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Abstract. Cyber-attacks affect the security properties of critical sys-
tems, such as confidentiality, integrity, and availability of crucial business
activities. They also affect mission quality and performance. Existing risk
assessment tools handling the problem still present some limitations, ow-
ing to the difficulty of describing the enterprise infrastructure, such as
identifying assets, missions, and their dependencies. Furthermore, little
research has been conducted to assess the impact propagation of external
events on business entities.

In this chapter, we survey existing methods aiming to solve the afore-
mentioned limitations. We focus on two main families: financial and op-
erational impact assessment. The latter aims to specifically assess the
impact propagation of cyber-attacks. For instance, cyber-attacks target-
ing the infrastructure assets and perturbing the execution and perfor-
mance of the company’s activities. It can also include the evaluation of
the financial impact based on former financial assessment methodologies.

We also present a concrete operational impact propagation assessment
contribution. This contribution extends previous work by enhancing the
definition associated to organizational activities that might be impacted
by cyber-attacks. It relies on business impact analysis via business logic
modeling. It also includes metrics to quantify (i) the impact propagation
probability on the business entities, and (ii) critical time (i.e., the time
during which the business entity is not be impacted).

Keywords: Cybersecurity · Risk Analysis · Impact Assessment · Cyber-
Attack · Impact Propagation · Resource Dependency Graph · Mission
Dependency Graph.

1 Introduction

Modeling the technical assets and missions of a company, as well as identifying
the dependencies between them, can assist the security analyst in responding
to the incident more effectively. With the discovery of new vulnerabilities and
an increase in attacks aiming at compromising the confidentiality, integrity, and
availability of business activities, as well as deteriorating mission quality and
performance, assessing the impact of these external events may help the operator
in determining the level of emergency and making decisions.
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In addition to cyber-attacks, the limitations of existing cyber defense tools
to protect missions and enterprise networks, some recent research has been con-
ducted to quantify the impact of attacks based on attack graph tools and Com-
mon Vulnerability Scoring System (CVSS) scores. However, due to the difficulty
of modeling the company’s business functions and processes, little of this research
has focused on assessing the operational impact of external events on business
missions to protect critical infrastructure and complex enterprise architecture.

Previous work focuses on methodologies based on extending metrics such as
CVSS scores, the Impact Factor (IF) to assess the attack impact [10]. For in-
stance, Cao et al. [2] use CVSS scores over attack graphs, in order to compute
an eventual business impact score. Operational impact assessment consists of es-
timating the impact of interrupting services and functionalities of missions, such
as business functions and processes, due to an attack. For acquiring knowledge
about the business activity of a company, we assume Business Process Model
Notation (BPMN), seen as a common standard to derive the list of business
functions and organizational processes.

Regarding the assessment of the propagation of impacts on business functions
and processes, we evaluate the operational impact of an external event that has
already occurred within the infrastructure, composed of technical assets and
business entities. Our approach is not just aimed at studying the propagation of
the attack within assets, but also assesses the operational impact at the level of
the business entities.

We extend previous work [9,13–15] by including business logic into previous
models. The added business logic model is a layered structure composed of assets
and business entities, such as business functions and business processes. It con-
sists of a graph-like structure, which links technical assets into business entities.
The resulting model is used to assess the operational impact of shock events on
missions, as well as to calculate the criticality of technical assets and estimate
the downtime tolerance. Based on the business logic model, we implement a
method for assessing the impact propagation of attacks on business entities, as
well as to conduct a realistic case study on various business models to evaluate
our method. To accomplish this, we define two metrics: (i) the probability of the
impact on the business entities, and (ii) the critical time, which represents the
time during which the business entity will not be impacted.

To identify the most critical assets and the most impacted missions, we as-
sume graphical language for reasoning on functionalities such as: 1) calculation
of the impact of events on the missions: impact probability and critical time,
and 2) computation of the criticality of assets. The methodology is evaluated on
realistic use cases and provides relevant results.

The focus of the contribution is on generating a business logic model, as well
as demonstrating our method to assess the impact propagation of an external
event into the nodes of this model. Then, using Monte-Carlo approximation, we
can assess the scalability of the required computations needed by the system
to evaluate the criticality of assets in some larger scenarios. We also focus on
identifying the most critical assets in the infrastructure to determine which assets
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contribute the most to the propagation of the impact by assigning a criticality
value to each asset. Our approach is based on the following assumptions:

– Generate the business logic model by creating the resource dependency
model and merging it with the mission dependency model, which represents
the business functions and processes of the enterprise and their interdepen-
dencies.

