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ABSTRACT Web search engines (e.g., Google, Bing, Qwant, and DuckDuckGo) may process a myriad
of search queries per second. According to Internet Live Stats, Google handles more than two hundred
million queries per hour, i.e., about two trillion queries per year. For monetization purposes, the queries can
be stored and complemented with additional data, referred to as query logs. Together, they can correlate
valuable information to build accurate user profiles. Before releasing the query logs to third parties (e.g.,
for profit purposes), the personal information contained in the query logs must be properly protected by the
web search engines. Current regulations establish strict control, and require from provable anonymization
processing (e.g., in terms of statistical disclosure) of any personally identifiable information. In this paper,
we tackle this challenge. We propose a real-time anonymization solution to protect streams of unstructured
data at the server side. Our approach is based on the use of a probabilistic k-anonymity technique. It allows
probabilistic processing of personally identifiable attributes contained in the query logs, with provable
privacy properties. Our solution handles limitations of traditional k-anonymity approaches with respect
to unstructured data and real-time processing. We present the implementation of our solution and report
experimental evaluation results. The evaluation is conducted in terms of privacy, utility, and scalability
achievement. Results validate the feasibility of our proposal.

INDEX TERMS Anonymization, Data Streams, Privacy, Query Logs, Web Search Engines.

I. INTRODUCTION

PEOPLE use Web Search Engines (WSEs) for research,
shopping, and entertainment [1]. Due to the large num-

ber of Websites (over 1.7 billion in 2020, according to Inter-
net Live Stats and NetCraft [2]), it would be inconceivable to
conduct such activities manually, without the help of a WSE.
The usability of WSEs is, moreover, constantly improving.
By simply querying the WSE with a few keywords, one
may obtain several URLs with the desired contents. However,
WSEs are not simply limited to return a list of URLs. When a
search is conducted, a query (unstructured data) is processed
and stored by the WSE. Together with the query, the WSE
will store a timestamp, the URL selected by the user, and any

other potential information collected about the user during
the search. All this additional meta data, together with the
query, is denoted hereinafter as query log. Streams of query
logs are processed and analyzed by the WSEs, in order to
build and improve users’ profiles. This is expected to improve
the service offered to users, as follows:

• Personalization. The query terms can have multiple
meanings. Identifying the sense required by the user
represents a challenge. Previous queries submitted by
a user can be used to contextualize and disambiguate
terms in the future [3], [4]. This way, the WSE can
prioritize relevant results (e.g., URLs) for the user and
show them in the initial positions of the search results.
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• Usability. The frequencies and selected results of the
most submitted queries are used by WSEs to improve
their ranking algorithms [5]. This can also be used to
suggest alternative queries [6]. Such suggestions can
show how to correct mistakes when typing, add speci-
ficity to the initial query, or provide similar queries with
more results.

Search data can also be exploited for other purposes be-
cause it reveals powerful insights about customer intent-to-
purchase and other factors [7]. This new exploitation can
be conducted by the WSE itself or by a third party, for the
following purposes:

• Marketing. The results of an advertising campaign can
be studied and improved by means of the query logs.
For example, the user can be characterized by their
query logs (gender, age, income, education, etc.) and
afterwards verify if the advertisements have had an
impact on the intended audience (interests and behav-
ior) [8], [9]. Besides this, it is possible to extract market
tendencies [10].

• Research. It may be centered on the study and test
of new Information Retrieval (IR) algorithms [11], to
learn about user’s information needs and query formu-
lation approaches [10]. It can also revolve around the
use of language in queries [12], among other research
topics [13]–[17].

The use of query logs can lead to some problems, related
to user’s privacy. Each query log can contain a user identifier,
a text about what the user is looking for, the time when
the search was conducted, and the URLs selected by the
user. Any party with access to the query logs can obtain
information about a user’s behavior, habits, interest and more
sensitive information, such as religion or sexual orientation.
Even more, some query keywords may contain identifiers
and quasi-identifiers [18], which may allow to link queries
with real people. This is specially feasible, given current
tendencies such as vanity search and egosurfing [19], in
which people look for their own names over the Internet.

Query logs can be efficiently protected before being re-
leased to third parties. However, faulty or weak protection
can lead to serious anonymity issues. The combination of
modified data can disclose enough information to re-identify
users [9], [20]. There is one well-known case, the AOL
case, in which around thirty six million records related to
query logs from AOL users were publicly released by AOL.
Although the records were previously anonymized, it was
later shown that it was still possible to identify some of the
AOL users via traditional log correlation techniques [21]. As
a result, sensitive information about AOL users was exposed
publicly, without their express consent. The case ended up
with an important damage to AOL users’ privacy and to
AOL’s reputation, as well as several class action suits and
complaints against AOL [22]–[24].

In this paper, we address the aforementioned problems. We
present an anonymization technique to protect query logs at

the server side. We assume WSEs seeking to monetize query
logs by making them available to third parties, while respect-
ing privacy regulations. A valid approach is to anonymize
the logs prior releasing them to the third parties. Just con-
cealing the user identifiers, or replacing them by random
information, is not enough [25]. A provable anonymization
method based on, e.g., Statistical Disclosure Control (SDC)
techniques [18], must be conducted to guarantee bounded
disclosure risks [26]. Traditional approaches can solve this
situation by conducting a k-anonymity process at the server-
side, before releasing the query logs. The release of data will
satisfy the k-anonymity privacy property whenever user data
contained within the query logs cannot be distinguished from
at least k − 1 other users — whose data also appear in the
release [27].

An important issue of traditional k-anonymity approaches
is the difficulty of using unstructured streams of data while
satisfying the aforementioned privacy properties. This poses
an additional problem to WSEs requiring, moreover, real-
time processing. We address this issue. Our solution relies
on the use of probabilistic k-anonymity to bound disclosure
risk of personally identifiable user attributes. Our solution
can handle unstructured data, allowing real-time processing
of query streams. It provides a probabilistic method to blend
streams of queries with high similarity to those requiring
protection, but coming from different users. More precisely,
it ensures that individuals are not identified with a probability
exceeding 1

k , being k the total number of users sharing
similar interests to the one meant to be protected (who is also
counted in k). With our solution, a WSE can keep the raw
query logs and release the anonymized versions to third party
organizations. The WSE can also decide to erase the raw
query logs and keep only the anonymized versions. Hence,
with low utility loss, the WSE reduces the risk of information
disclosure in case of intrusions.

Paper Organization — Section II presents our proposal.
Section III provides architectural components and require-
ments. Section IV provides experimentation results validat-
ing our approach. Section V surveys related work. Section VI
concludes the paper.

II. OUR PROPOSAL
We present in this section our anonymization proposal. Table
1 introduces the notation used along this section. Next, we
provide a formal definition of the expected data we aim to
anonymize, the way how the data is structured, a formal
analysis about the privacy properties of the proposal, and the
algorithmic version of our anonymization process.

A. DATA STRUCTURES

We assume a stream of query logs, formed by m registers,
where rm corresponds to the last received query log:

R = {r0, .., rm} (1)
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TABLE 1. Notations used in this paper.

R : Stream of query logs
rj : Individual query log
ui : User unique identifier
qj : Individual query text
cq : Full individual query classification
τ : Hierarchical ontology of categories
V : Set of vertices
vhx : Vertex at depth h depth and width x
E : Set of edges
ef : Edge between two vertices
Qh

x : Set of queries for vertex vhx
Uh
x : Set of users for vertex vhx

γhx : Category for vertex vhx
τ∗`,k : τ with a depth ` and width k

Each register is of the form:

rj = {ui, qj , cg} (2)

where ui is a unique identifier that represents the user who
sent the query qj to the WSE. Each query qj is composed of
a set of unstructured terms, which we previously provided to
a categorizer (cf. Section III) to obtain the classification of
the query, denoted as cg . This classification cg is represented
as the path from a general category γ1s to a more specific
category γhs∗ , with the form:

cg = {γ1s , γ2s′ , ..., γhs∗} (3)

The path is created according to a hierarchical ontology
structure by means of a tree structure τ , which is formed by
a set of edges ef ∈ E and vertices vhx ∈ V , where h is
the depth and x the width. Each vertex vhx of τ represents
a category γhx , and is related to other categories through
the edges. The vertices or categories are more generic the
closer they are to the roots {v11 ...v1x}, and more specific
the closer to the leaves. Thus, every query is classified by
assigning it to one of the vertices of the tree. As mentioned,
the classification is the path between the root and the vertex,
and it is composed by all the γ categories of the nodes that
are in the path.

