SMARTCOP — A Smart Card Based Access Control
for the Protection of Network Security Components

Joaquin Garcia-Alfarg Sergio Castilld, Jordi Castella-Rocéa
Guillermo Navarrd, and Joan Borrell

! DEIC/UAB, 08193 Bellaterra (Catalonia), Spain
Email: {jgarcia,scastillo,gnavarro,jborré@deic.uab.es
2 DEIM-ETSE-URYV, 43007 Tarragona (Catalonia), Spain
Email: jordi.castella@urv.net

Abstract. The protection of network security components, sucfiragallsand
Intrusion Detection Systemis a serious problem which, if not solved, may lead
a remote adversary to compromise the security of other coerie, and even
to obtain the control of the system itself. We are actuallykivgg on the devel-
opment of a kernel based access control method, which egey@and cancels
forbidden system calls potentially launched by a remoteciér. This way, even
if the attacker gains administration permissions, shemnillachieve her purpose.
To solve the administration constraints of our approachyseea smart card based
authentication mechanism for ensuring the administraidgntity. In this paper,
we present an enhanced version of our authentication msthabased on a
public key cryptographic protocol. Through this protoaaly protection module
efficiently verifies administrator's actions before gragtiher the privileges to
manipulate a component.

1 Introduction

Network security components, such as dinelvalls andIntrusion Detection Systems
are almost always working with special privileges to exedbeir tasks. This situation
can allow remote attackers to acquire these privileges arfdnm unauthorized activi-
ties [2]. The existence of programming errors within theeeofithese components, the
illicit manipulation of their related resources (e.g., ggsses, executables, and config-
uration files), or even the increase of privileges througérafing system’s errors, are
just a few examples regarding means in which a remote adyaraa bypass traditional
security policy controls.

In [4] we presented a protection module integrated into #radl of an attack pre-
vention system intended to intercept and cancel forbidgstem calls launched by a
remote attacker. More specifically, the mechanism we ptedeawvoids escalation at-
tacks through an access control scheme which handles tteepom of the system’s el-
ements. Indeed, this scheme prevents that potentiallyatang system calls (e.g., can-
cellation of a process) could be produced from one elemeaihagganother one. The

* This work has been partially funded by the Spanish MinistiySoience and Technology
(MCYT) through the projects TIC2003-02041 and SEG2004524804-01, and the Catalan
Government Department DURSI, with its grant 2003FI-126.

protection is hence achieved by incorporating an accedsatomechanism that may al-
low or deny a system call based on several criteria — sucheadéntifier of the process
making the call or some of the parameters passed to it.

The approach presented in [4] allows, moreover, to keep &waythe necessity of
trusting special users with privileged rights, by deleggithe authorization for the exe-
cution of a given system call to the internal access conteslmnisms. Therefore, and
contrary to other approaches, it provides a unified solyigoiding the implementation
of different specific mechanisms for each component, andreimig the compartmen-
talization principle [10]. This principle is based in thegsgentation of a system, so
several elements can be protected independently one frothem This ensures that
even if one of the elements is compromised, the rest of themoparate in a trusted
way. For our job, several elements from each component @euéd as processes. By
specifying the proper permission based on the process fiih$tance, we can limit the
interaction between these elements of the component. Iftackar takes control of a
process associated to a given component (through a bufeflaw, for example), she
will be limited to make the system call for this given process

Nevertheless, it is not always possible to achieve a compidependence between
the elements. There is a need to determine which systemnaijlde considered as a
threat when launched against an element from the compoReistrequires a meticu-
lous study of each one of the system calls provided by theckerfra given operating
system, and how they can be misused. We must also define thgsamantrol rules for
each one of these system calls. For our approach, we profitséallowing protection
levels to classify the system calls: (1) critical procegs@gection; (2) communication
mechanisms protection; and (3) protection of files asseditt the elements.