– Assess the criticality of the assets and determine the most critical assets in
the infrastructure.

– Assess the impact probability of an external event on the different business
entities of the company: Business Functions, Business Processes and the
Business Company, and evaluate the impact when duplicating and backing
up assets in the infrastructure.

– Calculate the critical time by deducing the shortest path from the shock
event to the Business Company.

For the literature survey, we examined contributions from various sources
of information, such as academic articles, books and case studies. We identified
methodologies and works assessing the impact of cyber-attacks on companies.
We conducted our search using keywords and technical terms such as Impact As-
sessment, Risk Quantification, Business Logic Modeling, Financial Assessment
Methodologies and Operational Impact Propagation Assessment. We searched for
publications published between 2004 and 2023.

The chapter is organized as follows. Section 2 surveys relevant related work.
Section 3 describes our contribution. Section 4 presents a proof-of-concept tool,
implementing all the concepts and models of our contribution. Section 5 discusses
future directions for research. Section 6 concludes the chapter.

2 Related Work

In this section, we discuss two complementary family methodologies for assessing
the impact of an cyber-attacks affecting the business functions and processes of a
company given company. The first family focus on the quantification of financial
aspects associated to the perpetration of attacks, while the second family focus
on operational impact assessment. Tables 1 and 2 summarize the references and
findings covered for each of these two families, as covered in this section.

2.1 Financial Impact Assessment

Earlier research on quantifying the impact of cyber-attacks starts with a fo-
cus on financial aspects. Some representative contributions in the literature are
presented next (and summarized in Table 1).
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Table 1: Related work with a focus on financial impact assessment.

References Contribution Methodology Metrics

– Brian et al.
[3], (2004)

– Rainer et al.
[1], (2008)

– Survey the economic
security metrics and
the state of knowl-
edge on the cost of
cyber-attacks.

– Use of security met-
rics and models for
security investments
and cyber-risk mea-
surement

– Annual Loss Ex-
pectancy (ALE)

– Return On Secu-
rity Investment
(ROSI)

– Freund and
Jones [8],
(2014)

– Propose the Factor
Analysis of Infor-
mation Risk (FAIR)
metric and how to
use it for impact
assessment.

– Discuss risk manage-
ment using FAIR

– Describe ontologies
and terminology of
the FAIR framework

– Leveraging FAIR in
risk decision-making
and risk management

– Factor Analysis of
Information Risk
(FAIR)

– Dongre et al.
[7], (2019)

– Develop a cost func-
tion to quantify the
cost of the impact of
data breaches.

– Cost function as the
sum of costs incurred
by providers and con-
sumers.

– Identify the cost com-
ponents of the cost
function for provider
and consumers.

– Present two case
studies: Equifax data
breach (2017) and the
Target data breach
(2013).

– Cost function

– Orlando [18],
(2021)

– Analysis of the role of
Cyber Value at Risk
(Cy-VaR) model in
quantifying the cyber
risk.

– Definition of the role
of the Cy-VaR model.

– Highlight issues and
difficulties in estimat-
ing Cy-VaR.

– Description of the
role of Cy-VaR in
supporting security
investment decisions.

– Cyber Value at
Risk (Cy-VaR)
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Brian et al. [3] and Rainer et al. [1] focus on their works on economic security
metrics. They conduct a survey of the state of knowledge on the cost of cyber-
attacks. Two models will be discussed in our work: Annual Loss Expectancy
(ALE) and Return On Security Investment (ROSI). The ALE is represented as
a quantitative metric for IT security, that can calculate the expected loss due to
a risk in one year. Rainer [1] considers ROSI as a methodology for determining
whether a firm should invest in implementing a security measure or not, i.e. it
can be used to support a decision for or against implementing a security measure.
Freund and Jones [8] the Factor Analysis of Information Risk (FAIR) framework.
The FAIR framework aims to analyze risk and provide quantitative risk analy-
sis. It provides a foundational understanding of risk, as well as risk assessment
and analysis. Dongre et al. [7] quantify the cost of the impact of data breaches.
In this chapter, the authors focus on data breaches that have exposed personal
information. They present a mathematical function that expresses the cost im-
pacts of data breaches. The developed cost function quantifies the cost of data
breaches for providers and consumers. Orlando [18] presents the Cyber Value at
Risk (Cy-VaR) model and its role in quantifying and measuring cyber-risk in
the cyber security domain. The Cy-VaR model could provide an estimation and
quantification of losses caused by cyber incidents, as well as support security
investment decisions.

