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Abstract—We consider the problem of path congestion avoid-
ance in networks of quantum repeaters and terminals. In other
words, the avoidance of situations when demands exceed capacity.
We assume networks in which the sets of complete paths
between terminals may affect the capacity of repeaters in the
network. We compare the reduction of congestion avoidance of
two representative path establishment algorithms: shortest-path
establishment vs. layer-peeling path establishment. We observe
that both strategies provide an equivalent entanglement rate,
while the layer-peeling establishment algorithm considerably
reduces the congestion in the network of repeaters. Repeaters in
the inner layers get less congested and require a lower number
of qubits, while providing a similar entanglement rate.

Index Terms—Quantum network, quantum communication,
quantum repeater, entanglement swapping, entanglement rout-
ing, entanglement distribution

I. INTRODUCTION

Quantum networking aims at routing and forwarding of
quantum information from one node to another. Envisioned
applications include distributed quantum computing in general
and more specific domains such as distributed quantum ma-
chine learning. In future quantum networks, it is foreseen that
quantum teleportation and quantum repeaters [1], [2], [3] will
be key building blocks [4], [5], [6]. Teleportation is a protocol
devised to transfer a qubit from one location to another,
but they must share entanglement [7]. When connected by
a quantum channel, entanglement can be directly established
between two locations. If not, then entanglement distribution
is required. Entanglement distribution relies on entanglement
swapping [8]. Leveraging entanglement distribution, possibly
with purification and error correction, quantum repeaters are
the network elements envisioned for routing in quantum net-
works [9].

In a quantum network consisting of repeaters and termi-
nals, we are interested in analyzing the capacity required at
repeaters by paths connecting all pairs of terminals. We in-
vestigate the following specific question: What is the required
quantum memory size (in qubits) in repeaters to interconnect
all terminals with each other?

We define a quantum network model, making the distinc-
tion between repeaters and terminals. Interconnected repeaters
achieve the core of the networks while terminals are on its
periphery. We assume that all terminals need to be intercon-
nected with each other to exchange quantum data. We develop
lower and upper bounds for the required qubit memory size of
repeaters for general graphs and two-dimensional grid network
topologies. We define the layer peeling algorithm for routing
quantum connections. It is compared with shortest-path routing
w.r.t. congestion and entanglement rate.

Related work is reviewed in Section II. Our network model
in presented in Section III. Quantum networks with general
graph topologies are analyzed in Section IV. Two-dimensional
grid quantum networks are examined in Section V. We con-
clude with Section VII.

II. RELATED WORK

This article focuses on the quantity of quantum memory re-
quired by repeaters performing entanglement distribution. Pre-
sented in detail in Section III-B, our model is consistent with
the quantum repeater protocol used by several authors [10]. We
assume that repeaters build upon the entanglement swapping
operation [8], where quantum memory is required to store
qubits entangled with qubits stored in other network nodes.
An alternative is the all-photonic quantum repeater model of
Azume et al. [11], [12].

There are two related problems: entanglement routing and
entanglement distribution. Given a source and a destination,
entanglement routing finds a path connecting the two end-
points [13], [14], [15], [16]. Analogous to packet forwarding
in classical networks, entanglement distribution performs a
sequence of swaps to transfer a quantum state [17], [18],
[19]. Using the route between the source and destination,
entanglement swapping is executed step-by-step to transfer
quantum information between the two network end points. In
this context, it is reasonable to assume that repeaters are imper-
fect [10]. This translates to probabilities of entanglement pair
creation and entanglement swapping success. Entanglement
routing has been studied for specific network topologies. There
are works with a focus on linear [20], [21], [17], grid [15],
ring [19], [22] or sphere [19] topologies, in which the size
of the required quantum memory is related to the number of
neighbors that a repeater has.

In this article, we address issues related to qubit capacity
of repeaters, i.e., the required number of qubits that quantum
repeaters need to maintain entanglement between multiple
quantum network-edge terminals. The main issue is how to
select a set of paths that optimizes the capacity induced on the
graph representing a network of quantum repeaters and termi-
nals. Most of the past works study the entanglement generation
rate between two peers, over a quantum network. In contrast,
we study networks with multiple peers, a situation generating
multiple paths. In our model, the amount of required quantum
memory is proportional to the number of paths traversing a
repeater, see Definition 2. Several related papers use routing
metrics such as entanglement rate and shortest path. In this
paper, we assume that links are uniform and have the same
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entanglement rate. We show that the shortest path metric is
not the one that optimizes the capacity of a quantum network.

III. NETWORK MODEL

We present our quantum network and repeater models.

A. Topology Model
Consider a graph G with vertex set V and edge set E.

Assume that the set V of vertices is partitioned into two
distinct sets R and T such that V = R ∪ T . R is the set
of repeaters. T is the set of terminals. A graph G with its two

 

R

Fig. 1. Disk vertices are terminals in T . Squares are repeaters in R. Terminals
are directly connected to repeaters. A dashed line represents a path consisting
of repeaters; the endpoints of the path connect terminals.

sets of repeaters and terminals is denoted by G = (R, T,E),
see Fig. 1. An edge represents a bi-directional quantum
channel, which can be used to establish entanglement between
its two end-points. All repeaters and terminals have limited
quantum memory and can perform entanglement swapping,
see Section III-B. Consider the path p = v0, v1, . . . , vs−1, vs
of vertices in V such that the start and final vertices v0, vs
are terminals in T , while all its intermediate vertices vi ∈ R,
0 < i < s are repeaters in R. Note that such a path consists
of s+ 1 nodes two of which are terminals, namely v0, vs, and
s− 1 are repeaters, namely v1, v2, . . . , vs−1.