According to these protection levels, we then presente&ira [prototype imple-
mentation of our kernel based access control mechanisnmogeee for GNU/Linux
systems and called SMARTCOP (which standsSarart Card Enhanced Linux Secu-
rity Module for Component ProtectipnThis implementation was developed over the
Linux Security Module¢L SM) framework [11]. This framework does not consist of
a single specific access control mechanism; instead it ¢esva generic framework,
which can accommodate several approaches. It suppliesasévmks (i.e., intercep-
tion points) across the kernel that can be used to implemiffieteht access control
strategies. Such hooks afBask hooks, Program Loading Hooks, File systems Hooks
and Network hooksThis set of LSM hooks can be used to provide protection at the
three different levels proposed above.

Furthermore, the LSM framework adds a set of benefits to ogpteémentation.
First of all, it introduces a minimum load to the system whemparing it to kernels
without LSM, and does not interfere with the normal systetivdies [11]; second, the
access control mechanism can be integrated in the systemmeaduwe, without having
to recompile the kernel; third, it provides a high degree exibility and portability
to our implementation when compared to other proposalsher.inux kernel, such
as [7] and [9], where the implementation may require somaédanodifications; and
fourth, the LSM interface provides an abstraction whicbwal the modules to mediate
between the users and the internal objects from the opgragistem kernel — to this
effect, before accessing the internal object, a hook mayfuwattions provided by a

given module and which may decide whether allow or deny tlesgto the internal
object, for example.

Through the use of SMARTCOP as a LSM module, the componentsggses
are allowed to make operations only permitted to the admnatie officer — such as
packet filtering and application cancellation. The intéat@ess control mechanisms at
the kernel are based in the process identifier (PID) that m#ie system call, which
will be associated to a specific element. Each function tegid by a LSM module,
determines which component is making the call from the Plihefassociated process.
It then, applies the access control constraints takingiateaccount the parameters of
the system call. Thus, for example, a given element can adtseewn configuration
files but not configuration files from other elements.

Our protection strategy introduces, however, some adtratign constraints, since
officers are not longer allowed to throw system calls whicly sugppose a threat to the
protected component. To solve these constraints, we atsepted in [5] a smart card
based authentication mechanism, based on secret-keyogrgphy, which acts as a
reinforcement of the kernel-based access control. Thectigeof this complementary
mechanism is twofold. First, it holds to the administratoe thdispensable privileges
to carry out management and configuration activities justmghe verifies her identity
through a two-factor authentication mechanism. Seconalatvs us to avoid those
attacks focused on getting the rights of the administragiviity, such as dictionary-
based attacks and buffer overflows.

Nevertheless, and although the authentication mechanispoped in [5] solves
the administration constraints of our approach, it presénportant drawbacks. For
instance, there is a need for the entities to share a seeyetkd this is a serious
disadvantage for the administration officer, who may be iargh of managing such
keys. The process of changing or updating the shared dezyaif all the entities, for
instance, over the complete set of components of a netwdirkewery awkward, mak-
ing it even unfeasible when using our authentication meishaion huge corporation
networks with multiple resources to protect. For this reasnd in order to make easier
the administration tasks of our protection approach, werekin this paper our previ-
ous authentication mechanism by using a new authenticptmtiocol based on public
key cryptography. Indeed, our new proposal solves the adtration constraints of
SMARTCOP by using a hierarchical structure with several diors, where the nodes
of each domain can independently be administrated by usiB§Xcertificates [12].
Through this new authentication mechanism, some of theiguevdrawbacks, such
as the sharing of the protocol’s information, should be neffieiently performed by
means of certificate revocation, for example.

The remainder of this paper is organized as follows. We fiefineé in Section 2 the
structure and elements for our new authentication propasal present the crypto-
graphic protocol intended to solve the administration t@msts introduced by the pro-
tection approach described above. We then continue in@e8tby presenting some
configuration issues of our proposal and showing the resdlen evaluation of the
overhead introduced by our approach on a given setup. Weyfaimarize in Sec-
tion 4 some related works, and close the paper in Sectiontbanist of conclusions
and future work.

2 Smart Card Based Authentication Mechanism

In order to verify the administrator’s identity of SMARTCQRe propose a two-factor
authentication mechanism based on the cryptographiciumecdf a smart card. This
mechanism is intended for authenticating the administiatéhe LSM modules and
holds with the following requirements: (1) the actions mustwuthorized by the use of
a smart card; (2) the smart card only authorizes one acti@neser the PIN would be
correct; and (3) the LSM module only authorizes the actioendver the smart card
response would be valid, i.e., the cryptographic operai@orrect.