2.2 Operational Impact Assessment

Operational impact assessment aims at assessing the impact propagation of
cyber-attacks and evaluating the perturbation of such attacks against the ac-
tivities of a given organization. Next, we survey some representative works in
the related literature. Table 2 summarizes our survey.

Table 2: Related work with a focus on operational impact assessment.

References Contribution Methodology Metrics

– Liu et al. [11],
(2017)

– Layered-graphical
modeling

– Impact quantifiers

– Calculate the impact
score (from NIST
NVD)

– Assign weight to mis-
sions

– Map LEGs (Logical
Evidence Graph) to
BPDs (Business Pro-
cess Diagram)

– Compute cumulative
mission impact

– CMI (short
for Cumula-
tive Mission
Impact)
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– Cao et al. [2],
(2018)

– Extend Ref. [19] via
CVSS

– Implement a tool
that automatically
generates an inter-
connected graph
(interconnects the
attack graph and the
entity dependency
graph) and compute
the impact scores of
an attack on tasks

– Assess attack impact
via business processes

– Generate the inter-
connected graph

– Prune the intercon-
nected graph

– Compute the impact
score based on the
CVSS score

– Impact
Scores

– Musman et
al. [17], (2011)

– Assess the impact of a
cyber attack on a mis-
sion

– Compute the im-
pact (by measuring
the measures of
effectiveness)

– Model creation
– Compute metrics by

simulating system’s
mission under differ-
ent initial conditions

– Categorize attack ef-
fects into categories
and modify the mis-
sion simulation de-
pending on the cate-
gory of the attack

– Compute attack im-
pact as the difference
between nominal vs.
system under attack

– MoE (Mea-
sures of Ef-
fectiveness)

– Jakobson [10],
(2011)

– Assess the impact of
cyber attacks

– Compute impact
propagation

– Compute direct at-
tack impact

– Compute nodes’ im-
pact propagation

– Assess the impact of a
cyber attack on a mis-
sion

– POC (Per-
manent
Operational
Capacity)

– OC (Op-
erational
Capacity)
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– Barreto et
al. [6], (2013)

– Evaluate the mission
impact

– Mission modeling
– Collection of cyber

and mission situation
awareness & cyber
impact assessment

– Cyber-
ARGUS
Framework
Metrics

– Mukherjee and
Mazumdar [16],
(2019)

– Modeling the busi-
ness process

– Compute the Security
Concern metric

– Identify the vulnera-
bilities

– Analyze the possibil-
ity of exploiting vul-
nerabilities (by com-
paring the max Effort
with the minimum ef-
fort for exploiting a
vulnerability)

– Compute the impact
on data items and
software instances

– Compute the impact
on activities and
information items
(estimated from
the impact on data
items and software
instances)

– Calculate the Secu-
rity Concern

– Security
Concern

– Motzek et
al. [9, 13–15],
(2015–2018)

– Define a mathemati-
cal model for mission
impact modeling

– Assess the mission
impact

– Use the Monte-Carlo
approximation to
compute the condi-
tional probability:
• Find paths lead-

ing to external
shock events

• Monte-Carlo sim-
ulation

– Conditional
Probability
Metrics

Liu et al. [11] illustrate the utility of a layered graphical model which has
three layers: the upper layer, the middle layer and the lower layer that, on the
one hand, model the tasks and missions and their inter-dependencies, and on
the other hand, construct the attack scenarios and their inter-relationships in
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order to compute the impact of attacks on missions. Cao et al. propose in [2]
a method to assess the impact of attacks on business process by generating an
interconnecting graph from the attack graph showing the possible attack paths
from the vulnerabilities to the target, and the entity dependency graph that
contains three layers: asset layer, service layer, and business process task layer,
as well as the dependencies between these three layers and on each individual
layer, and calculating the impact score of the attack on the tasks that compose
a business process. Musman et al. [17] compare the measures of effectiveness
for the simulation of a mission under baseline conditions and the measures of
effectiveness for the simulation of a mission under attack to evaluate the impact
of an attack on a mission. The impact evaluation in this paper was based on
mission models created using BPMN.

Jakobson [10] presents the impact assessment of a cyber attacks on missions
by using the impact dependency graphs. In this paper, he presents a framework
that quantifies the impact of attack on directly attacked assets and also cal-
culates the cyber attack impact propagation through the nodes of the Impact
Dependency Graph using operational capacity. Mukherjee and Mazumdar [16]
provide a hierarchical model of a business process, and the metric security con-
cern which is introduced as a new metric for measuring the security of a business
process. This metric represents the impact on the business process of vulnera-
bility exploitations in the context of a threat scenario.