τ =< V,E > (4)

V = {v11 , ..., v`z}
E = {e1, ..., eg}
vhx = {Uhx , Qhx, γhx}
ef = {vhx , vh+1

x′ }

The maximum depth of the hierarchy τ is `max, defined
as the distance or minimum path between the root and its
farthest leaf. The number of terms or depth for each classifi-
cation may be `max or lower, but we will use limited versions
at depths up to `, where ` goes from 1 to `max.

Each vertex vhx contains a set of users Uhx , and a set of
queries Qhx. The size of Uhx will be k, but the size of Qhx may

be larger. This is because U is defined using arity, but Q is
defined without the need of using arity

max | Uhx | = k (5)

max | Qhx | ≥ k (6)

Therefore, we call τ∗`,k the tree τ with a depth ` and a value
of |U | = k.

B. RESTRICTIONS
To properly explain why Uhx and Qhx may have different size,
we introduce two additional restrictions that we impose to
our proposal (cf. Restrictions 1 to 2).

Restriction 1. A given query associated to an anonymized
log must not be assigned to the same user that issued the
query on the unanonymized log.

Restriction 2. When creating an anonymized query log, user
must be selected randomly between at least k different user
values.

Restriction 1 ensures that outputs do not contain
unanonymized pairs of user and query. Restriction 2 im-
poses probabilistic k-anonymity, setting at least k distinct
values for users in each category when randomly creating an
anonymized log.

C. ANONYMIZATION PROCESS
We define our anonymization process as the method that
generates the probabilistic k-anonymous stream of logs R′:

R′ = {r′0, ..., r′m} (7)

We assume that each record rj = {ui, qj , cg} in R is
assigned to the corresponding vhx using its categorization cg .
The record rj is then separated in two parts: ui which is
assigned to Uhx , and qj which is assigned to Qhx. Records in
R′ are obtained by applying a random match between one
element of Uhx and one element of Qhx, once | Uhx |= k:

r′j = {u′i, qj , cg} (8)

where qj ∈ Qhx is matched with a u′i ∈ Uhx 6= ui.
The Id function is assumed to be a correct identification

function, which given r′j responds with the original ui. The
function Re is a re-identification function used over the
records in R′, which given a r′j responds with:

Re(r′j) = ui ∈ Uhx , uj 6= u′i (9)

The goal of probabilistic k-anonymity is to limit the prob-
ability of performing the right re-identification to at most 1

k
for all ui ∈ R and for all the values of Re(r′j):

P (Re(r′j) = Id(r′j)) ≤
1

k
(10)

The stream of logs R′ is said to satisfy probabilistic k-
anonymity if, by knowingR′ and the anonymization process,
the probability to link any record r′j ∈ R′ and its correspond-
ing record rj ∈ R is, at most, 1

k .
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We show next that our proposal satisfies the property
defined in Eq. (10). For each vertex vhx of τ , the random
selection of an element (Restriction 2) guarantees that all
outcomes are equally likely to be selected. Therefore, we can
state maximum probability of re-identification of a r′j over τ
using:

P (Re(r′j) = Id(r′j)) ≤ max
∀x,h

|Uhx ∩ Id(r′j)|
|Uhx |

(11)

As Uhx sets are defined using arity, we know that:

∀x, h, Id(r′j)→ |Uhx ∩ Id(r′j)| ∈ 0, 1 (12)

Someone could argue that Restriction 1 leads to a value of
k − 1. However, since Restriction 2 establishes this value to
k (Restriction 2 also assures that |Uhx | ≥ k), the upper bound
of our proposal for P (Re(r′j) = Id(r′j)) is strictly lower
or equal to 1

k , hence satisfying probabilistic k-anonymity. A
more formal analysis about this result is provided next.

D. PRIVACY ANALYSIS
Given k (anonymity parameter) in Z+, a set of users U equal
to u1, ..., un (such that n ≥ k), a set of query logs Q equal
to (uij , qj)

j
j=1 up to the processing iteration j, where qk 6=

ql∀k, l ∈ [j], (k 6= l), uij ∈ U . We also assume that users
repeat (i.e. uik = uil ).

We assume that given a query in R′, the whole R′ and k,
an arbitrary PPT (Probabilistic Polynomial-Time) adversary
A has at most 1

k chance of guessing the user the given query
was attached to in R.

Now, with the notation above, and let j0 ∈ [j] define and
experiment ExpRe(k,R), in which:

R′ ← Anon(k,R) (13)
R∗ ← Re(k,R′)

let b =

{
1, if R = R∗

0, otherwise

return b

Theorem 1. Anon (cf. Eq.(13)) is probabilistic k-anonymous
if, for every user set, for every query log R and every index
j0 ∈ [j], any PPT adversary A has a bounded advantage up
to 1

k , i.e.,

AdvA(k,R) = P [ExpRe(k,R)] ≤
1

k

Proof. Let R′ = (u′ij , q
′
j)
j′

j=1 and j the iteration at which the
first log entry is released by the anonymizer after (u, q) has
been read by itself. Let UR′j = (uij1 , ..., uiJ ) be the users
presents at R′ at iteration j and Uj = (ui1 , ..., uik) be the
user set used internally in the anonymizer at iteration j (i.e.,
we know u ∈ Uj ∈ UR

′

j and Uj has at least k different users).

P (A(R′, q) = u) =∑
u′∈U

P (A(R′, q) = u|(u′, q) ∈ R) · P ((u′, q) ∈ R)

If Uj and Qj are the users and queries stored by the
anonymizer after reading query q, where Uj has at least k
different users, permute users from the queries of Qj to R
(all in Uj) has no effect on the anonymizer output, i.e.:

P (A(R′, q) = u|R = Re(R′)) =∑
u∈Uj

P (A(R′, q) = u|[R = Re(R′)] ∩ [Uj = U ]) · P (Uj = U)

where Uj contains the users that can appear in step j, hence
u ∈ U . If Uj is fixed and u ∈ Uj , we can consider an R
where the query q is paired with each of the users u′ of Uj ,
and one of the queries q′ whence the entries of u′ from Uj
are now paired with U .

If we have read ju times the user u, ∀i : ji ≥ 1, we obtain
that the ratio ofR∗s, beingR∗ = Re(R′) andUj = U , which
contain the original pair (u, q) is:

P (A(R′, q) = u|R = Re(R′)) =

(ju2 + ...+ juk
+ ju−1)!

(ju2
+ ...+ juk

+ ju)!
=

1

(ju2 + ...+ juk
+ ju)

≤ 1

k

hence satisfying Theorem 1.

E. ALGORITHMIC VERSION OF OUR PROPOSAL
An algorithmic version of our anonymization process is pre-
sented in Algorithm 1. Algorithm 2 presents the anonymiza-
tion process counterpart, assumed to be implemented by
a PPT adversary. Algorithm 1 receives three main inputs:
desired k, ` values, and R as a stream of hierarchically
categorized query logs.

Even if all the sets are initialized empty, our proposed
algorithm guarantees that Uhx is of size k every time a new
anonymized log is generated from that category. It also tries
to keep the Qhx size as close as possible to the k value. As
it always chooses between k different users and at least k
different queries, probabilistic k-anonymity is guaranteed.
Qhx size may be bigger than k in the following situation:

each time a new log enters a category and the log’s user was
already present on that category, user’s arity is increased by
one inUhx and the query is added toQhx. Therefore, |Uhx | stays
the same but |Qhx| is increased by one. If Restriction 2 is not
met, there is no anonymized log release (i.e., the size of Qhx
can be bigger than k).

If Restriction 2 is met, and some user’s arity is greater than
one, then Algorithm 1 releases an additional log to reduce the
size of Q and user arity, also enforcing Restriction 1. This
extra step is only done once per log, therefore at most two
logs are generated each time a new record enters the category,
until all users’ arities are equal to one.