Let us start the description of our authentication mechmatig introducing the nec-
essary structure and elements for our proposal. We firsteléfenecessary architecture
for our authentication protocol as a hierarchical struetwith several organizational
units, where the network is divided, in turn, in hierarchidamains, and where each
domain of the network has several components that must liegbed. We name such
a component as SMARTCOP Node (SCN). Each domain has mora@MARTCOP
Server (SCS), and each potential administrator holds a SMXBP Card (SCC). These
component are briefly described next.

SMARTCOP Server (SCS) — Each SCS owns a cryptographic key paiaster key
and the corresponding certificate. This certificate has B=ered by the upper SCS in
the hierarchy and identifies the lower SCS as a valid SCS.cEmnificate is encoded as
an X.509 Attribute Certificate [12], where the issuer is tipper SCS master key and
the subject is the lower SCS master key. The SCS of domain Bseae certificates
authorizing a concrete SCC as an administration of the doBi&imilar to the certifi-
cates between SCSs). The SCS must usually be managed bywhekni@dministration
officer of the given domain — or organizational unit. Thatlg person who has more
knowledge about the network domain and its potential adstretiors, and, at the same
time, the one that has the greatest interest in performirgpa gdministration. This is
a key point of the extended authentication proposal, whiwbges the distribution of
the administrative management between domains or orgamaaunits.

SMARTCOP Node (SCN) —Each SCN is a component which has the SMARTCOP
LSM module. The security parameters of the LSM module arpgnig initialized when

it is installed. The main parameter is tB®urce-of-Authoritf{SoA), which is repre-
sented by anaster-keyMore precisely, thenaster-keyof the top SCS. When an ad-
ministrator requests a protected action on a given SCN, imgurotocol 1, the SCN
verifies the certificate from the SCC. Then, if it comes fronedificate path rooted at
the SoA'smaster-keythe operation is accepted.

SMARTCOP Card (SCC) — The SCC is owned by potential administrators. In order to
be able to perform administrative tasks on a given domaiStBC must be authorized
(i.e., certified) by the SCS of the domain or an upper one imikarchy. Each SCC has
a key pair, which has to be certified byraster-keyi.e., a key from a SCS). Let us recall
that the cryptographic engine of such a smart card is capehperforming several
cryptographic functions, such as asymmetric key generatieymmetric cryptographic
algorithms execution, and so on.

The SCC has awperation PINand anadministration passwordThe operation
PIN is at least six digits long and is used to authorize thagated actions. On the
other hand, the administration password is used to chamgeération PIN and other
management tasks. The system administrator has threectiweechances to enter the
operation PIN. In the third entry, if the smart card recemesncorrect operation PIN, it
blocks itself. The smart card can only be unblocked with thaiaistration password.
Again, there are three chances to enter the correct adnaitiist password. Otherwise,
after the failing of three consecutive wrong administratgasswords, the smart card
blocks itself and becomes useless.

2.1 Protocol Description

We give here a detailed description of the cryptographitqual that leads our smart
card based authentication mechanism. It starts in Step h Wieesystem administrator
requests an action to the LSM module. We assume here thahactmust be autho-
rized by using the smart card. The LSM module blocks immetlieih Step 2a the
communication channel between the smart card reader andflemodule. In this
way, we can assure that the data sent between the moduleeasthért card can nei-
ther be sniffed nor tampered. The module also forces to rentoy smart card when
is not necessary. In Step 2c, the LSM module waits for the soaad insertion, and in
Step 4e the LSM module does not proceed until the smart cardbéen removed. In
Step 3 the operation PIN travels in a secure way from the kagbbecause the LSM
module has blocked the channel between the keyboard and ddelenitself. Then,
LSM sends a NONCE obtained at random and the PIN in step 4csitiaet card re-
turns the digital signature of the NONCE computed with theroard’s private key.
The protocol concludes in Step 4g where the LSM module venifieether the digital
signature has been computed properly and the digital catéfis valid.