Definition 1 (Complete Set of Paths). A set P of paths is
called complete if for any two terminal pair t, t′ ∈ T there is
a path p = v0, v1, . . . , vs−1, vs ∈ P such that t = v0, t

′ = vs
and all intermediate vertices are repeaters in R.

We require that:
• terminal nodes are not adjacent to each other in the graph,
• every terminal node is adjacent to at least one repeater,

and
• repeater nodes can communicate directly with each other

if they are adjacent in the graph.

Definition 2 (Capacity of a Repeater). For a given complete
set of paths P in a graph G = (R, T,E) and any repeater
r ∈ R let the capacity of r, denoted by CP (r) be defined as
the number of paths p ∈ P that pass through r, see Fig. 2.

The intuition behind this definition is that the capacity of
a repeater is proportional to the number of qubits it must be
able to store, paired with entanglement, so as to make possible
communication between terminals.

Definition 3 (Capacity Induced by a Complete Set of Paths).
For a given complete set of paths P in a graph G = (R, T,E),

t0

t00

t1
t01

t2

t02

r

Fig. 2. The capacity of a repeater r is the number of paths that go through
r; in the picture this is equal to three. Note that the squares depict repeaters
(from the set R) and disks terminals (from the set T ).

the capacity of G = (R, T,E) induced by the complete set
of paths P is defined as the maximum capacity caused by
repeaters in R and is defined by the formula

CG(P ) := max
r∈R

CP (r) qubits, (1)

Let PG denote the set of complete sets of paths P for the
graph G = (R, T,E) of repeaters and terminals. When this is
easily understood from the context, we may omit the subscript
G from PG. Among the collections of complete set of paths
for the graph G, we are interested in minimizing the quantity
CG(P ), namely

min
P∈PG

CG(P ) = min
P∈PG

max
r∈R

CP (r) qubits, (2)

where the minimum is taken over the set PG of all possible
complete sets of paths P for the graph G = (R, T,E).

The main problem arising concerns the capacity caused
by connecting all pairs of terminals by paths consisting of
repeaters. We are aiming for an algorithm that defines the set of
paths P and at the same time minimizes the resulting capacity
induced on the graph. The main problem can be described as
follows.

Problem 4. Given a graph G = (R, T,E) whose set of
repeaters is R and set of terminals is T , find a complete
set of paths P that attains or approximates the quantity
minP∈PG

CG(P ).

This capacity is to be interpreted as the number of qubits
the repeaters would need to store so as to make possible
communication between terminals using qubits.

B. Repeater Model

In this sub-section, we describe a model of quantum re-
peaters. Acknowledging their imperfection, we define a qubit
error model. Next, we explain the use of purification to
improve the fidelity of quantum data. Finally, we discuss
entanglement swapping, the main functionality of a quantum
repeater, and the associated cost in terms of quantum memory.
Entanglement swapping establishes Bell-EPR pairs between
them, which in turn enables teleportation of quantum data
between terminals, and eventually other operations.

The basic purification procedure deals with errors in qubit
pairs, see Chapter 8 in [5]. Let us consider a simple error



model in which solely single qubit errors are relevant.1 For
example, in the following pair, as for any Bell-EPR pair

|ψ〉 =
|00〉+ |11〉√

2
. (3)

when both qubits are inverted, the errors are cancelled, the
term |00〉 becomes |11〉 and vice versa. However, the presence
of a single qubit error results into the pair

|φ〉 =
|01〉+ |10〉√

2
. (4)

Let us say the first qubit flips, the term |00〉 becomes |10〉
and the term |11〉 becomes |01〉. Note the result is the same
when the second qubit flips. Let β ∈ [0, 1] be the probability
of a single qubit inversion error. The probability of no error,
denoted as α, is then equal to 1 − β. The error model is
represented as the quantum state

√
α |ψ〉+

√
β |φ〉 . (5)

The concept of fidelity refers to the degree of resemblance
of a quantum state to its original value. Errors affect fidelity.
The establishment of high fidelity Bell-EPR pairs between
nodes is a core quantum networking functionality. Purification
is a procedure executed between two nodes, Alice and Bob,
to achieve fidelity. It is assumed that they share two Bell-
EPR pairs |ψ〉A and |ψ〉B . During the purification process,
one pair is sacrificed for the benefit of increased fidelity in
the other. Let the pairs |ψ〉A and |ψ〉B both be defined as
|Φ+〉 = |00〉+|11〉√

2
. From the pair |ψ〉A, the first qubit |ψ1〉A is

dispatched to Alice. The second qubit |ψ2〉A is dispatched to
Bob. From the pair |ψ〉B , the first qubit |ψ1〉B is dispatched to
Alice. The second qubit |ψ2〉B is dispatched to Bob. During
the dispatch, qubit errors can be introduced. Therefore, Alice
gets a pair |ψ′1〉A |ψ′1〉B . She applies a CNOT gate yielding
the pair

|φ〉 = CNOT (|ψ′1〉A |ψ
′
1〉B) .

Similarly, Bob gets a pair |ψ′2〉A |ψ′2〉B . He applies a CNOT
gate yielding the pair

|σ〉 = CNOT (|ψ′2〉A |ψ
′
2〉B) .

Alice measures her second qubit, i.e, |φ2〉, resulting into a
classical bit (cbit) z1. Bob measures his second qubit, i.e, |σ2〉,
yielding cbit z2. Using classical communications, Alice and
Bob compare the values of z1 and z2. When they are equal, it
is concluded that the pair |φ1〉 |σ1〉, i.e., the first qubits of |φ〉
and |σ〉, has been purified and corresponds to the state |Φ+〉.
It is used. When z1 and z2 are different, it is concluded that
the pair |φ1〉 |σ1〉 is not equal to |Φ+〉. Purification failed. The
pair |φ1〉 |σ1〉 is rejected.