System performance remains stable whenever variations
of the set size is proportionally conducted [28]. Hence, we
modify the size of each set in incremental unitary steps. This
allows the most efficient memory usage. In addition to the
k parameter, the depth of categories’ tree must be specified
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Algorithm 1: Anonymization Process
Input : R, k, `
Output: R’

1 foreach rj ∈ R do
2 // Get current user, query text and full query categorization
3 u, q, c← rj ;
4 // Truncate categorization to level `
5 cat← {γ1s , ..., γ`s∗} ∈ c;
6 // Add current user to users’ category set
7 users[cat]← u;
8 // Add current query and full categorization to queries’

category set
9 query[cat]← {q, c};

10 // While there are more than k distinct users on the current
category

11 while distinct(users[cat]) > k do
12 // Select and remove a random query and categorization

from the category’s set
13 pop random {q′, c′} ∈ query[cat];
14 // Select and remove a random user from the category’s

set, distinct from the original user related to the query
15 pop random u′ ∈ users[cat], u′ 6= Id(q);
16 // Send to the output the selected user, query and category
17 send u′, q′, c′;
18 end
19 end

Algorithm 2: De-Anonymization Process
Input : R’, k, `
Output: R*

1 foreach r′j ∈ R′ do
2 // Get current user, query text and full query categorization
3 u, q, c← r′j ;
4 // Truncate categorization to level `
5 cat← {γ1s , ..., γ`s∗} ∈ c;
6 // Add current user to users’ category set
7 users[cat]← u;
8 // Add current query and full categorization to queries’

category set
9 query[cat]← {q, c};

10 // While there are more than k distinct users on the current
category

11 while distinct(users[cat]) > k do
12 // Select and remove a query and categorization from the

category’s set, using one of the record linkage algorithms
13 record_linkage {q′, c′} ∈ query[cat];
14 // Select and remove a user from the category’s set, using

one of the record linkage algorithms
15 record_linkage u ∈ users[cat];
16 // Send to the output the selected user, query and category
17 send u, q, c;
18 end
19 end

using the ` parameter. Both k and ` remain fixed to the
specified value throughout the entire execution.

Table 2 depicts an example using k = 2 and ` = 1. These
values have been chosen to facilitate the understanding of the
example, but they are inferior to desirable values in a real
application of the algorithm (cf. Section IV). The example
starts with an empty system, receiving a stream R of query
logs classified in two distinct categories. Figure 1 depicts the
used R, and the contents of τ and R’ at the end of the afore-
mentioned example. Figure 2 depicts the deanonymization
counterpart, leading to faulty re-identification.

STEP 1: first query arrives

INPUT: r1{u=Alice, q="piano", c=Arts/Music}
users[Arts] = Alice
query[Arts] = "piano"

STEP 2: second query goes to a new category

INPUT: r2{u=Bob, q="myspace", c=Computers/Internet}
users[Arts] = Alice
query[Arts] = "piano"
users[Computers] = Bob
query[Computers] = "myspace"

STEP 3, 4: still no distinct users> k in any category

INPUT: r3{u=Alice, q="guitar", c=Arts/Music}
INPUT: r4{u=Charlie, q="violin", c=Arts/Music}

users[Arts] = Alice, Alice, Charlie
query[Arts] = "piano", "guitar", "violin"
users[Computers] = Bob
query[Computers] = "myspace"

STEP 5: distinct users> k in "Arts", but k after the first output

INPUT: r5{u=Bob, q="flute", c=Arts/Music}
users[Arts] = Alice, Alice, Charlie, Bob
query[Arts] = "piano", "guitar", "violin", "flute"
users[Computers] = Bob
query[Computers] = "myspace"

Category full: distinct(users[Arts]) = 3 > k
OUTPUT: r′1{u=Charlie, q="piano", c=Arts/Music}

users[Arts] = Alice, Alice, Bob
query[Arts] = "guitar", "violin", "flute"
users[Computers] = Bob
query[Computers] = "myspace"

STEP 6: new query, but no disctinct users> k in any category

INPUT: r6{u=Charlie, q="google", c=Computers/Internet}
users[Arts] = Alice, Alice, Bob
query[Arts] = "guitar", "violin", "flute"
users[Computers] = Bob, Charlie
query[Computers] = "myspace", "google"

STEP 7: distinct users> k in "Computers"

INPUT: r7{u=Alice, q="aol", c=Computers/Internet}
users[Arts] = Alice, Alice, Bob
query[Arts] = "guitar", "violin", "flute"
users[Computers] = Bob, Charlie, Alice
query[Computers] = "myspace", "google", "aol"

Category full: distinct(users[Computers]) = 3 > k
OUTPUT: r′2{u=Bob, q="google", c=Computers/Internet}

users[Arts] = Alice, Alice, Bob
query[Arts] = "guitar", "violin", "flute"
users[Computers] = Charlie, Alice
query[Computers] = "myspace", "aol"

STEP 8: distinct users> k in "Arts"; k after the second output

INPUT: r8{u=Charlie, q="drums", c=Arts/Music}
users[Arts] = Alice, Alice, Bob, Charlie
query[Arts] = "guitar", "violin", "flute", "drums"
users[Computers] = Charlie, Alice
query[Computers] = "myspace", "aol"

Category full: distinct(users[Arts]) = 3 > k
OUTPUT: r′3{u=Alice, q="drums", c=Arts/Music}
Category full: distinct(users[Arts]) = 3 > k
OUTPUT: r′4{u=Bob, q="guitar", c=Arts/Music}

users[Arts] = Alice, Charlie
query[Arts] = "violin", "flute"
users[Computers] = Charlie, Alice
query[Computers] = "myspace", "aol"

TABLE 2. Applying Algorithm 1 with k=2 and `=1VOLUME 4, 2016 5
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r
1

Alice piano Arts/Music

r
2

Bob myspace Computers/Internet

r
3

Alice guitar Arts/Music

r
4

Charlie violin Arts/Music

r
5

Bob flute Arts/Music

r
6

Charlie google Computers/Internet

r
7

Alice aol Computers/Internet

r
8

Charlie drums Arts/Music

r’
1

Charlie piano Arts/Music

r’
2

Bob google Computers/Internet

r’
3

Alice drums Arts/Music

r’
4

Bob guitar Arts/Music

Arts

U Q

Alice
Charlie

violin
flute

Computers

U Q

Charlie
Alice

myspace
aol

R

R’

FIGURE 1. Contents of R, τ and R′ in the example provided in Table 2.

r’
1

Charlie piano Arts/Music

r’
2

Bob google Computers/Internet

r’
3

Alice drums Arts/Music

r’
4

Bob guitar Arts/Music

Arts

U Q

Charlie
Alice

piano
guitar

Computers

U Q

Bob google

R’

r*
1

Bob drums Arts/Music

R*

’

FIGURE 2. Contents of τ ′ and R∗ when trying to deanonymize R′ from the
example provided in Table 2.

III. PRACTICAL IMPLEMENTATION
We present in this section a practical implementation of
our proposal. We describe the architecture and requirements,
before moving to the presentation of the experimental results.

A. INITIAL ARCHITECTURE
We aim at implementing an anonymization method that can
be used by Web Search Engines (WSEs) to anonymize query
logs in a streaming environment, and at server-side (cf.
Figure 3). The input data of the anonymization algorithm is
a continuous stream of categorized query logs. The outputs
are a continuous stream of anonymized logs and a database
of user profiles. To meet the goals of our proposal, we must
ensure that those outputs meet a set of requirements detailed
below.

WSE
Anonymizer

Query
logs

Anonymized
logs

Profiles

FIGURE 3. Our proposal defines a WSE query logs anonymization method in
a streaming environment. The input of the algorithm is a stream of query logs.
The outputs are a stream of anonymized logs and a database of user profiles.

B. FUNCTIONAL REQUIREMENTS
In addition to the restrictions and properties already defined
in Section II, we report next some functional requirements
for the practical implementation of our proposal.

Scalability — It refers to the capability of a system to handle
a growing amount of work, or its potential to be enlarged in
order to accommodate that growth [29]. In our system, the
objective is to achieve load scalability, defined as the ability
to accommodate heavier or lighter loads. Those methods can
be classified in two main categories [30]:
• Horizontal Scalability is related to the ability of a

system to add more working nodes, such as a new com-
puter. Hundreds of small computers may be configured
in a cluster to obtain aggregate computing power. This
approach demands an architecture that allows efficient
management and maintenance of multiple nodes.

• Vertical Scalability is related to the ability of adding
resources to a single node in a system, typically involv-
ing the addition of CPUs or memory. Such approach
could be interesting in a virtualized environment, as it
could provide more resources according to the virtual
node needs. This approach demands an architecture
that allows efficient management of used processes and
memory.

The two models have their own particular benefits and
limitations. If necessary, our proposal should use all possible
assets. In such a case, the design should be integrated into
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existing systems on a WSE architecture. Ideally, our system
can take advantage of underused resources.

Resource Consumption — In order to take advantage of
underused resources on existing architectures, and minimize
system deployment costs, we want a minimal resource con-
sumption. If the designed system is able to use a limited
amount of resources, all necessary data could be kept and
processed in memory, obtaining better execution times.

Speed — We need a fast processing speed to be able to
process all received logs in real time. Otherwise, some kind
of memory buffer will be necessary to keep incoming logs
until processed. That buffer will increment our resource con-
sumption. An additional requirement, in terms of processing
speed, must be defined and only use small buffers at specific
overload times. Nowadays, a WSE receives millions of user
queries each hour. Therefore, our system should handle that
load, to be able to integrate it in a existing WSE architecture.