Protocol 1

1. The system administrator opens a new console and shestscareactionX;
2. LSM receives the request from the console and it does libeviiog steps:
(a) Block the channel and open a connection with the smar meader;
(b) Print a message asking to insert the smart card into tlaelee;
(c) While the smart card has not been inserted do;
i. Detect the insertion of the smart card;
(d) Print a message asking for the operation PIN;
3. The system administrator types the operation PIN in tiybdard;
4. The LSM does the following steps:
(a) Obtain the operation PIN;
(b) Obtain a NONCE value at random;
(c) Execute the Procedure 1 inside the smart card by usingpreeation PIN and
the NONCE, and obtain a respongg
(d) Print a message to remove the smart card from the smad iesder;
(e) While the smart card has not been removed do;
i. Detect the removing of the smart card;

(f) if u is ERRORthe LSM does not authorize the actidn
(g) else do:
i. Check if the digital signature has been computed with dipley, which
belongs to a certification path rooted at theaster key(SoA).
ii. Verify the smart card certificate against a valid CRL.
iii. Verify the digital signaturep with the public keyPx obtained from the

smart card certificatePx (1) ZH (NONCE);
iv. if the verification is correct the LSM authorizes the antX
v. if the verification is not correct the LSM does not auth®tlze actionX;

We show next the procedure that is executed within the sraadt(cf. Procedure 1).
Through such a procedure, the smart card can validate thatapePIN. Whenever the
operation PIN is valid, it computes the digital signaturél@NCE with the smart card
private key.

Procedure 1 [PIN, NONCE]

1. Validate the operation PIN;
2. If the operation PIN is correct do:

(a) Compute the digital signature of NONCE with the privagg K,
uw=Sxg(NONCE);
(b) returny;
3. If the operation PIN is no correct retutBRROR;

To ensure the proper execution of both Protocol 1 and Proeeduve have also
considered the protection of the entities and the channetsvied in such a process,
avoiding attacks such as impersonation and channel datgutation. First, the LSM
module guarantees that the binary file of the console can eaibrwritten by any-
one (even the security officer), remaining the permissiansead-only. Second, the
console’s executable is compiled in a static fashion. Thisva us to reduce the com-
plexity of the protection’s console process, since we daweet to consider extra tasks
introduced by the loading of shared libraries and its asgedifiles. It also allows us to
centralize and reduce the failure points that could be uyesl flemote attacker which
tries to tamper the console’s process. Third, the LSM modide controls that each
system call launched by any other process in the system duaestarfere the normal
execution flow of the console’s process, such as keyboarddetyre, cancellation, or
debugging process system calls.

Itis also important to recall that the communication chdeaa not be manipulated
by any opponent, since the LSM mediates between the systbsnrelated with the
communication channels and the entities that take partwiitle protocol. Furthermore,
and as pointed out in [5], the LSM module does not need to tetljrprotected since
we can assume the kernel environment as a trusted area -itssogandatory for the
kernel security model of any modern operating system.

3 Configuration and Performance Evaluation

In order to define the objects and resources to protect, SMXPH can actually be
configured through a set of security rules. Each rule definas@onin {deny, accept }
that applies over a set ebnditionattributes, such as usér (UID), processd (PID),
device, i-node, etc. We can also define, through these $gautes, either open or
closed default policies. The complete set of rules are dtiora set of configuration files
that are loaded at boot time through thvec file systemTheproc file systenfprocfs)

is a special virtual file system in the Linux kernel which alfouser space programs to
access kernel data structures.

Up to now, we have defined different points through procfstmfiguring the pro-
tection of the three basic levels of protection stated irtiBed. More specifically, we
have defined the following entrieigerms iren, isetattr, iunlink, tcreate andtkill. The
four first labels refer to i-node related operations (reispode permission verification,
i-node renaming, i-node permission changing, and i-nod®wng). They can be used
not only for the protection of file resources, but also for phetection of communica-
tion operations through, for example, sockets and pipes|ast two labels (i.e., tcreate
and tkill) are related to the managing of processes (suchiesgion, suspending, re-
suming, termination, and spawning of processes). Throlgset configuration points,
we conducted several tests steered towards measuringribfypi@troduced by the in-
stallation of SMARTCOP as a LSM module, over the normal ofi@neof the system.
The tests and benchmarks were based on LMbench [8] and ela&rd administration
tools. The evaluation was carried out on a single machink avitintel-Pentium M 1.4
GHz, with 512 MB of RAM memory and an IDE hard disc of 5400 rpmnming a
Debian GNU/Linux operating system and ext3 file system.