There are four possible purification outcomes. When z1 is
equal to z2, there are two cases. There are no errors and both
pairs are in state |ψ〉 (Equation (3)). Or, both pairs are in error
and in state |φ〉 (Equation (4)). The probability of the former
case is α2. Purification has been conducted with success. The
probability of the latter case is β2. The errors are undetected.
Purification wrongly concludes with success. When z1 and z2
are different, it is because there is a qubit error in one of the

1Other more advanced error models are available in the related literature,
and could be considered in future work.

pairs. Either pair |ψ′〉A or pair |ψ′〉B is in state |φ〉, but not
both. The probability for the first or second pair to be in error
is αβ. In both cases, the error is detected. Purification fails.
The pair |φ1〉 |σ1〉 is not used.

In this setting, as a function of the error probability β,
fidelity becomes equivalent to the probability of the absence
of errors when purification concludes with a positive result,
that is:

f(β) =
α2

α2 + β2
with α = 1− β (6)

We assume that adjacent nodes, repeaters and terminals,
can use direct communications to establish entanglement. A
quantum repeater establishes a Bell-EPR pair between two
repeaters, two terminals or a repeater and a terminal that are
distant, i.e., no adjacent. The fidelity of the Bell-EPR pair may
be increased with purification. The terminals do not need to
share a priori a Bell-EPR pair. Each terminal however, needs
to share a Bell-EPR pair with a third-party repeater that plays
a hub role. To create entanglement between the two parties, a
repeater uses entanglement swapping. Fig. 3 pictures a circuit
for entanglement swapping. There are three network nodes
involved: a source, an intermediate and a destination. The
top- and bottom-left rectangles represent two Bell-EPR pair
production sub-circuits. Because the two input qubits to these
sub-circuits are both |0〉, the Bell-EPR pairs that are produced
are both |Φ+〉. One qubit of the first Bell-EPR pair (top-line)
is dispatched to the source. The other qubit of this first Bell-
EPR pair (second line) is dispatched to the intermediate. One
qubit of the second Bell-EPR pair (third line) is dispatched to
the intermediate. The other qubit of this second Bell-EPR pair
(bottom-line) is dispatched to the destination. The sub-circuit
enclosed in the large rectangle on the right does Bell-EPR
measurement preparation and measurement. The behavior rep-
resented by this sub-circuit is performed by the intermediate.
The intermediate dispatches the two cbits resulting from the
measurement to the destination. According to the values of
these cbits, the destination determines if application of Pauli
gates X and Z must be done. The final result is an end-to-end
Bell-EPR pair |Φ+〉 shared between the source and destination.
The fidelity of this pair can be improved with purification.
Once purified, the end-to-end Bell-EPR pair may be used to
teleport a data qubit.

Several swapping operations can be used to establish en-
tanglement between two distant terminals. It is required that
dedicated memory is used to support each path. Using a rout-
ing algorithm, a path p = v0, v1, . . . , vs−1, vs must be chosen,
where v0 and vs are the source and destination while s denote
the length of the path, i.e., |p|. Entanglement is established
stage by stage. For the sake of simplicity, let us assume that
s is a power of two. Firstly, for i = 0, 2, 4, . . . , s − 2, using
vertex vi+1 as intermediate, entanglement swapping operation
creates an entangled pair between vertices vi and vi+2. Next,
for i = 0, 4, 8, . . . , s − 4, using vertex vi+2 as intermediate,
entanglement swapping creates an entangled pair between
vertices vi and vi+4. Each iteration doubles the length of the
segment bridged by a pair. In log2 s iterations, an entangled
pair is created between vertices v0 and vs.

Lemma 5. With error probability β and fidelity f = f(β),
the end-to-end fidelity across a path p = v0, v1, . . . , vs−1, vs
is fs.
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Fig. 3. Entanglement swapping.

Proof. The proof is by induction on the logarithmic (base two)
length of a path.
Basis Case: (log2 s is one). The path p consists of three
vertices v0, v1, v2. Using pairs between v0, v1 and v1, v2 of
fidelity f , intermediate v1 establishes two qubit pairs between
v0, v2. They are purified into a single qubit pair of fidelity
f2 = fs.
Inductive Step: (log2 s is greater than one). Assume that
for i = log2 s fidelity is f2

i

is achieved for a qubit pair
between vertices v0, v2i . Let log2 s be equal to i + 1. The
path consists of the vertices v0, . . . , v2i , . . . , v2i+1 . Using pairs
between v0, v2i and v2i , v2i+1 of fidelity f2

i

, intermediate v2i
establishes two pairs between v0, v2i+1 . They are purified into
a single pair of fidelity f2

i

f = f2i+1 = fs.

Definition 6. Let MP (r) denote the memory size in qubits of
a repeater r to satisfy the demands of a complete set of paths
P in the graph G = (R, T,E).

Lemma 7. Assuming that dedicated memory is used to support
each path, for any graph G = (R, T,E) of repeaters and
terminals and any complete set of paths P the required
quantum memory size of a repeater r is equal to the sum
of the lengths of the paths going through r, that is,

MP (r) =
∑

p∈CP (r)

|p| qubits.

