear movement may create a latching effect where the automata
latches to the local maxima it was initially nearest to. However,
since the best depth distribution in this case is that of Figure 2b the
automaton may latch to either 15 m or 45 m, which is correct be-
cause both maxima are absolute maxima. This latching is a result of
the expedient movement function, which can be replaced without
altering the decision process of the MaSt algorithm. Consequently,
a larger ensemble would also correct this issue. From Figure 4 it
is observed that the automata correctly chooses 15 + 1 m as the
optimum communication depth. It also stakes a claim to a relatively
high confidence in 39 + 1 m. This fits the expectation that the au-
tomata should produce higher confidence in the neighbourhood
of local maxima. This confidence, statistically, is the proportion
of ensemble experiments which have converged to that location
such that a LMA converging to 44 + 1 m with a confidence of ap-
proximately 0.81 indicates the proportion of ensemble experiments
converging to 44 = 1 m.
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Figure 3: Learned best depth in the unimodal environment.

The limitation posed by constant movement is understood to be
solvable through the use of a variable movement function. How-
ever, there is one additional question that the non-stationary envi-
ronment implicitly poses. What happens when the environment
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Figure 4: Learned best depth in the bimodal environment.

changes rapidly, how does rapid variation in environmental proper-
ties pose a limitation the ergodic reinforcement scheme used? An
observation is that an environment which changes PDF in fewer
discrete-time units than the expected value of the MaSt automaton,
heuristically observed to be 13 discrete-time movements, would
result in the LA learning the maximum of the joint PDF of the set
learning environments. Further, it is observed that the automata be-
gins to bias towards the idle action very early within the ensemble
which is noted by the action probability evolution, Figure 5a. Ob-
serve the action evolution of Figure 5b, immediately after the MSE
switches environments at n = 10 000 the automaton experiences a
transient event before rapidly converging to the new best depth.
There is a practical benefit of having rapid increase in P(a1),
indicating that the automaton quickly biases towards a predispo-
sition to remain idle, since movement requires power, it would be
best to move as little as possible. Additionally, there is a statistical
significance of noting that the sum of all action probabilities is
one,},, P(a;) = 1. An indication that the plotted action probabili-
ties of the simulation, Figure 5, are indeed probability vectors, vali-
dating that the reinforcement scheme is correct. Further, Figure 5
shows the idle action, a1, probability asymptotically approaches 1,
indicating both the ergodicity, non-recurrence, of the LA and the
convergence to a learned position with high probability.

5 CONCLUSION

The MaSt algorithm is able to adapt to the optimal-performance
depth of environments where the PDF is unimodal and environ-
ments with multimodal PDF. The algorithm utilizes an ergodic LA
allowing it to adapt in non-stationary stochastic Markovian en-
vironments. The algorithm utilizes a simple constant movement
function. Although, constant movement is expedient it is not neces-
sarily ideal. However, this shortcoming does not effect the decision
process. The MaSt algorithm is a hopeful step toward adaptive
link-state control in UASNs. The source code of the simulation is
avaiable at: github.com/0xSteve/detection_learning.
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