Efficiency — Beyond reduced resource consumption and
fast processing time, we aim at assuring the algorithmic
efficiency of the proposal. We consider that this requirement
will be achieved if the algorithmic time complexity of our
proposal is linear according to the inputs.

Transparency — We want a straightforward integration of
our approach into an existing architecture. Having a trans-
parent system implies that no component of the existing WSE
should be modified. For this purpose, our module is expected
to be encapsulated within the WSE. It should also be able to
interact to the existing interfaces of the WSE, without forcing
any changes. It should also be able to generate anonymized
logs, while complying with all the previous requirements.

Modularity — We want to have low coupling and high co-
hesion to achieve a fully transparent component. Modularity
has the added benefit that modifications to the proposal could
be implemented with minimal effort, as well as to carry out
tests with different alternatives for the treatment of the data.

C. EXPANDED ARCHITECTURE
The initial proposal depicted in Figure 3 is expanded with
two additional parts: Attacker and Researcher. This allows
a proper empirical evaluation, in addition to the analysis
conducted in Section II. The proposed system is designed
using a micro-service architecture pattern as presented in
Figure 4. For the current study, all the defined systems are
used. In a real WSE environment, only the parts marked as
WSE should be deployed.

Within the expanded architecture, we find two main com-
ponents: anonymizer and profiler. The anonymizer is a com-
ponent implementing Algorithm 1. The profiler creates pro-
tected user profiles, using the categories of each log assigned
to that user by the anonymizer. Those categories are added
to a user profile database in real-time. Each profile on the
database contains a frequency distribution of those categories
queried by the user. They can be seen as user interests that
could be released to third parties, for profit.
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utility
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FIGURE 4. Full Architecture: WSE Anonymizer takes a stream of query logs
and anonymizes them, also generating a database of user profiles. It
implements Algorithm 1 (cf. Section II). De-anonymizer implements
Algorithm 2 and simulates adversarial actions over the anonymized logs. It
tries to recreate the original logs and user profiles. Profile matcher,
responsible of benchmarking anonymization, de-anonymization and
performance, also generates a profile utility metric.

1) Actors
Three actors are defined in our current test architecture:
• WSE — has the responsibility of query logs anonymiza-

tion and publication.
• Attacker — has access to the anonymized stream of

logs, tries to recover the original relationship between
the log and the user who made the original query.

• Researcher — can check all the data, but can not
modify anything, to test the validity of the proposal.

2) Phases
Our study is divided into three main phases:
• Anonymization and profile creation — this phase

represents the normal execution of the system on the
WSE environment. It takes the query logs generated and
anonymizes them, also generating a database of user
profiles.

• De-anonymization — it simulates attacks, trying to
link as much of the anonymized logs with the user that
originally made the query.

• Analysis — it conducts anonymization, de-anonymization
and performance benchmarking, taking into account
original and generated data, time and resource usage.

3) Interactions
In a real WSE environment, the WSE will anonymize the
query logs and release the anonymized ones to its clients
as the main interaction. In our tests, the attacker is act-
ing as a normal client from the WSE point of view. The
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attacker process the anonymized output of the WSE and
generates another log stream, trying to reconstruct original
query logs. Only during the tests, secondary interactions
occur between those actors and the researcher, who receives
original, anonymized and de-anonymized query logs. Some
further information about it is presented in the sequel.

IV. EXPERIMENTAL RESULTS
We report in this section a practical implementation of our
approach, and report experimental tests and results, to vali-
date our approach in terms of privacy, data utility and other
functional requirements.

Experiments were conducted using a Dell notebook run-
ning Ubuntu Linux 16.04 LTS, with a 1.8 GHz Intel
CoreTMi7-4500U CPU and 8GB of RAM. System hard disk
was a Seagate ST1000LM014, whose performance profile is
skewed strongly towards small file I/O, and a below average
overall performance. All algorithms were implemented and
executed in Python 2.7.12.

A. IMPLEMENTATION
Algorithm 1, described in Section II, has been implemented
using the Python language. Input query logs used to test our
system were downloaded from the public available AOL log
repository, in form of plain text files. In order to respect our
transparency functional requirement, we chose to make this
file the main input of our system. However, other methods to
feed logs to the system, such as a real time input via sockets,
could be used. The same applies to system output and we also
decided to store them in plain text files, preserving original
logs’ format. Additionally, a No-SQL database was used to
store generated user profiles.

Because AOL’s released files do not have any classifica-
tion, they need to be categorized by an external categorizer
before any of the proposed algorithms could be applied. We
used a slightly modified version of the deterministic classifier
proposed in previous work [28]. The use of a deterministic
classifier guarantees that the same query will always provide
the same unique category. In case a query triggers multiple
categories, the classifier will always take the most probable
one. Other families of classifiers can be adapted and inte-
grated in our approach thanks to the proposed micro-service
architecture. Classifier modifications allow us to obtain a
query categorization organized in several hierarchical levels.
Some queries contain letters or symbols without any mean-
ing, and some contain no text at all. Our classifier was not
able to resolve those logs, and they were left out of data
used to test the proposal. However, some changes made to
natural language processing algorithms on the classifier lead
to categorize 98% of original logs, an improvement of over
the 85% categorized in [28]. As it is out of the scope of the
current proposal, implementation of the classifier will not
be evaluated. Priority will be given to allow interoperability
between our proposal and different classifiers. Usually, clas-
sification process needs more specific data, related to WSE
environment or desired output categories. Thus, we leave

freedom to each WSE to choose the strategy that best suits
their needs.

We also validate the possible record linkage of the
anonymized stream, implementing three different record
linkage algorithms, and evaluate for each algorithm whose
requirements are fulfilled. In addition, some other changes
that have been made to the initial architecture described in
Section III are discussed below.

B. EVALUATION METHODOLOGY
The algorithmic solution proposed in Section II, and all the
architectural components, requirements and implementation
details defined in Sections III and IV-A, have been used
to conduct an experimental evaluation and comparison to
previous work in [28]. In particular, one version of the
anonymizer, and three versions of the de-anonymizer are
implemented and evaluated in terms of utility, privacy and
functional requirements.

1) Experimental Datasets
For our experiments, we use plain datasets (i.e., text files),
containing query logs released by AOL [31]. The released
AOL data contains up to thirty six million query logs. Such
query logs correspond to a three-month period of real web
search activity conducted by AOL users, and released by AOL
for research purposes. Figure 5 provides a brief sample of the
used logs.

116874 thompson water seal 2006-05-24 11:31:36 1 www.thompsonswaterseal.com
116874 express-scripts 2006-05-30 07:56:03 1 www.express-scripts.com
116874 express-scripts 2006-05-30 07:56:03 2 member.express-scripts.com
116874 knbt 2006-05-31 07:57:28
116874 knbt.com 2006-05-31 08:09:30 1 www.knbt.com
117020 naughty thoughts 2006-03-01 08:33:07 2 www.naughtythoughts.com
117020 really eighteen 2006-03-01 15:49:55 2 www.reallyeighteen.com
117020 texas penal code 2006-03-03 17:57:38 1 www.capitol.state.tx.us
117020 hooks texas 2006-03-08 09:47:08
117020 homicide hooks texas 2006-03-08 09:47:35
117020 homicide bowie county 2006-03-08 09:48:25 6 www.tdcj.state.tx.us
117020 texarkana gazette 2006-03-08 09:50:20 1 www.texarkanagazette.com
117020 tdcj 2006-03-08 09:52:36 1 www.tdcj.state.tx.us
117020 naughty thoughts 2006-03-11 00:04:40 1 www.naughtythoughts.com
117020 cupid.com 2006-03-11 00:08:50

FIGURE 5. AOL log format. Each row represents a query log. Columns
contain, from left to right: user identifier, query submitted, time submitted,
result selected and result URL.

The Classifier (cf. Section IV-A), adds to each log record
an additional column with a hierarchical classification in
form of a list with n elements. In our case, nwas between one
and 13, and each element of the list represents a subcategory
of the previous element. This classification is generated inde-
pendently of the anonymizer. Therefore, this list contains all
the subcategories which the Classifier is able to generate for
a given query, regardless of the ` used by the anonymization
process.

2) Conducted Tests
Proposed system could be configured using two parameters:
k and `, being k the desired number of different users
on each category and ` the maximum depth of categories
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and subcategories used for each record. Several tests were
conducted to determine its effects.