Proof. It is shown by induction on the logarithmic (base two)
length of a path that the required number of qubits is |p|.
Basis Case: (log2 s is one). A path p consists of three vertices
v0, v1, v2. Using two entangled qubit pairs between v0, v1
and two entangled qubit pairs between v1, v2, two entangled
qubit pairs are created between v0, v2, purified into a single
entangled qubit pair. Every vertex needs storage for two qubits.
Inductive Step: (log2 s is greater than one). Assume that for
log2 s = i, i qubit storage is needed by every node to create an
entangled pair between vertices v0, v2i . Let s be equal to i+1.
The path consists of the vertices v0, . . . , v2i , . . . , v2i+1 . Using
two entangled qubit pairs between v0, v2i and two entangled
qubit pairs between v2i , v2i+1 , two entangled qubit pairs are
created between v0, v2i+1 , purified into a single entangled

qubit pair. The first two pairs require both 2i qubits, for a
total of 2i+1 = s qubits.

IV. GENERAL GRAPHS

Clearly, the collection of paths P selected affects the
quantum memory required at repeaters. In particular, there is
a tradeoff between the lengths of the paths in P (required
to optimize routing between pairs of terminals) and resulting
quantum memory at the repeaters. Undoubtedly, some collec-
tions of paths may be better than others thus yielding different
tradeoffs. To quantify such tradeoffs, we investigate upper and
lower bounds for the capacity CG(P ) induced by a complete
set P of paths and quantum memory required by a repeater
MP (r), thus pointing to optimal path sets P ∈ P .

A. Lower Bound

A simple general lower bound indicating the relation be-
tween the capacity and respective sizes of the sets of terminals
and repeaters is established by the following lemma.

Lemma 8. For any graph G = (R, T,E) of repeaters and
terminals (|T | > 1) and any complete set P of paths we have
that

CG(P ) ≥
⌈

1

|R|

(
|T |
2

)⌉
qubits.

Proof. By definition, for any pair of terminals there is a
path p in P connecting them, whose internal vertices are
repeaters. Therefore, at least

(|T |
2

)
paths must pass through

repeaters, assuming that a path between a pair of terminals
t, t′ is counted once. Since there are |R| repeaters, by the
pigeonhole principle2, there must exist a repeater r that is
traversed by at least 1

|R|
(|T |

2

)
such paths from the set P .

As a consequence, it follows that for some repeater r ∈ R,
CP (r) ≥

⌈
1
|R|
(|T |

2

)⌉
qubits.

The lower bound of Lemma 8 is sufficiently strong when
the number |T | of terminals is large with respect to the number

2The pigeonhole principle is the following statement: If we throw I items
in k bins, then there must exist a bin which has at least dI/ke items.



|R| of repeaters, otherwise it is weak. An immediate corollary
concerns the number of memory qubits at the repeaters.

Corollary 9 (Minimum required quantum memory). For any
graph G = (R, T,E) of repeaters and terminals and any
complete set of paths P , we have that the quantum memory
required by a repeater r is

MP (r) ≥
⌈

1

|R|

(
|T |
2

)⌉
qubits.

B. Upper Bound
In general, to examine how tight a lower bound can be,

one is led to proving upper bounds. There is an upper bound
obtained by merely counting all the paths passing through
repeaters.

Lemma 10 (Maximum required quantum memory). For any
graph G = (R, T,E) of repeaters and terminals and any
complete set of paths P , we have that the quantum memory
required by a repeater r satisfies

MP (r) ≤
(
|T |
2

)
qubits.

Furthermore, the total quantum memory required by all the
repeaters satisfies∑

r∈R
MP (r) ≤

(
|T |
2

)
· |R| qubits.

Proof. A complete set P comprises
(|T |

2

)
paths. In the worst

case, all paths are passing through all the repeaters.

To make improvements on the maximum required quantum
memory one is led to consider how known all-to-all shortest
path algorithms for the class of graphs G = (R, T,E) affect
the capacity of repeaters. However, it should be noted that
shortest path algorithms may not necessarily lead to repeaters
of optimal capacity. If possible, one may have to go around
heavily congested nodes to reduce the overall capacity, which
is in our case will come at the expense of fidelity.

Subgraphs of the square grid are classes of graphs for which
it is possible to explore algorithms that yield good tradeoffs.
These graphs have also been studied for entanglement distri-
bution by Perseguers [18].

V. TWO DIMENSIONAL GRID

Consider the complete k × k grid graph that has k2 nodes.
Nodes are denoted by pairs (i, j) of integers, i, j = 1, 2, . . . , k.
We are interested in subgraphs of the square grid consisting
of the set of repeaters R and set of terminals T such as the
example depicted in Fig. 4. We assume that terminals are not
adjacent to each other and cannot communicate directly. Every
terminal must be adjacent to at least one repeater.

A. Lower Bounds
We establish a lower bound3 on the capacity required by a

set of repeaters and terminals in a complete grid graph, i.e., all
the grid edges are present. The main theorem is the following.

3We make use of the standard Big-O and Big-Ω notations for integer
functions, whereby f(x) ∈ O(g(x)) (resp. f(x) ∈ Ω(g(x))) means that
for some constant C > 0 independent of x we have f(x) ≤ Cg(x) (resp.
f(x) ≥ Cg(x), for all integers x). As usual, Θ(g(x)) := O(g(x)) ∩
Ω(g(x)).

Fig. 4. A subgraph of the square grid. The squares depict repeaters (set R) and
the disks terminals (set T ). The set of vertices of the graph is V = R∪T . The
set of repeaters forms a connected subgraph. Terminals are only connected to
repeaters. A terminal may be connected to more than one repeater.

Theorem 11. For any arbitrary arrangement of repeaters and
terminals in a complete k × k grid such that |T | ∈ Ω(k1+a),
where a ≥ 0 and any complete set of paths P , we have that

CG(P ) ∈ Ω
(
max

{
k, k2a

})
.