Barreto et al. [6] propose the cyber argus framework, which helps to under-
stand how to assess the impact of a cyber attack on missions and which critical
assets contribute the most to accomplish the tasks performed in a mission. In
their work, the mission model is designed using BPMN. To avoid developing
the mission ontology from scratch, Cyber-argus integrates the previous work of
D’Amico et al. [5] and Matheus et al. [12] into its own architecture. Motzek et
al. present in [9,13–15] a mathematical mission impact assessment model. Their
model takes into account external shock events. Their contribution includes a
probabilistic graphical model, which is generated from mission and resource de-
pendencies. In the sequel, we present a novel contribution expanding the work
of Motzek et al., specifically, expanding the theoretical background for the Busi-
ness Logic Modeling in [13, 14]. We also expand the approach, by generating a
novel resource dependency model and automating the update of dependencies
between technical assets and impact values.

3 Operational Assessment using Business Logic Modeling

To further improve the assessment of the operational impact of external events
associated to organizational missions, we assume the need of adding business
logic to describe the interdependencies between technical assets to those other
business functions and processes. Hence, we extend previous work in Refs. [9,
13–15] with a novel Business Logic Model (BLM). More precisely, a new mission
dependency model is derived, including the use of a novel resource dependency
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model. A more detailed description of the two models, as well as an example of
the BLM of an Online Shopping company, are provided next.

3.1 Resource Dependency Model

The resource dependency model represents dependencies between assets. These
dependencies are defined using a traffic matrix that quantifies the amount of
data exchanged between each pair of assets. The traffic matrix can be generated
from, e.g., NetFlow data [4], representing network traffic flows (i.e., datagrams in
packet-switched network) collected from routers. The matrix is eventually pro-
cessed to build a probability matrix, which contains conditional impact proba-
bilities. The list of assets in the resource dependency model and the amount of
data exchanged between assets can be retrieved and updated periodically (for
instance, every 24 hours).

A4. Order 
Processing 
& Shipping 

System

A2. Order 
Management 

Server

A1. Web 
Server

A3. Server 
Manager

0.5
6

0.64

0.72

0.36

0.28

0.5
2

0.26

0.22

0.10

0.34

Fig. 1. Resource dependency model example. It provides a high-level representation
of the interactions and dependencies between four different technical assets of the or-
ganization, depicted as vertices A1 (Web Server), A2 (Order Management Server),
A3 (Server Manager), and A4 (Order Processing & Shipping System). The edges rep-
resent the interdependencies between assets. For a bidirectional impact, the value of
the forward impact probability is colored in dark blue, and the value of the backward
probability is colored in light blue. For instance, the impact probability from A1 to A3
is 0.72. The impact probability from A3 to A1 is 0.26.
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Table 3. Matrix associated to the resource dependency model depicted in Figure 1.

A1 A2 A3 A4

A1 0.0 0.56 0.72 0.64

A2 0.52 0.0 0.28 0.36

A3 0.26 0.10 0.0 0.0

A4 0.22 0.34 0.0 0.0

Figure 1 depicts an example of our resource dependency model. We assume it
is obtained from the probability matrix shown in Table 3. The example contains
four representative assets (identified as A1. Web Server, A2. Order Management
Server, A3. Server Manager and A4. Order Processing & Shipping System) and
their interdependencies. Interdependencies between assets are represented by the
edges. For a bidirectional impact, the value of the forward impact probability
is colored in dark blue, and the value of the backward probability is colored in
light blue. For example, the impact probability from A1 to A2 is 0.56, and the
impact probability from A2 to A1 is 0.52.

3.2 Mission Dependency Model

The mission dependency model describes the interdependencies between business
functions and processes, as well as the assets that directly support business
functions. A Business Process Model Notation (BPMN) model and expertise
in the business activity of a company are needed to derive the list of business
functions and processes and build the mission dependency model. The mission
dependency model can be built manually, using such an expert knowledge from
the company’s business activities.

Table 4. Mission Dependency Model.