Anonymizer — to generate anonymized data, proposed
anonymizer was executed on all available AOL logs multiple
times, to cover different k and ` values. k has taken values
between 3 and 200 to be able to compare obtained results
with previous ones [28]. To do this, Algorithm 1 needs to be
tested at least using ` = 1. We decided to test all available
` values, that with our classification correspond to values
between one and 13, but we found that from 11 onwards,
differences were not significant: few logs have more than
11 categories of depth. Our privacy, functional and utility
requirements are checked for every combination of k and `.

Profiler — specific tests were conducted with the profiler,
to determine the amount of data utility that could be lost
with anonymized profiles creation respect to unanonymized
profiles. For those tests, we used k values between three and
90 and ` values between one and 13.

De-anonymizer — a de-anonymization has been attempted
against all anonymized data. All anonymized data was tested
against three different record-linkage algorithms:
• Record-linkage 1 — This is the simplest record-linkage

algorithm we tested. It tries to apply an inverse transfor-
mation to anonymized query logs by applying a similar
algorithm to the one used in the anonymization process
(cf. Algorithm 1 in Section II). In short, it tries to
recreate original logs by randomly matching users and
queries from the same category. Attacker also takes
advantage of both restrictions 1, 2 to achieve higher
levels of de-anonymization.

• Record-linkage 2 — It improves the performance over
Record-linkage 1. Instead of randomly matching users
and queries, it assigns the user that appears more times
on a category to the selected query. Just like other
algorithms, both restrictions are respected.

• Record-linkage 3 — It keeps track of how many times
a user issued a query on each category, constantly
updating a simplified user profile. When the algorithm
needs to assign a user to a query, the user with more
issued queries on that category will be chosen. If a user
appears more than one time, the result will be multiplied
by the number of appearances of that user, balancing
the importance between current state of the system and
historical values.

C. PRIVACY STUDY
Our privacy test compares original query logs data with the
anonymized ones. Results for this base case show that none
of the original pairs of user/query appear on the anonymized
query log. Notwithstanding, that result did not guarantee
full user privacy, since some attacks are possible over the
output data flow, and some user logs may be re-identified.
Three different record-linkage algorithms were applied to
the anonymized query logs (cf. Algorithm 2). Resulting logs

were compared to the original ones, counting the percentage
of matching records.

Our de-anonymization algorithms proposal is based on Al-
gorithm 2, that is similar to Algorithm 1 used in anonymiza-
tion. It uses the stream of anonymized logs generated by the
WSE as the main input. It also needs k and ` parameters
(explained in Section II). The smaller the difference between
k and ` values used in both algorithms, the better the results
obtained from de-anonymization. In other words, the attacker
will be able to re-identify the original data more easily.

The stream of anonymized logs is classified in the same
way as the original one, since we assume that categorization
is public and the attacker can use it. Therefore, the de-
anonymization process uses the same categorization, which
enables this algorithm to obtain the best de-anonymization
rate when trying to recover the original logs.

The main difference with the anonymizer algorithm is
the use of record_linkage function, different for each im-
plementation of the de-anonymizer algorithms. The most
complex de-anonymizers also use additional data structures
to improve de-anonymization performance. Differences of
each algorithm are fully explained in Section IV-B2.

For analysis purposes, we need to evaluate the amount of
memory and time used in each algorithm execution, there-
fore, previous algorithms were modified to calculate those
values. An additional algorithm must be defined to find the
number of logs that are identical comparing two log streams.

Figure 6 shows percentage of matching records, executing
the three algorithms with values of k between three and 200
and values of ` between one and 13. With ` = 1, only one
level of the tree structure was used, which results in a data
structure equivalent to the one used in our former paper [28].
` = 13 is the maximum depth that our classifier was able
to generate. Thus, there is no need to use higher ` values.
We also picked out k values to be able to compare results
between our current and former evaluation.

In all cases, results are under the theoretical maxi-
mum probability 1

k of being re-identified [32]. We ran the
Kolmogorov-Smirnov goodness-of-fit statistical test [33],
[34] to compare the k-anonymity probability with the exper-
imental results, Figure 7. The maximum difference between
the cumulative distributions, D, is 0.08 with a corresponding
p-value of 0.9977. Therefore, the statistical test yields to
acceptance of the null hypothesis that our results follow k-
anonymity’s probability of re-identification (at the 5% level
of significance).

Each record-linkage version improves re-identification
rate, being the third version the one that obtains better results
overall. k value was highly correlated with privacy, because
when the value of k increases, record linkage decreases. `
also affects privacy. With a higher number of levels (high
` value) users were matched with more specific queries,
therefore, it was also more probable to obtain a correct re-
identification of the original user. Here, we face a trade-off
between privacy and data utility.
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FIGURE 6. Record linkage (%). Percentage of matching records, executing the three de-anonymization algorithms with values of k between three and 200 and
values of ` between one and 13.).
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FIGURE 7. Comparison between cumulative fraction functions of the
theoretical k-anonymity (dashed) and experimental results (solid). Used for the
Kolmogorov-Smirnov test (D = 0.08, p-value= 0.9977).

Results obtained this way, are close to the ones obtained
in our previous article using the proposed algorithm without
restriction, since now the effective size of the category sets
are closer to the k value specified as a parameter. However,
on average a better anonymization is obtained, since the size
of Q must be temporarily increased to meet the restrictions 1
and 2.

Figure 8 shows mean final | Q | values, related to ` and
initial k value. For low ` values, mean final | Q | values
are higher because they have less categories results and more
user coincidences on the same category. However, with small
k and ` values, the high number of queries that passes through
each category counter this effect. With higher ` values, final
| Q | values tend to match up with specified k.

The highest record linkage is obtained with highest `
and lowest k values. Our best de-anonymizer algorithm
was able to link 23.18% records to the original user. De-
anonymization tests were conducted knowing exactly all

|Q
|

FIGURE 8. Final | Q |-value, as the mean size of queries’ sets. For low `
values, final | Q | is higher due to more user coincidences on the same
category. With higher ` values, final | Q | tend to match the specified k.

algorithms, categories and variables used for anonymization.
This ratio decreases quickly when initial k value is increased,
obtaining a record linkage lower than 1% from k values
greater than 90. In conclusion, desired record linkage level
could be adjusted by modifying the k value, even offsetting
the effect of ` variations on the record linkage.

D. UTILITY STUDY
We proceed to analyze the utility of the proposed anonymizer.
This analysis has been focused on two different aspects:

• Percentage of logs that the system can generate as an
output.

• Preservation of original user’s interest in anonymized
user’s profiles.

First, we want to analyze the percentage of logs that can
be generated by the system over the total number of logs
that it gets. The proposed system uses sets, and each set must
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have at least k different users before being able to release an
anonymized log. A possible drawback to this approach is that
some sets do not reach k users and, therefore, the logs con-
tained in this set do not end up leaving the system. As we can
see in Figure 9, this effect exists and it is directly proportional
to the depth of the category tree. This is consistent, since with
more depth, more categories are created and the minimum of
k users on these categories is reached more slowly. However,
we see that as more queries enter the system, all categories
become filled with queries and the percentage of log output
increases, tending to a 100% rate for any depth of the tree.
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FIGURE 9. Output queries vs. total queries (%). Some sets take a while to fill.
This effect is directly proportional to the depth of the category tree as more
sets need to get k different users.

Secondly, to measure the preservation of original user’s
interest in anonymized user’s profiles, we will measure the
distance between them, using a metric known as Earth
Mover’s Distance (EMD) [35]. We calculate the distance
between the categories of queries assigned to the original
profile and the anonymized profile. As our classification of
categories is stored in a tree graph, this distance is defined as
the minimum length of the path that connects the categories
assigned to the original and anonymized query. Once we have
calculated the distance between individual queries, we add
all the distances of that profile and, thus, we obtain the total
distance between profiles.

Notice that if two queries are classified and anonymized
with the same category, there is no distance between the two
queries and there is no utility loss. This happens to all the
queries when the depth of the tree is set to 13. However, other
tree depths can lead to utility loss. For instance, in the exam-
ple of Table 2, “piano” is classified as “Arts/Music” but the
anonymizer is just using “Arts”, since the value of ` is equal
to 1. Queries classified as “Arts/Music” and “Arts/Painting”
are mixed in “Arts” and assigned to different users. A third
party could think that Alice is interested in “Painting”, when

she is just interested in “Music”. i.e., there is a certain degree
of utility loss. Since the third party still knows that Alice
is interested in “Art”, we can see the previous case as an
example of partial utility loss. Therefore EMD represents the
distance between the original user’s interests, and the ones
that are deducted from the anonymized queries.