Before proving the theorem, we state and prove two lemmas.
The first lemma follows directly from Lemma 8 while in the
second lemma a new argument is provided to establish a lower
bound.

Lemma 12 (If |T | is in Ω(k1+a)). For any arbitrary arrange-
ment of repeaters and terminals in a k × k grid such that
|T | ∈ Ω(k1+a) and any complete set P of paths we have that

CG(P ) ∈ Ω(k2a) qubits.

where a > 0 is a constant. In particular, if |T | ∈ Ω(k2) then
CG(P ) ∈ Ω(k2).

Proof. Applying Lemma 8, we see that that the resulting
capacity of any complete set of paths must satisfy CG(P ) ∈
Ω(k2a), for any set T of terminals of size Θ(k1+a) and set
R of repeaters. Note that a set of repeaters always has size
O(k2).

Lemma 13 (If |T | is in Ω(k)). For any arbitrary arrangement
of repeaters and terminals in a k×k grid such that |T | ∈ Ω(k)
and any complete set P of paths we have that

CG(P ) ∈ Ω(k) qubits.

Proof. Consider a set T of terminals of size Ω(k). The proof
follows by considering two cases.

Case 1. If there is a vertical line, say `, separating the set
T into two sets TL, TR so that Ω(k) terminals from T are to
the left of ` and Ω(k) terminals are to the right of ` then the
proof is easy because the two sets must give rise to Ω(k2)
pairs of paths connecting terminals from TL to terminals from
TR. Since the vertical lines has k nodes, by the pigeon hole
principle there must exist a repeater on the line which will be
traversed by Ω(k) paths. Therefore CG(P ) ≥ Ω(k).

Case 2. For any vertical line ` separating the set T into two
sets TL, TR (Left and Right of `, respectively) not both can be
of size Ω(k). Now consider the vertical line ` moving from
left to right in the k × k grid one column at a time. At one
extreme at the leftmost column, it will have zero terminals to



`

TL TR

Ω(k)Ω(k)

Fig. 5. In Case 1, there is a vertical line separating the set of terminal nodes
into two pairwise disjoint subsets TL, TR each of size Ω(k).

its left and the remaining Ω(k) terminals to its right. Similarly,
at the other extreme in the righmost column, it will have
Ω(k) terminals to its left and none to its right. Furthermore,
by the assumption, for any vertical column in between these
two extreme positions the sizes of the sets (TL, TR) must
be either (Ω(k), o(k)) or (o(k),Ω(k)), respectively. It follows
there must exist a vertical line ` so that the sizes of (TL, TR)
are (Ω(k), o(k)), respectively, and in the next vertical line
`′ the sizes of (TL, TR) are (o(k),Ω(k)), respectively (see
Fig. 6). Clearly, this can happen only if in the vertical column
between these two lines `, `′ there exists Ω(k) terminals.

However, if a vertical column has Ω(k) terminals there must
exist a horizontal line h so that Ω(k) terminals are above h
and Ω(k) are below h.

Now the rest of the proof follows from an argument similar
to that of Case 1. These last two sets must give rise to Ω(k2)
pairs of paths connecting Ω(k) terminals lying above h to
Ω(k) terminals lying below h, thus giving rise to Ω(k2) paths
traversing h. By the pigeonhole principle, there must a repeater
which has capacity at least Ω(k).

Proof. (Theorem 11) Depending on the size of the set of
terminals T , either Lemma 21 or Lemma 13 is applicable.

Corollary 14. For any arbitrary arrangement of repeaters and
terminals in a complete k × k grid such that |T | ∈ Ω(k1+a),
where a ≥ 0, and any complete set P of paths we have that
the quantum memory required by a repeater r satisfies

M(r) ∈ Ω
(
max

{
k, k2a

})
qubits.

Consider a connected set of repeaters R in a O(1)×k grid.
Let the associated set of terminals T be of size Ω(k).

` `0

Ω(k)

h

Fig. 6. In Case 2, there are two consecutive vertical lines such that between
them they separate Ω(k) terminal nodes.

Lemma 15. For any arbitrary arrangement of repeaters and
terminals in a O(1) × k grid such that there are |T | ∈ Ω(k)
terminals, and any complete set P of paths we have that

CG(P ) ∈ Ω(k2) qubits.

Proof. (Outline) Let R be the associated set of repeaters.
Assume that |T | = Ω(k). Since every terminal can be adjacent
to at most four repeaters, we must also have that |R| ∈ Ω(k).
Since there is a total of O(k) nodes in a O(1) × k grid, we
conclude that there are |R| ∈ Θ(k) repeaters. Since there
are Ω(k2) paths traversing repeaters. Therefore, by the pigeon
hole principle there must exist a repeater that requires capacity
Ω(k).

Corollary 16. For any arbitrary arrangement of repeaters and
terminals in a O(1) × k grid such that there are |T | ∈ Ω(k)
terminals, and any complete set P of paths we have that the
quantum memory required by a repeater r is

M(r) ∈ Ω(k2) qubits.

B. Upper Bounds: Three Examples

To obtain tighter bounds on the capacity of the repeaters, we
employ the idea of congestion avoidance. It means to avoid
shortest paths and re-route instead around highly congested
nodes possibly at the expense of the fidelity of the resulting
system of paths. One may say that this amounts to peeling the
grid graph in layers and selecting paths along these layers so
as to distribute evenly the overall load on the repeaters along
the selected layers.

An elementary shortest path algorithm on a k×k grid gives
an upper bound of O(|T |2). It turns out that the upper bound
we can obtain depends on the number of repeaters available.
We illustrate this with three examples.

Example 17. Let us consider a grid where |R| = |T | = k
and CG(P ) is in Θ(k2), for any complete set of paths P .