BF1 BF2 BF3 BF4 BF5 BF6 BP1 BP2 BC

A1 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A2 0.0 0.76 0.61 0.0 0.0 0.0 0.0 0.0 0.0

A4 0.0 0.0 0.0 0.67 0.48 0.41 0.0 0.0 0.0

BF1 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.0

BF2 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0

BF3 0.0 0.0 0.0 0.0 0.0 0.0 0.72 0.52 0.0

BF4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.47 0.0

BF5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.42 0.0

BF6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.56 0.0

BP1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.68

BP2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.72

BC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Fig. 2. Mission dependency model. It contains business functions, business processes,
and assets directly supporting the business functions. The model also describes the
interdependencies between those elements. In the depicted example, the model contains
three assets (A1. Web Server, A2. Order Management Server and A4. Order Processing
& Shipping System) that have a direct link with six business functions (from BF1.
Search Product to BF6. Order Shipping), two business processes (BP1. Place Order
and BP2. Order Picking & Shipping) and the global business of the company (BC.
Online Shopping).
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Figure 2 shows an example of a mission dependency model. The model is gen-
erated from the matrix in Table 4, containing the impact probabilities. The ex-
ample contains the interdependencies between business functions and processes,
as well as the assets that directly support business functions. In this example,
we can see that three of the initial assets already identified in the resource de-
pendency model (cf. Figure 1, assets A1. Web Server, A2. Order Management
Server, and A4. Order Processing & Shipping System) have a direct link to six
business functions (BF1. Search product, BF2. Payment, BF3. Register Order,
BF4. Confirm Order, BF5. Process Order and BF6. Order Shipping). We can
also see their link to two representative business processes (BP1. Place Order
and BP2. Order Picking & Shipping) and one business company (identified as
BC. Online Shopping), that represents the most important business function in
the company.

The mission dependency model describes the dependencies between business
processes and business functions, as well as between the business functions and
the technical assets that directly support them. In Figure 2, the first asset (A1.
Web Server) may have an impact on one business function (BF1. Search Prod-
uct). Similarly, the second asset (A2. Order Management Server) may have an
impact on two business functions (BF2. Payment and BF3. Register Order).
Finally, the last asset (A4. Order Processing & Shipping System) can have an
impact on three business functions (BF4. Confirm Order, BF5. Process Order
and BF6. Order Shipping). Figure 2 also shows how business functions may im-
pact business processes (e.g., impact of BF1 over BP1, and BF3,BF4 over BP2 ).
It also shows that business processes BP1 and BP2 may have an impact on the
company’s mission (identified in our example as BC ).

3.3 BLM Generation

Once the resource dependency model and the mission dependency model have
been generated, they get fused into a single adjacency matrix representing the
business logic model. The adjacency matrix generated from Tables 3 and 4 is
summarized in Table 5.

Figure 3 represents the probability graph of the Business Logic Model built
from the adjacency matrix associated to Table 5. The graph includes assets,
business functions and processes, and the business company. It also depicts the
dependencies between the different nodes on the graph. Figure 3 depicts the
probability graph of the business logic model. This graph aims to help security
experts to understand the impact of the attack and its propagation within the
resources of an organization. Figure 4 displays the temporal graph associated
to our business logic model, but highlighting the downtime tolerances instead of
conditional probabilities.

As shown in Table 5, the business logic model requires an adjacency matrix
presenting the interdependencies between the different nodes and containing
the impact probabilities. Another adjacency matrix is required to provide the
downtime tolerances between the nodes. The downtime tolerance represents an
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Fig. 3. Business Logic Model with conditional impact probabilities. This model rep-
resents the probability graph of the business logic model and it is generated from
the resource dependency model and the mission dependency model. It includes assets,
business functions and processes, business company, as well as dependencies between
nodes, and contains the impact probabilities.
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Fig. 4. Business Logic Model with downtime tolerances. This model represents the
temporal graph of the business logic model and it is generated from the Business Entity
downtime tolerance matrix and the Inter-asset downtime tolerance matrix. It includes
assets, business functions and processes, business company, as well as dependencies
between nodes, and contains the downtime tolerances.
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Table 5. Complete adjacency matrix with conditional impact probabilities.

A1 A2 A3 A4 BF1 BF2 BF3 BF4 BF5 BF6 BP1 BP2 BC

A1 0.0 0.56 0.72 0.64 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A2 0.52 0.0 0.28 0.36 0.0 0.76 0.61 0.0 0.0 0.0 0.0 0.0 0.0

A3 0.26 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A4 0.22 0.34 0.0 0.0 0.0 0.0 0.0 0.67 0.48 0.41 0.0 0.0 0.0

BF1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.0

BF2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0

BF3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.72 0.52 0.0

BF4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.47 0.0

BF5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.42 0.0

BF6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.56 0.0

BP1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.68

BP2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.72

BC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

estimation of how long the business functions or processes can be impacted with-
out propagating the operational impact to other business entities. The adjacency
matrix with downtime tolerances building the temporal graph depicted in Fig-
ure 4 is generated from the Business Entity downtime tolerance matrix and the
Inter-asset downtime tolerance matrix. The Business Entity downtime tolerance
matrix is presented by the same graph as the mission dependency model shown
in Figure 4, but it displays the downtime tolerances instead of the impact prob-
abilities. This model is also built manually because it requires knowledge of the
company’s business activities.