During these tests, we measured the overhead of our appwotichn instance of
SMARTCOP configured with a closed default policy and loadétth wifferent pro-
tection rules. More specifically, each configuration poirtswcharged with a set of
auto-generatedcceptrules, initially empty, and which incremented to more thamreée
hundred rules. Therefore, a progressive set of auto-gttkaaceptrules from zero
to more than one thousand rules was globally loaded. We denthat the overlaps
between rules, related with the single operations we medsilurring these tests, rep-
resent the worst case scenario we can actually measure. ¥eistrigure 1(a) and
Figure 1(b) the overhead evolution of some actions that wesider representative re-
garding the set of configuration points we described above.

The first three curves we show in Figure 1(a) represent theneael evolution of the
system calkill when we, resp., suspended, resumed, and cancelled a setcetpes
under the different load of rules. Notice that such acti@specially when suspending
processes, reported an acceptable penalty (aprox. a 40% dtwbal average of al-
most two thousand rules). The other three curves in Figuaerépresent the overhead
evolution of the set of operations related to the creatioprotesses througiork(),
fork()+exec(Jandfork()+/bin/sh Notice that the two first operations supposed a penalty
even lower (aprox. a 20% for the highest average of rules);tha third operation re-
mained close the 30% for the same number of rules. Simildréyresults we show in
Figure 1(b) are related to the evolution of operations ferrttanaging of i-nodes (such
as files, pipes, and sockets’ managing). We can apprecititese results, however, that

the penalty introduced by SMARTCOP for the managing of iesseems much higher
than the overhead introduced for the managing of processesen reached more than
an 80% in the operations of file creation and removing. Howeve consider that these
differences are reasonable, taking into account that thhasean overlap between pro-
cesses protection’s rules and i-nodes protection’s rulespressly introduced during

our experiments to simulate the worst case scenario. Tleidagybetween rules defini-
tively exercises a bad influence on the measured i-node tipesacompared to the

processes operations, and it explains the differencessleetivoth results.

100 T T T T

stop process —*—

resume process ---8---

finish process ---a---
fork process o

80 | fork + execve —-e-—

fork + /bin/sh ---&---

Overhead (%)
@
o
T
!

N
5}
T

1

350 700 1050 1400 1750
Number of rules

(a) Processes tests
100 T T T T

chmod i-node —&—
rename i-node ---m---
unlink i-node ---e---
mmap read e .
80 | 10K file create ——+-— LT
10K file delete ---x - T o

Overhead (%)

0 L L 1 1

350 700 1050 1400 1750
Number of rules

(b) Filesystem and communication tests

Fig. 1. Performance evaluation of SMARTCOP.

4 Related Work

There are two main approaches to safely execute processespeicial privileges on
modern operating systems. A first approach is the creatioastficted environments,
in which the processes will be executed and controlled detsie trusted system space.
In [6], for instance, we can find a traditional mechanism fo treation of restricted
environments within Unix setups. These proposals reghivejever, a replicated file
system tree for the protected environments. Hence, therastnaitor in charge of the
system must reproduce the original file system tree to irgldior example, shared
libraries or configuration files, and copy them to the new p@iiner disadvantage of
these proposals is that they do not guarantee the correntxe flow of processes, i.e.,
the behavior of a given process can be maodified by using, fomgke, a buffer overflow.
Hence, the attacker can overwrite the configuration or lags fdf such a process by
simply using an arbitrary code execution attack — sinceetlfiéss remain in the same
environment of the protected security component process.