In Figure 10, we can see the average value of the EMD dis-
tances, as well as the maximum theoretical distance between
profiles using the chosen categorization. This theoretical
maximum distance is constant, regardless of which ` and
k values we use. The real distance we get is not affected
by k, but is inversely proportional to `. This means that
the more levels we use in our anonymizer, the closer the
anonymized queries get to their original category and we
obtain a better data utility. In Figure 10, we can see the loss of
utility expressed as a percentage. Using this metric, it can be
seen that with ` = 1, loss of utility is over 40% on average.
With ` = 6, the loss of utility is near to 0%, according to our
definition of utility.

E. FUNCTIONAL STUDY
Next, we detail the accomplishment of proposed functional
requirements.

1) Modularity
To allow a modular system, this has been designed as a
set of micro-services. As our proposal uses micro-service
architecture, it will be easier to modify and adapt when
applied to different environments. In addition, this design
helps each service to focus only on a specific process. By
doing so, we achieve a system with low coupling and high
cohesion. The anonymization service has been thoroughly
explained. This service can be connected to other modules
such as categorization and profile creation.

2) Scalability
The proposed system can be scaled, both vertically and
horizontally. Vertical scalability is achieved by varying the
number of resources assigned to the system. These resources
can be added either in form of memory or CPU cycles.
Horizontal scalability can also be achieved by activating or
deactivating different instances in parallel. In addition, with
the proposed anonymizer, the value of k could be dynami-
cally adjusted, which also allows to improve the scalability
of the system using it in a wider range of situations.

3) Speed
Speed of the anonymizer and deanonymizers was tested. All
the results that are shown correspond to the time required to
completely treat a query using a single thread of execution
on a single core. All the proposed algorithms can be used in
parallel, achieving a better system throughput.

The fastest execution was achieved with k = 3 and
` = 1, where on average a query was processed in 18.99
µs. Therefore, the system can handle up to 52659 queries per
second, on average.
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FIGURE 10. (a) Maximum theoretical distance between profiles, constant, and average EMD distances, inversely proportional to `. (b) Loss of utility (%), the more
levels we use in our anonymizer, the better data utility.

Average processing time per query was 33.68 µs, or 29691
queries per second. It includes executions with all the k and
` values we have tested. Compared to our previous proposal
where we obtained 22 µs per query, we see that the system
is slower on average, but with greater data utility. However,
depending on which parameter values are used, the system is
faster than our previous proposal, as described below.

FIGURE 11. Anonymizer mean time per query (µs). `-value has little effect on
required time, k-value has a greater effect.

Speed of the anonymizer is affected by k and `. If we
look at Figure 11, we can see that changes in the value of `
have little effect on required time. Contrarily, changes in the
value of k have an important effect. For example, for k = 3
the system can process a log in about 18.99 µs. This value
reaches 49.71 µs with a a value of k = 190. Taking into
account that Google treats an average of 40000 queries per
second (cf. Ref. [36] and citations thereof), a thread of our
algorithm could handle all real-time queries, using k-values
up to 50 with any value of `, according to our test results.

The same analysis has also been done with proposed de-
anonymization algorithms. Results can be seen in Figure 12.

The first de-anonymizer approach obtained results compa-
rable to the anonymizer. This was expected since in both
cases the same base algorithm was used. Second and third de-
anonymizers, which perform more complex operations, are
also slower and more affected by increases in k-values. In all
cases, we see that variations of `-values are less important.

4) Delay
Another factor that we consider important to evaluate is
the average delay of queries between entering and leaving
the system in form of anonymized query logs. Figure 13
shows this delay as the mean number of other queries that
enter the system during the period between the entry and
the release of a given query. As we can see, this delay is
increased proportionally to the chosen `-value, but it ends
up stabilizing. This is reasonable, since the system needs
to fill categories initially and once this happens, the output
stabilizes.

Taking as reference the 40000 queries per second that
Google receives (according to Ref. [36]), we see that our
system’s output stabilizes in a few minutes for larger values
of `. Once the delay is stable, our system takes less than one
second for values ` ≤ 6, and does not reach two seconds for
larger values of `.

5) Resource Consumption
Notice that our algorithms do not use any disk space, there-
fore only memory consumption needs to be evaluated.

We have identified the variations in `-value as the main
parameter that affects resource consumption. Memory con-
sumption increases when a new level of depth is added to the
tree, in proportion to the number of effective categories that
are added (cf. Table 3). Categories were created dynamically,
depending on query’s classification, therefore a different data
set will generate different categories. At the end of our tests,
we used a maximum of 194505 categories, in a tree with
depth thirteen.

With our test data, we see that most records are classified
at depths between five and seven, although we found a
maximum depth of thirteen. As we increase depth, there
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FIGURE 12. De-anonymizer mean time per query (µs). First de-anonymizer obtained comparable results to the anonymizer. Second and third de-anonymizers,
which are more complex, are also slower and are more affected by increases in k-value.
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FIGURE 13. Queries delay, as the mean number of other queries that enter
the system during the period between the entry and the leave of a given query.
Once the categories are full, the output stabilizes.

are fewer queries that can be classified at the last levels,
using the same data and the same classifier. Although we
increase the value of ` the effective number of categories
created is marginally increased from this point. This also
causes memory consumption to stabilize. Let us illustrate
the previous observation with an example. Given a query
classified as "a:b:c:d:e" if we use an ` equal to 4, the level 4
vertex "a:b:c:d" is used for anonymization. If we increase ` to
5, or a higher value, we use for anonymization the complete
category, i.e. level 5 vertex "a:b:c:d:e", even if we use an
` = 13.

On the other hand, we can see that k adds a multiplica-
tive factor in the consumption of resources, depending on
the number of existing effective categories. The results in
Figure 14, only show the maximum memory consumption.

Regarding different algorithms set forth, both anonymizer
and de-anonymizer 1 show the same memory consumption
profile. De-anonymizer 3 is the algorithm with higher mem-

` Added categories Total categories
1 16 16
2 537 553
3 5 523 6 076
4 21 786 27 862
5 36 806 64 668
6 35 543 100 211
7 39 998 140 209
8 26 914 167 123
9 16 863 183 986
10 7 863 191 849
11 2 143 193 992
12 441 194 433
13 72 194 505

TABLE 3. Number of categories added with each increase in `-value and total
categories of a tree with ` depth. Although we found a maximum depth of
thirteen, we see that most records are classified at depths between five and
seven.

ory consumption. This is because that algorithm creates user
profiles in memory and therefore is reasonable that it uses
more resources. Anonymizer and de-anonymizers 1 and 2
should not use more memory than the reported, regardless
of the volume of logs they deal with. However, this is not the
case of deanonymizer 3, as when it creates new user profiles,
it increases the memory consumption.

6) Efficiency
As we have seen in the previous sections, a lightweight
method has been defined. It allows the logs to be quickly
processed with reduced resource consumption.

Studying the anonymizer we see that both delay and
memory consumption vary initially, because the system starts
empty and the sets must be filled. As we have seen, once the
sets achieve k elements, these values stabilize. On the other
hand, the processing speed of a log depends on the value of
k and `, but it remains constant throughout each test set.

Analyzing the proposed algorithm, we can see that each
log is only treated once. This allows us to equate its ef-
ficiency with well known singly-linked list traversal algo-
rithms. Therefore, the algorithmic time complexity of our
proposal is linear regarding to the input and could be estab-
lished as O(n).
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FIGURE 14. The value of ` is the main parameter that affects memory consumption. The value of k adds a multiplicative factor. Both the anonymizer and
de-anonymizer 1 show the same memory profile. De-anonymizer 3 is the algorithm with higher memory consumption, because it creates user profiles in memory.

7) Transparency
The input of the system should be a stream of classified query
logs that can be obtained from the WSE. In case that only
unclassified logs are available, a classification micro-service
could be implemented and added to the WSE architecture,
as we previously showed in Ref. [28]. In case that classified
logs are available, those logs could be used without further
modifications. Our system generates an anonymized stream
of logs, preserving the existing structure. From the point of
view of an existing client, generated output will be com-
pletely indistinguishable of the original one. Therefore, total
transparency is reached.

V. RELATED WORK
Our work relates to the use of privacy-enhancing technolo-
gies (PETs) applied to the web search paradigm. Figure 15
shows and positions a classification of PET proposals de-
signed to protect the users’ privacy in front of WSEs — on
the basis of previous classifications [37]–[39]. The classifica-
tion identifies two main actors: users and WSEs. The first
group contains proposals that protect users’ privacy at the
WSE side, without the need for users’ participation. They
are asynchronous and transparent to the users. Our proposal
falls under this first category. The second group includes
approaches that protect users’ privacy without any help from
the WSE, i.e., when users do not require any changes at
the server side of the WSE. The third group comprises ap-
proaches that require a certain level of cooperation between
users and WSEs. The latter are not considered as server-side,
since users actively participate in the process — when WSEs
do not cooperate, it is assumed that users immediately detect
them. In the sequel, we report related work under all three
categories.