The inter-asset downtime tolerance matrix is presented by the same graph as
the resource dependency model, shown in Figure 3, but highlighting the inter-
asset downtime tolerances instead of the conditional impact probabilities. The
inter-asset downtime tolerances values are set to 10% of the minimum interde-
pendency value between the business entities, since the impact propagation delay
between the assets is considered to be much lower than the impact propagation
delay between the business entities. For instance, in our examples, the minimum
interdependency value between the business entities could be set to 1.2 hours
(or any other representative value extracted from the Business Entity downtime
tolerance matrix) and the inter-asset downtime tolerances to 0.12 hours.

4 Implementation of our Approach

A proof-of-concept tool, hereinafter referred to as the Business Impact Analyser
(BIA), is available on a companion code repository∗. This tool implements all
the concepts and models of our contribution. Next, we detail some additional

∗A companion git repository with the code of the Business Impact Analyser (BIA)
tool is available at https://gitlab.com/tsp-soccrates-components/bia

https://gitlab.com/tsp-soccrates-components/bia
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functionalities that have been included in the BIA tool, as well as an evaluation
of performance and scalability associated to the tool.

4.1 Business Impact Analyser Functionalities

In addition to the business logic formalism underlying our contribution, the
following additional functionality is also included in our models:

– Monitoring of assets criticality.
– Impact probability of shock events affecting business functions and processes.
– Monitoring of critical time.

Assets Criticality One of the tasks performed by the BIA tool is identifying
the critical assets in the company. To identify the assets that contribute the
most to the propagation of impacts on business functions and processes, our tool
computes the value of the impact probability on the Business Company (BC)
node when a shock event occurs on this asset with a local conditional probability
equal to 1. The criticality value is between 0 and 1, in which 0 indicates that this
asset has no impact on the BC, and 1 indicates that the impact of the attack is
very high.

Impact Probability The existence of an external event may have an impact on
the business functions and processes. To estimate how the impact of this external
event will propagate in the architecture and to assess the impact propagation
of this shock event to the missions, we compute the impact probability, which
represents the degree to which this shock event impacts the missions. In order to
assess the impact probability of a shock event on the missions, we implemented
the Monte-Carlo approximation.

We have implemented the Monte-Carlo approximation to randomly explore
the business graph a certain number of times (ntimes), while counting the num-
ber of times each node has been impacted by the shock events, which we want
to assess their impacts on business entities. The steps of one graph exploration
are defined as follows:

1. Initiate a queue Q, with the input list of Shock Events.
2. Explore node n, from Q.
3. For each edge of node n, try the impact probability of the edge by drawing a

random number. If the drawn number is lower than the probability of impact
of the tested edge, then the node at the other end of the edge is considered
as impacted. If a node is impacted and was never added to Q, then add it
to Q, and increase the impact counter for this new node.

4. While Q is not empty, repeat from Step 2.

The approximated impact probability is computed by taking the mean of the
impact counter, i.e., Impact Probability gets as value Impact Counter divided by
ntimes.
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Critical Time The critical time represents the time when an impact to a
business process or function will not have a significant operational impact on
the company. To compute the critical time, we built the business logic model
with the downtime tolerances, which is an estimate of how long the business
functions or processes can be impacted without propagating the operational
impact to other business entities. The Dijkstra algorithm is used to find the
shortest path from the shock event to the Business Company and compute the
critical time, which is equal to the sum of the downtime tolerance values between
the nodes in the shortest path.

4.2 Applying the Functionalities

In this section, we show how to apply All the aforementioned functionalities over
our contribution, in the example shown in Section 3.3, Table 5. The results of
applying the functionalities are described next.

– Assets Criticality Computation — Figure 5 shows the probability graph
after calculating the criticality of assets. Three levels of criticality have been
configured to help the operator identify the assets that contribute the most
to the propagation of impacts on the business entities. The criticality value
is displayed in orange above each Asset node. According to this value, the
assets are colored:

- In red: The most critical asset is A2. Order Management Server.
- In orange: The medium critical assets are A1. Web Server and A4. Order
Processing & Shipping system.