Consider a 2×k grid such that k terminals are in positions
(1, i), i = 1, 2, . . . , k, in the first row, and k repeaters are in
positions (2, i), i = 1, 2, . . . , k, in the second row (see Fig. 7).

Fig. 7. A 2 × k grid of k terminals (depicted as squares) and k repeaters
(depicted as disks).

Without loss of generality assume that k is even ≥ 2. For
each pair of terminals (1, i) and (1, j) such that i < j consider
the path

(1, i), (2, i), (2, i+ 1), . . . , (2, j − 1), (2, j), (1, j).

This is clearly a complete set of paths P for connecting all
pairs of terminals. Furthermore, the repeater (2, k/2) has
capacity Θ(k2), and therefore CG(P ) is at most O(k2) qubits.

The lower bound is also of the same magnitude. Indeed,
there are Ω(k2) pairs of terminals and therefore Ω(k2) paths
are necessary to connect all such pairs of terminals. However,
it is easy to see from the configuration of the 2× k grid that
the repeater (2, k/2) in the middle of the second row requires
capacity of at least Ω(k2) qubits.

Lemma 18. In this example, the quantum memory required
by repeater r in position (2, i), i = 1, . . . , k/2, is

M(r) = (j − 1) · (k + 1− j) qubits.

It is therefore clear that repeaters near the middle of the
2×k grid carry the highest load as opposed to repeaters near
the endpoints, which carry the lowest.

Example 19. Let us consider a grid where |R| = k(k − 1),
|T | = k and there is a complete set of paths P such that
CG(P ) is in Θ(k).

Consider a k(k − 1) grid consisting of k(k − 1) repeaters.
Adjacent to the first row {(2, i), i = 1, 2, . . . , k} is a set of
k terminal nodes {(1, i), i = 1, 2, . . . , k}. The terminals are
not connected to each other (cf. requirements in Section III,
in which we defined that terminal nodes must not be adjacent
to each other in the graph); further, we assume the terminal
located at (1, i) is connected to the repeater (2, i), for i =
1, 2, . . . , k.

We can construct a complete set of paths P connecting all
pairs of terminals such that CG(P ) ∈ O(k). The construction
is as follows (see Fig. 8).
• For each i < j, connect the terminal (1, i) to the terminal

(1, j) using the path of repeaters on the ith column, the
k − i + 1st row, and j-the column. This gives a total of
k − i paths.

This collection of paths, say P , is clearly complete because
for every pair of terminals there is a path in P connecting
them. Moreover, every repeater is traversed by at most O(k)
of these paths. Therefore CG(P ) ∈ O(k).

The above bound is also tight, because for any complete set
of paths P it has been shown in Theorem 11 that CG(P ) is
in Ω(k).

Example 20. Let us consider a grid where |R|, |T | ∈ Ω(k2)
and CG(P ) is in Θ(k2), for any complete set of paths P .

terminals

repeaters

i j

k − i+ 1 row

Fig. 8. A k × k grid of (k − 1)k terminals (not depicted) and k repeaters
(depicted as disks). Depicted is the path selected between terminals i < j.
Note that the terminals are only connected to repeaters.

We can define sets R, T each of which has size Θ(k2).
Indeed, without loss of generality assume k is even. Select
the following arrangement of repeaters

R = {(i, j) : i is odd and j = 2, . . . , k}∪{(i, 1) : 1 ≤ i ≤ k}

that forms a connected subgraph. The size of R is easily seen
to be |R| = kd(k + 1)/2e + k/2. Let the set of terminals be
the complement of R, i.e.,

T = {(i, j) : i, j = 1, 2, . . . , k} \R.

The size of T is easily seen4 to be |T | = k2−kd(k+ 1)/2e−
k/2.

i = 1

i = 3

i = k − 1

repeaters

repeaters

repeaters

terminals

terminals

terminals

terminalsi = 2

i = 4

i = k

...
...

· · ·
· · ·

· · ·
· · ·

repeaters

Fig. 9. A k×k grid of terminals and repeaters. Bold (normal) lines represent
the respective arrays of repeaters and terminals The repeaters form a connected
network while the terminals are connected only to repeaters.

C. Congestion avoidance using layer peeling
Motivated by the three main adjacency requirements defined

in Section III, i.e., (1) terminal nodes must be adjacent to
at least one repeater, (2) repeater nodes can communicate
directly with each other if they are adjacent in the graph, and
(3) terminal nodes must not be adjacent to each other in the

4For details of the construction, see Fig. 9.



graph, we present in Algorithm 1 a valid process to generate
congestion avoiding paths using layer peeling. The motivation
for Algorithm 1 comes from routing in planar graphs.

Algorithm 1 Path Algorithm for Planar Graphs
1: for each starting terminal node i do
2: set c← i
3: for each ending terminal node j do
4: Traverse the face adjacent to i and flip faces
5: at the edge where the line connecting i and j
6: determine new current node c
7: if terminal node j has not been found then
8: Traverse new face
9: else

10: Stop

Algorithm 2 Path Algorithm Adapted to k × k Grids
1: for each starting terminal node i do
2: for each ending terminal node j do
3: Construct globally congestion avoiding paths,
4: connecting i to j

Algorithm 3 Random Arrangement of Repeaters
1: Independently of other nodes, a node of the grid is made

a repeater with probability p (this forms the set R of
repeaters)

2: Among the remaining nodes (which have not already
become repeaters) and are adjacent to repeaters, a node
independently of other nodes, is made a terminal with
probability q (this forms the set T of terminals).