A. SURVEY ON SERVER SIDE PROPOSALS
WSEs aim at anonymizing data while minimizing informa-
tion loss, for profit purposes. Our work is focused on this
assumption. The goal is to commercialize releases of the
protected set of query logs to third-parties. Anonymization
solutions to reach such a goal can get classified according to

anonymizaiton inputs. Most solutions are either processing
fixed-length (e.g., block-based) or data-stream inputs.

1) Fixed-length Inputs

In the case of fixed-length inputs, existing proposals consider
a set of finite and static data structures. Each set contains all
the elements to be anonymized. The protection of the whole
dataset is conducted as a two-step process, first analyzing all
the dataset elements, then processing them. Some represen-
tative solutions under this category are presented next.

Suppression — The anonymization of the dataset is con-
ducted by eliminating those elements which, in isolation or
combination, may reveal sensible information. The analysis
of the dataset assumes either statistic or semantic methods, to
identify which elements require suppression.

Examples of suppression under the context of query logs
anonymization exist in the related literature [40]. The dele-
tion of identifiers such as social security numbers, physical
addresses, bank accounts or any another identification data
related to the user, are traditional examples of suppression
in the literature [41]. Nevertheless, the AOL incident reveals
the limitations of this approach [22]–[24]. The existence
of quasi-identifiers in the AOL dataset, and the complexity
of identifying their combinations, were proven enough to
re-identify AOL users via traditional log correlation tech-
niques [21].

The suppression of infrequent queries is another ap-
proach [13]. It aims at suppressing those queries that are
likely to contain identifying or quasi-identifying information.
The approach requires the definition and accomplishment
of thresholds. Since queries may appear only a limited
number of times [14], the elimination of a significant number
of non-identifying queries becomes a complex and error-
prone task. The approach can be complemented by selecting
those queries resulting from clicking on common URLs, i.e.,
by establishing a correlation between clicking and quasi-
identifiers [10]. Another possibility is the representation
of query logs using graph theory [9]. Nodes are seen as
user queries. A query is connected to other user queries
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WEB SEARCH PETs

SERVER-SIDE

Fixed-length Inputs

Suppression

Generalization

k-anonymity

Differential Privacy

Data-stream Inputs

Rank Swapping

Differential Privacy

Probabilistic k-anonymity

CLIENT-SIDE
Obfuscation Techniques

Standalone Systems

Distributed Systems
Anonymous Channels

COLLABORATIVE WSE-CLIENT

Private Information Retrieval

Platform for Privacy Preferences (P3P)

Context-based Retrieval

FIGURE 15. Classification of Web Search Privacy Enhancing Technologies (PETs).

whenever the intersection of their clicked URLs sets is non
empty. The anonymization process is done by iteratively
suppressing those queries that return less than k documents.
Those queries that considerably contribute to the query graph
(i.e., queries with partial or full target URLs) are considered
vulnerable and suppressed.

Generalization — Another approach used to provide
anonymity is based on the generalization of domain rela-
tionships, i.e., by analyzing the values that the associated
attributes can assume. The concept of minimal generalization
seeks to maintain the lowest possible distortion levels of
the processed datasets [42]. Top-down approaches, using
lexical and semantic databases to conduct general-purpose
generalizations have also been proposed [43], [44]. The idea
is to transform groups of input queries to common conceptual
abstractions (e.g. football and tennis as sports), in order to
make users who performed similar queries indistinguishable.
The main limitations associated to these approaches rely
on the construction of generic dictionaries associated to
those words or concepts to anonymize. This may require,
moreover, specific adaptations based on the language used
on the original datasets.

k-anonymity — The property of k-anonymity [27] was
proposed to minimize the risk of record-linkage. A k-
anonymized dataset has the property that each record is
indistinguishable from at least k− 1 other records. This way,
no individual can be re-identified with probability exceeding
1
k through linking attacks.

Current approaches propose methods of Statistical Disclo-
sure Control (SDC) to transform query records into anony-

mous logs, while reducing the amount of query deletion [45],
[46]. Logs of similar queries are used to group users, and
later their queries are rewritten by a prototype query. This
makes them indistinguishable [47]–[51]. Users and queries
are conserved, although queries are transformed to reduce the
risk of disclosure. Similar approaches propose the generation
of fake messages to mix them with the legitimate ones [52]
or masking infrequent queries using a more general frequent
query [53] to achieve levels of privacy comparable to k-
anonymity.

Differential Privacy — Initially described as a solution to
manage the risk of identifying users participating in a given
dataset [54], interactive scenarios of the same approach do
also exist [55]. The initial scenarios associated to differential
privacy expect queries accessing partial information of the
dataset. However, when intelligently conducted, such queries
may end up revealing information from the original users.
For that reason, interactive improvements are expected to
evaluate how far queries get through, to deny responding
whenever a limit is bypassed. Since the protected outputs
may still preserve some statistics (e.g., query suggestions
and spelling corrections), extended proposals aim at further
limiting the risk of information disclosure in such returned
statistics [10].

Authors in [56] propose a technique in which samples
with high utility are selected to become the representative
records in each cluster, i.e., to achieve the objective of leaking
less privacy and releasing more useful information. Other
proposals [57], [58] pose the addition of Laplacian noise
to the logs, to preserve privacy. However, the more noise is
added, the more data utility gets reduced.
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2) Data-stream Inputs
This approach allows to treat data partially. The system does
not need all the data to start dealing with. It also makes pos-
sible a partial treatment of the data. This approach is able to
generate data outputs with a minimum delay [59]. In addition,
it also opens the doors to deal with very large datasets, even
infinite ones. Still, protecting the privacy of very large data
streams continues to have some difficulties [60]. Next, we
survey some representative solutions under this category.

Rank Swapping — The method was first described for
numerical variables [61], although initial ideas associated to
swapping data exist in other previous areas [62]. We can also
find other approximations [63], [64]. In all such cases, the
proposals only consider structured data. This is because the
data is sorted by the value of an attribute and then exchanged
with a randomly selected value (the nearest ones in the
rank) [65].

Differential Privacy — The differential privacy approach
can also be applied to anonymize data-streams [66]. In this
case, there is no release of the original query, but a synthetic
one, obtained using semantic similarity. The lack of structure
in query logs, combined with new terms which may not be
present into the semantic database, could represent a chal-
lenge for this approach. Another limitation using differential
privacy in a streaming environment is to maintain a fixed
privacy level. It is possible that no more data can be published
in order to preserve the privacy of users.

Probabilistic k-anonymity — The concept of probabilistic
k-anonymity relaxes the indistinguishability requirement of
k-anonymity [67]. It only requires that the probability of re-
identification is maintained, with regard to the case of k-
anonymity. By relaxing the indistinguishability requirement,
a better use of the data may be accomplished. Moreover,
logs can be released containing the original queries. On the
negative side, given the continuous generalization of unstruc-
tured dataset elements, a certain imprecision is added to the
generated profiles. Existing limitations in the related litera-
ture [28], [68] is in terms of classification methods, which
are very basic. Hence, the number of resulting categories is
low, leading to higher degrees data utility loss.

B. SURVEY ON CLIENT SIDE PROPOSALS
One may argue that WSEs have no motivation to protect
the privacy of users. Indeed, users may be seen as the only
interested party responsible to protect data privacy. Under
this assumption, we find some protection approaches which
do not expect any collaboration between WSEs and users.
Such approaches can be classified in two main categories: i)
obfuscation techniques and ii) anonymous channels. Obfus-
cation techniques generate noise to distort the user’s profile
managed by the WSEs. Anonymous channels assume an in-
frastructure between users and WSEs to handle the profiling
of activities. The use of client side techniques are assumed to

generate non-realistic profiles that may have an adverse effect
on the services provided by WSEs.

1) Obfuscation Techniques
Early techniques assume the introduction of random queries
(e.g., fake queries), in order to obscure users’ profiles. Ran-
dom queries must be indistinguishable from the real queries.
This property is known as unobservability. Representative
solutions based on obfuscation techniques can be classified
according to the number of users that participate in the proto-
col. We have standalone solutions and distributed solutions.
Standalone solutions assume individual users handling their
own privacy in front of the WSEs. Distributed solutions
assume groups of users working together to protect the
privacy of each user. Next, we provide some examples for
each category.