- In green: The low critical asset is A3. Server Manager.

– Impact Probability Computation — Figure 6 displays the probability
graph after the computation of the impact probability of a shock event on
the business entities.
The shock event is given as input in this format: (Name of the shock event,
target asset, impact probability). In this example, it is presented by: (Shock
Event, Order management server, 0.84).
After calculating the impact probability of this shock event on the business
business, our tool displays the impact probability above each mission and
according to the calculated values, it displays the missions in three colors:

- In red: The business impact of this shock event on the business process
BP1. Place Order is high.

- In orange: The business impact of this shock event on the business func-
tions BF2. Payment and BF3. Register Order, the business process BP2.
Order Picking & Shipping and the business company BC. Online Shop-
ping is moderate.

- In green: The business impact of this shock event on the business func-
tions BF1. Search Product, BF4. Confirm Order, BF5. Process Order
and BF6. Order Shipping is low.
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Fig. 5. Asset criticality computation. The computation of the criticality of assets aims
to identify the most critical assets in the architecture. In this graph, the most critical
asset, which is colored in red, is A2. Order Management Server.
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Fig. 6. Impact probability computation. The impact probability computation is per-
formed on the probability graph using the Monte-Carlo approximation. This graph
shows the impact of the Shock Event targeting A2. Order Management Server on the
business entities. The most impacted business entity in this graph, which is colored in
red, is the business process BP1. Place order.
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– Critical Time Computation — Figure 7 shows the temporal graph after
the critical time has been calculated. Our tool calculates the critical time
value and displays the shortest path as a dotted line from the shock event to
the business company. In this example, the shortest path is: Shock Event ->
A2. Order Management Server -> A4. Order Processing & Shipping System
-> BF5. Process Order -> BP2. Order Picking & Shipping -> BC. Online
Shopping and the critical time, which is the sum of the downtime tolerances
between the nodes in the shortest path, is equal to 5.02 hours.
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Fig. 7. Critical time computation. The critical time is calculated using Dijkstra’s al-
gorithm. The algorithm first finds the shortest path between the shock event and the
Business Company BC. Online Shopping, and then calculates the critical time, which
is equal to the length of the shortest path. The shortest path is displayed in dotted,
and the critical time is equal to 5.02 hours.
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4.3 Scalability Evaluation

In this section, we evaluate the scalability of our proof-of-concept tool†. We
evaluate the main computations conducted by the tool, to estimate the time
required to compute the criticality of assets of a representative example. The
tool is implemented using Python REST (Representational State Transfer) APIs
and the following external libraries: NetworkX‡, NumPy§, Uvicorn¶, FastAPI‖

and Pandas∗∗. The evaluation is conducted on a 3-core CPU system, with 3 GB
of memory and 20 GB of storage.

Table 6. Time spent to compute the criticality of assets depending on the number of
assets and edges. This table shows the different tests performed by our tool, as well
as the time required for each test to calculate the criticality of assets. To distinguish
the edge density in the graph, three colors are used. The black rows indicate that
for these tests, all assets communicate with each other, which means that all assets
send and receive data. The orange rows indicate that for these tests, half of the assets
communicate with each other, and the rest of assets only receive data. The green rows
indicate that for these tests, only a quarter of assets communicate with each other, and
the rest of assets only receive data.

# of Assets # of Edges
Computation Time

(in seconds)

Computation Time

per Asset (in seconds)

50 2 450 1.96 0.039
50 1 224 1.09 0.021
50 613 0.69 0.013
250 62 250 24 0.095
250 31 124 12.2 0.048
250 15 562 6.45 0.025
1 000 999 000 197.6 0.197
1 000 499 500 101.9 0.101
1 000 249 750 52.4 0.052

Table 6 displays the results of various tests run by our tool with various
models and numbers of assets and edges. It also displays the different tests
performed by our tool and the time required to calculate the criticality of assets
for each test. Each line of this table presents a test, with the size of the graph
and the time required to compute the criticality of assets. The first and second
columns display the number of assets and edges in the graph. The third column

†Available at https://gitlab.com/tsp-soccrates-components/bia
‡https://networkx.org/
§https://numpy.org/
¶https://www.uvicorn.org/
‖https://github.com/tiangolo/fastapi

∗∗https://pandas.pydata.org/

https://gitlab.com/tsp-soccrates-components/bia
https://networkx.org/
https://numpy.org/
https://www.uvicorn.org/
https://github.com/tiangolo/fastapi
https://pandas.pydata.org/
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shows the time required to calculate the criticality of all assets, and the fourth
column shows the time required to calculate the criticality of one asset. For
example, for a graph with 50 assets and 2450 edges, our method calculates the
criticality of these 50 assets in 1.96 seconds. Several tests were performed with
different edge densities. Three colors are used to differentiate the edge density
in the graph:

– Black: all assets in the graph communicate with each other, which means
that all assets send and receive data.