We can adapt the rationale of Algorithm 1 by assuming
k × k grids. For instance, inspired from Example 19, we can
assume a simple structure in which terminal nodes located at
positions (1, i) get connected to repeaters in positions (2, k),
for i = 1, 2, . . . , k. This process represents one of the simple
congestion avoidance constructions referred to in lines 3 and
4 of Algorithm 2. This new structure is especially useful when
the set of repeaters is dense and the set of terminals are nicely
arranged. Finally, we complement Algorithm 2 with a random
arrangement of repeaters. Let 0 < p, q < 1 be real numbers.
Let terminals and repeaters be placed on a k×k grid, as defined
in Algorithm 2. The process in Algorithm 3 summarizes the
idea and setting. The parameters p and q in Algorithm 3 can
be set in such a way that they define the density of repeaters
and terminals, respectively. The parameter p can also be set in
a way that ensures that the set of repeaters is connected with
high probability.

In the sequel, we evaluate the approaches described in Algo-
rithms 1, 2, and 3 using a software simulation.

VI. SIMULATION RESULTS

We present simulation results that compare congestion and
entanglement rates obtained with the path traversing strategies
presented in Section V. We use the NetworkX python library
to conduct Monte Carlo simulations. The simulation code is
available online. The simulation assumes path establishment
for all the terminals, i.e., end-to-end paths from every terminal

to any other terminal. Two path establishment algorithms
are available: shortest-path establishment and layer peeling
establishment (cf. Section V-B, Algorithms 1 and 2). The
random arrangement of repeaters follows the strategy pre-
sented in Algorithm 3, using Bernoulli bond percolation [23],
with a probability p greater than 0.5, to ensure repeater
connectivity [18].

The random arrangement of terminals depends on a proba-
bility q, which determines the selection of the remaining nodes
in the grid (i.e., those nodes in the grid which are not repeaters)
and satisfying the adjacency constraints defined in Section III
(i.e., terminal nodes are not adjacent to each other in the grid
and every terminal node is adjacent to at least one repeater).
Fig. 10 pictures a sample simulation execution. It shows a
representative arrangement of terminals and repeaters over a
k quadratic grid graph, with values k = 10, p = 0.55 and
q = 1. The graph contains 37 terminals, including the 32
outer ring nodes (i.e., row of nodes 1 to 8, row of nodes 91
to 98, column of nodes 10 to 80 and column of nodes 19 to
89) and five additional nodes in the inner rings (nodes 22, 35,
44, 64, 76). In our simulations, congestion and entanglement
rate are computed as follows:
• Congestion. We compute path congestion as the number

of paths passing through the most visited repeater. For
instance, in Fig. 10 we can see that the most visited
repeater is node 31, which appears in exactly 288 paths
(out of 666 paths).

• Entanglement Rate. In addition to congestion, our sim-
ulations compare the entanglement rate obtained with
the two path establishment algorithms (i.e., shortest-
path establishment vs. layer peeling establishment). Our
entanglement rate implementation follows the work of
Caleffi, Uphoff and Wang [24], [25], [26], summarized
next.

A. Link Entanglement Rate Calculation

In this section, we formally define the concepts of link and
route entanglement rates. The assumptions regarding specific
values are taken from [24], [25], [26].
Let d and X denote the length (m) and classical communica-
tion time (s) of an optical link. For a grid topology, they are
the same across all links.

The symbol v denotes the efficiency of Bell-State Mea-
surement (BSM), assumed to be 39%. L is the attenuation
length of the optical fiber, assumed to be 22 km. The atom-
photon entanglement generation probability, assumed to be
53% across all nodes, is denoted by p. Over a single link,
the entanglement generation probability is defined as [25]:

q =
vp2

2
e−d/L

The constants τa, τd, τh, τo, τp and τt respectively define the
atomic BSM duration, duty cycle duration for atom cooling,
herald detector duration, optical BSM duration, atom pulse
duration and telecom detector duration, assumed to be 10, 100,
20, 10, 5.9 and 10 µs. The time needed for an atom-photon
entanglement operation is defined as

S = τp + max(τh, τt) µs.

https://networkx.github.io
https://github.com/jgalfaro/mirrored-qbcrepgrid/blob/master/networkx_simulation.py


## Initial Parameters
k = 10 #k quadratic (2D) lattice
p = 0.55 #bernoulli probability for bond percolation
q = 1 #bernoulli probability for terminal arrival

DrawGrid=True
ShowLabels=True
AdditionalRing=True
BondPercolation=True
ComputePaths=True
PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths
CSVFormat=False

...
22 -> 35 : [22, 21, 31, 41, 42, 43, 53, 54, 55, 45, 35] 
22 -> 44 : [22, 21, 31, 41, 42, 43, 44]
22 -> 64 : [22, 21, 31, 41, 51, 61, 62, 63, 64]
22 -> 76 : [22, 21, 31, 41, 51, 61, 62, 63, 73, 74, 75, 85, 86, 76]
35 -> 44 : [35, 45, 55, 54, 53, 43, 44]
35 -> 64 : [35, 45, 55, 54, 53, 52, 51, 61, 62, 63, 64]
35 -> 76 : [35, 45, 55, 54, 53, 52, 51, 61, 62, 63, 73, 74, 75, 85, 86, 76]
44 -> 64 : [44, 43, 42, 41, 51, 61, 62, 63, 64]
44 -> 76 : [44, 43, 42, 41, 51, 61, 71, 72, 73, 74, 75, 85, 86, 76]
64 -> 76 : [64, 63, 73, 74, 75, 85, 86, 76]

Congestion =  288 (Repeater 31 appears in 288 paths, repeater 41 appears in 245 paths, repeater 51 appears in 223 paths, etc.)
Average path length is 10

Output:
The graph contains 56 repeaters [ [11, 12, 13, 14, 15, 16, 17, 
18, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 41, 
42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 61, 62, 63, 
67, 68, 71, 72, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 86, 87, 
88] ] and 37 terminals [ [1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 20, 
29, 30, 39, 40, 49, 50, 59, 60, 69, 70, 79, 80, 89, 91, 92, 93, 
94, 95, 96, 97, 98, 22, 35, 44, 64, 76] ]

Paths:
1 -> 2 : [1, 11, 12, 2]
1 -> 3 : [1, 11, 21, 31, 32, 33, 34, 24, 14, 13, 3]
...