Standalone Systems — These schemes generate synthetic
queries that are used to hide the real queries of the users [69]–
[77]. Synthetic queries are submitted together with the real
queries, obfuscating the profiles that the WSE owns for each
user. If the synthetic queries are in some way semantically
related to the user’s queries, the obfuscated profile will still be
usable, i.e., the WSE will be able to personalize the user’s re-
sults. When the synthetic queries are semantically unrelated
to the user’s queries, the profile will be heterogenous and
the personalization will be less accurate. This does not mean
that one alternative is better than the other, since users may
have different preferences regarding of the trade-off between
privacy and utility. Some works show that it is possible to
distinguish real queries from synthetic queries [73], [78]–
[80]. These works rely on the idea that machine-generated
queries do not have the same features as human-generated
queries.

Distributed Systems — These schemes require the col-
laboration of a group of users that work in partnership to
protect their privacy, i.e., they hide their actions within the
actions of many others [81]–[87]. Typically, these schemes
put users into a large group where they submit requests
on behalf of other members. Users exchange their queries.
Personalization is only possible if the members of the group
share the same interests [37]. In some proposals [81]–[83],
there is a central node that poses a bottleneck in the overall
system performance. In other cases, one type of path [81],
[84]–[87] is created to submit the query or a group of users
must be created [81]–[83]. In both cases, a significant delay
is introduced [37].

2) Anonymous Channels
The proposals under this category use anonymous infrastruc-
tures [88], [89] in order to send users’ queries to the WSE.
By concealing users’ identity associated to the queries, WSEs
are assumed to be unable to profile users. However, this may
affect the quality of the service offered by the WSEs to the
users.
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Chaum’s mix networks [90] are representative cases of
solutions under the category of anonymous channels. Mes-
sages pass through several nodes. Each node disassociates
the input messages from the output messages, by means
of cryptography [88], [89]. Evolved techniques assume the
use of proxies [91], relying connections (e.g., queries) from
users to the recipients (e.g., the WSEs). The key concept is
that proxy delivers the messages but does not disclose the
source (e.g., the user’ identity). DuckDuckGo1, Start Page2

and Yippy3 are some significant examples using proxy-like
infrastructures. By using these solutions, users transfer their
trust from WSEs to the proxies (i.e., users must assume that
proxies do not monitor or log their traffic).

Web MIXes [92] provides anonymous and unobservable
real-time Internet access. It incorporates an authentication
mechanism in order to prevent flood attacks. Additionally,
it includes a feedback system with an interface that informs
users about their current level of protection. However, some
flaws in their authentication process may allow external
attackers to perform replay attacks [93]. The synchronous
nature of Web MIXes may also end in problems when dealing
with asynchronous TCP/IP networks [94].

The use of onion routing [95] to establish anonymous
channels under the context of queries and WSEs has also
been proposed in the literature [96]. General purpose plugins,
and modified web-browsers4 using the Tor Project [97], are
user-friendly solutions based on the onion routing paradigm.
Nonetheless, several weaknesses have been reported [98].
Tor does not attempt to offer security against passive global
adversaries [89]. Similarly, the Invisible Internet Project
(I2P) [99] builds an anonymous network layer designed to
be used for anonymous communication.

C. SURVEY ON COLLABORATIVE WSE-CLIENT
PROPOSALS
Solutions under this category assume that users and WSEs
work together in order to protect users’ privacy. Next, we
report solutions under this category in three main groups:
i) Private Information Retrieval; ii) Platform for Privacy
Preferences (P3P); and iii) Context-based Retrieval.

1) Private Information Retrieval
Private Information Retrieval (PIR) schemes [100]–[103]
enable users to obtain information from a database privately,
i.e., the server cannot know what information was retrieved.
Through a PIR scheme, users can search the documents
stored in the database and recover those of their interest. The
problem of submitting a query to a WSE while preserving
the user’s privacy is equivalent to the PIR problem. However,
PIR schemes suffer from two practical problems that make
them not appropriate for WSEs [82]: PIR schemes are not

1https://duckduckgo.com/
2https://www.startpage.com/
3https://www.yippy.com/
4https://gitweb.torproject.org/tor-browser.git/

suitable for large databases, and users are assumed to know
the precise location of the records to be recovered.

2) Platform for Privacy Preferences (P3P)
The Platform for Privacy Preferences (P3P) [104], [105] was
created by the World Wide Web Consortium (W3C) with the
objective of making easier for users to obtain information
about the privacy policies of the sites that they visit. P3P is a
framework through which users can automate the protection
of their privacy. They can define their privacy preferences
and, when a website does not conform to these preferences,
then P3P-enabled browsers may alert the user and even take
pre-established actions (e.g., deny access to cookies). The
Do-Not-Track initiative [106] is a policy-based P3P system
in which HTTP headers request web applications not to track
users. The web application must be P3P-complaint in order to
be effective. It has been studied in several works [107]–[109]
and standardized by W3C. However, it is considered as an
obsolete protocol nowadays. In fact, P3P-like solutions have
been criticized due to the impact that governmental laws may
have over users [110], the lack of follow-up from websites
w.r.t. privacy-protection mandates in their legal jurisdictions
(e.g., compliance difficulties of websites to enforce their
own privacy policies) [111], and low number of potential
adopters [112].

3) Context-based Retrieval
Context-based retrieval proposals aim at storing user profiles
(e.g., search history) on the client’s machine. This infor-
mation allows to obtain users’ interests and re-rank search
results according to them. WSE and users participate to-
gether in the searching process in order to obtain the final
results, i.e., the WSE receives the query and returns the
results. Then, these results are re-ranked at the client-side.
The User-Centered Adaptive Information Retrieval (UCAIR)
project [113] collects and exploits available user context from
submitted queries and clicked results. Similar schemes allows
users to choose the content and degree of details of their
profiles exposed to the WSE [114]–[116]. In the end, users
determine the profile content that is revealed to the WSE
when a query is submitted. The adjustment of parameters
associated to the stored profiles is possible, in order to
improve the quality of the results. Potential disadvantages
of these proposals relate to performance and effectiveness
limitations of results ranked at the client (i.e., much less
effective than ranking the results at the server side) [113].
Moreover, it is expected that WSEs can still profile users after
several executions of the approach.

VI. CONCLUSION
A formal approach for the anonymization of WSE query logs
has been presented. Our proposal allows to publish query
logs without any other modification than eliminating di-
rect identifiers and equivalent user re-assignment categories.
This contrasts with existing approaches that release heavily
modified data, either distorted or generalized, to maintain
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anonymity. In addition, our proposal allows some degree of
configuration, using two main parameters:

• k to adjust the level of diversity on each category.
• ` to adjust the amount of available categories.

This parameterization allows to adjust privacy and utility
levels of generated logs according to the needs of each
application.

Three algorithms have been evaluated performing an at-
tack to the anonymized data, using the most favorable sce-
nario for the attacker, i.e., when the attacker knows the
algorithms used by the WSE, all the parameters and the data.
The attacker has access to the anonymized log stream, but not
to the original logs. Tests with this context and several values
of k and ` were conducted.

Our best record-linkage attempt re-identified 23.18% of
original logs with the lowest k-value, highest `-value and
using the most complex record-linkage algorithm, which
is also the one that needs more resources. With the same
parameters, using the simplest record-linkage algorithm we
get an 18.36%. These results are reduced rapidly, recovering
less than 1% of original logs when using values of k over 100.
Variations in the values of ` do not have a representative im-
pact in terms of record linkage, but they do offer a significant
improvement in terms of data utility.

Our proposed ideas were tested using the AOL released
logs, showing the feasibility of our solution over real envi-
ronments. The application of our work is sufficient to gen-
erate anonymized logs that meet representative criteria, e.g.,
release of anonymized data to third parties. Our solution can
handle the equivalent to Google’s average load, using only
one execution thread per testing environment. To evaluate
log’s utility after anonymization, we have measured distances
between user profiles using Earth Mover’s Distance. We have
found that using an `-value of one, a 42.03% of utility was
lost. Using `-values of six or more, less than 1% of utility
was lost.

There are several avenues for improving our work. Addi-
tional categorizers may be proposed, for example using artifi-
cial intelligence systems to perform query analysis. Another
improvement is to consider dynamic `-values, both globally
or for some specific category branches. System performance
could also be tested in a distributed node environment,
where each node is responsible for processing a part of the
queries. A real-time record linkage analysis could be added
to ensure that we only publish records that meet a certain
threshold of privacy. Finally, some experiments could be
conducted with queries’ time, both with anonymization and
de-anonymization algorithms, to improve their performance.
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