– Red: half of the assets in the graph communicate with each other, and the
rest of the assets only receive data.

– Green: a quarter of the assets in the graph communicate with each other,
and the rest of the assets only receive data.

Fig. 8. Dependency between computation time and size of the graph. This plot shows
the dependency between the time required to calculate asset criticality and the size of
the graph. For example, for a graph with 1224 edges, our tool calculates the criticality
of assets in 1.09 seconds.

Figure 8 displays the dependency between the computation time and the
number of edges in the graph. The time required to compute the criticality of
assets increases with the number of edges. F.i., the computation time for a very
large graph with 1000 assets and 999000 edges is less than four minutes. These
results confirm that our tool can perform computations in a reasonable time.

To sum up, we have presented in this section a practical implementation of
our contributions in Section 3, in a proof-of-concept tool. We have validated
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how to quantify the operational impact of shock events on a company’s business
entities using a representative example. One of the limitations of our work is the
automation of models generation, for instance, the mission dependency model.
Future research directions to address this limitation is discussed next.

5 Future Directions for Research

The mission dependency model is built manually because there is no easy method
for automating the generation of this model. The generation of the mission de-
pendency model requires defining the list of business functions and business
processes, as well as the interdependencies between them. In order to define the
list of the business functions and processes of the company, a lot of work needs
to be done to derive these functions and processes from the Business Process
Model and Notation (BPMN) model.

In addition to the difficulty of retrieving the list of business nodes, a high
level of expertise is necessary to determine the relationships and the weight of
dependencies between business nodes. In other words, and in addition to using
BPMN, an expert knowledge on the business activities is also required to build
manually the mission dependency model.

Building the mission dependency model can make it difficult to keep the
model up to date if the business activity of the company changes. Defining and
implementing a standard model capable that can automate the generation of
the list of business nodes from the BPMN as well as evaluating the relationships
and dependencies between these nodes would improve the reliability of our model
without requiring a high level of expertise and skills in business aspects.

Downtime tolerance represents an estimate of how long the business functions
or processes can be impacted without propagating the operational impact to
other business entities. Computing the critical time using a dynamic downtime
tolerances is considered a contribution for further research, which means that the
values of the dependencies between the business entities, which are the downtime
tolerances, are dependent on the time of the occurrence of the attack on the
technical asset. For example, if a technical asset that supports business functions
is targeted by an attack during the night, the propagation of the operational
impact may not be very significant since these business functions may not be
very necessary during the night. Thus, the downtime tolerance should be much
longer than the downtime tolerance if the attack took place during the day when
these business functions are very necessary to the company’s activity.

Finally, a research work could be conducted on the quantification of the oper-
ational impact of attacks on business entities when the company has a redundant
technical assets, which means the redundant asset will replace the asset targeted
by the attack and perform its tasks, and in this case the operational impact will
be very low on the business entities of the company.
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6 Conclusion

In this chapter, we have surveyed existing methods aiming to assess the impact
of external events on business entities. We have started our study with a focus
on two main families: financial and operational impact assessment.

We have also presented a practical contribution for assessing the operational
impact of attacks targeting the infrastructure assets and affecting the execution
and performance of the company’s activities. We have provided detail on a novel
method to assess the operational impact of shock events on a company’s business
entities, based on adding to previous contributions a new business logic model.
The new model enables the assessment of impact probabilities associated to
external events on missions and the calculation of critical time, as well as the
computation of the criticality of technical assets, that helps security analysts
to identify the most critical assets. Our model have been tested and validated
on realistic use cases and real data provided by stakeholders in a practical tool.
The code of the tool is available online. We have also evaluated and validated
the scalability of the computations performed by our tool, via several tests with
different business logic models and on large graphs, and all of the tests performed
show that our tool is able to perform computations and provide mission impact
assessment in a reasonable time.

In terms of future research, we have pointed out to further automation in
the generation of the mission dependency models, as well as the necessity to
further assess the operational impact of external events against missions when a
company has redundant assets, and further contribution to better compute the
critical time using a dynamic downtime tolerances.

Acknowledgments — Authors acknowledge support from the European Com-
mission (Horizon Europe projects SOCCRATES and AI4CCAM, under grant
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