Fig. 10. Interface of our simulations, showing a sample execution run with a k× k grid of terminals and repeaters. Value of k is 10. Probabilities are set to
p = 0.55 and q = 1. The simulation computes a grid graph containing 56 repeaters and 37 terminals.

Let c denote the light propagation speed, assumed to be 2 ·
105 km/s. The time needed for an atom-photon entanglement
generation and reception of an acknowledgement is

τ = τt +
d

2c
+ τo + X µs.

The time required to perform a successful entanglement on a
link is defined as:

Xs = τp + max(τh, τ) µs.

The time required to perform an unsuccessful entanglement
on a link is defined as:

Xu = τp + max(τh, τ, τd) µs.

The time needed generate entanglement between two nodes
directly connected by a link is

S =
(1− q)Xu + qXs

q
µs.

Let Xch represent the quantum memory coherence time,
assumed to be 10 ms. If Xch ≥ τ , then the link entanglement
rate is

1/S pairs per µs.

Otherwise, it is null.

B. Route Entanglement Rate Calculation

End-to-end entanglement builds upon entanglement swapping.
We review a performance model for end-to-end entanglement
on a route. For a route of length n (links), the classical
communication time between the two endpoints of the route
is equivalent to

C(n) = n · X µs.

Let va denote the atomic BSM efficiency, assumed to be 10
µs and 39%. On a route of length n, entanglement time is
recursively defined as:

R(n) =


0, if n = 0

Sµs, if n = 1
R(k)+τa+C(k)

va
µs, if n > 1 with k = dn2 e

Lemma 21. The time complexity of route entanglement is
n log(n).

Entanglement is attempted in rounds until it succeeds. On
a route of length n, the duration of the last round, i.e., the
successful one, is defined as follows:

τ(n) =


0, if n = 0

Xsµs, if n = 1

τ(k) + τa + C(k)µs, if n > 1 with k = dn2 e

The route entanglement rate (qubit pairs per µs) is:

T (n) =

{
1/R(n), if Xch ≥ τ(n)− (Xs − τ(1))

0, else

C. Monte Carlo Simulation Results

Fig. 11 provides the results with regard to congestion.
Boxplots in Fig. 11(a,c) provide, respectively, the results when
we apply the shortest-path algorithm. Boxplots in Fig. 11(b,d)
provide the results when we apply the layer-peeling path
algorithm. Every Boxplot corresponds to fifty independent
run executions per algorithm. Values of p and q are 0.95
in Fig. 11(a,b); and 0.65 in Fig. 11(c,d). Fig.12 provide
the entanglement rate results using the same rationale. We
can observe that the layer-peeling algorithm improves (i.e.,
reduces) the network congestion w.r.t. the use of a shortest-
path algorithm. Nevertheless, the entanglement rate remains
similar for both cases.



(a) (b)

(c) (d)

Fig. 10. Congestion results using (a,c) shortest path and (b,d) peeling path strategies.
Values of p and q are 0.95 in (a,b) and 0.65 in (c,d).

The following steps summarize the experimental work:

– Generate random grid networks (e.g., using NetworkX and Bernoulli bond
percolation [cf. examples in Appendix A]);

– Simulate two path establishment algorithms, i.e., shortest-path establish-
ment and peeling-path establishment [cf. examples in Appendix A];

– Count the number of paths passing through a repeater (i.e., congestion) and
lengths of paths [cf. examples in Appendix A];

– Compare the congestion reduction and the entanglement rate when using the
first establishment algorithm (shortest-path establishment) w.r.t. the second
establishment algorithm (peeling-path establishment). We can observe that
both strategies provide an equivalent entanglement rate, hence equivalent
fidelity rates. The peeling-path establishment considerably reduces the con-
gestion levels, i.e., repeaters in the inner layers get less congested and would
require a lower number of qbits while providing an equivalent entanglement
rate w.r.t. the scenarios based on the shortest-path establishment strategy
(see results in Figures 10 and ??).

7 Conclusion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibu-
lum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

Fig. 11. Congestion results using (a,c) shortest path and (b,d) peeling path
strategies. Values of p and q are 0.95 in (a,b) and 0.65 in (c,d).

(a) (b)

(c) (d)

Fig. 11. Entanglement rate results using (a,c) shortest path and (b,d) peeling path
strategies. Values of p and q are 0.95 in (a,b) and 0.65 in (c,d).

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec
vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus
rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tel-
lus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis,
viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor
semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auc-
tor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et,
tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna,
vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse
ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.
Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.
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VII. CONCLUSION

We have explored path congestion avoidance in quantum
communication networks. We have assumed networks of
repeaters and terminals in which the sets of complete paths
between terminals may affect the capacity of repeaters in the
network. We have compared the reduction of avoidance of
two representative path establishment algorithms: shortest-
path establishment vs. layer-peeling path establishment. We
have observed that both strategies provide an equivalent
entanglement rate, while the layer-peeling establishment
algorithm considerably reduces the congestion in the network
of repeaters. Repeaters in the inner layers get less congested
and would require a lower number of qubits, while providing
a similar entanglement rate.
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