A second approach, as the one presented in this paper, iplp apernel based
access control to outcoming system calls. In [7] and [9],ifigstance, two similar pro-
posals to ours are presented. The main goal behind thesertpogals is to reinforce
the complete system by controlling the system calls andrergswhich process or user
does the system call and against what it will be done. Théyatblcontrol the access to
the resources allows to protect system’s elements and td enat nobody (including an
attacker with administrator privileges) can disable thRievertheless, both approaches
differ from ours in a number of ways. First, and to our bestdealge, neither [7] nor
[9] do not address the management of administration canttras our proposal does
through the two-factor authentication mechanism we piteéseBection 2. Second, our
approach, entirely based on thimux Security Moduled.SM) framework [11], guar-
antees the compatibility with previous applications anchikemodules without the ne-
cessity of modifications. Both [7] and [9] require the rewgtof some features of the
original operating system’s kernel to properly work. Thitsation may force to recom-
pile existing code and/or modules in order to obtain the rewusty features. Although
it exists a LSM-based prototype for the approach present¢d;iit does not seem to
be actively maintained for the current Linux-2.6 kerneler

5 Conclusions

We have presented in this paper an access control mechapéxially suited for the
protection of network security components, sucHisvalls and Intrusion Detection
SystemsWhenever one of these components, or one of its elemegtayipromised by
a remote attacker, it may lead her to obtain the full contféhe network [2]. The pro-
tection of these components is not easy, specially whernndpalth distributed setups,
made up of different elements distributed over a complewoik. Like for example,
the attack prevention platform presented in [3]. The solutve provided proposes the
protection of the components by making use of thieux Security Module$LSM)
framework for the Linux kernel over GNU/Linux systems [1The developed mecha-
nism works by providing and enforcing access control rulesystem calls, and is based

on a protection module integrated into the operating systkernel, providing a high
degree of modularity and independence between elementhefmore, the use of a
complementary authentication method, based on smart eahthdlogy and a public-
key cryptographic protocol, allows us to properly verifyn@distrator’s actions when
officers need to do administration tasks. This addition&dlaecement also allows us
to prevent some logical attacks against the protection ar@sh itself (e.g., password
forgery). The integration of our approach on a normal systetap proved, moreover,
a good degree of transparency to the administrator in chargka reasonable perfor-
mance penalty for the managing of processes, files, and coination resources.

As a future extension of our work, we are considering impnguhe customizing
of policies. Up to now, the specific policy that is enforcedday protection module
is loaded at boot time through tipeoc file systenfprocfs). We are planning to extend
this feature to add the possibility of using text-based gunmétion files and the reload
of policies at runtime. We are also considering to continue siudy to address the
security of the system from an intrusion tolerance pointiefw{1].

References

1. Y. Deswarte, L. Blain, and J. C. Fabre. Intrusion toleeaimcdistributed computing systems.
IEEE Symposium on Security and Privapgges 110-121, Oakland, CA, USA, 1991.

2. D. Geer. Just How Secure Are Security ProdutE2E Computer37(6):14—-16, 2004.

3. J. Garcia-Alfaro, F. Autrel, J. Borrell, S. Castillo@Guppens, and G. Navarro. Decentralized
publish/subscribe system to prevent coordinated attaiekalgrt correlation.6th Int. Conf.
on Information and Communications Secur223-235, Spain, 2004.

4. J. Garcia-Alfaro, S. Castillo, G. Navarro, and J. Bor'®CAPS: An Access Control Mech-
anism to Protect the Components of an Attack Preventione8ystlournal of Computer
Science and Network Securiy(11):87-94, 2005.

5. J. Garcia-Alfaro, S. Castillo, J. Castella-Roca, Gvade, and J. Borrell. Protection of
Components based on a Smart-card Enhanced Security Mdduleternational Workshop
on Critical Information Infrastructures Security, Infoation Security Conference (ISC’Q6)
Samos, Greece, 2006.

6. P.Hope. Using Jails in FreeBSD for Fun and Prafitgin; The Magazine of Usenix & Sage
27(3):48-55, 2002.

7. P.Loscocco and S. Smalley. Integrating Flexible Sugipo$ecurity Policies into the Linux
Operating System.11th FREENIX Track: 2001 USENIX Annual Technical Confezenc
USA, 2001.

8. L. McVoy. LMbench, Portable Tools for Performance Anéys1996 USENIX Annual
Technical ConferengdJSA, 1996.

9. A. Ott. The Role Compatibility Security Modelth Nordic Workshop on Secure IT Systems
(Nordsec 2002)Karlstad University, Sweden, 2002.

10. J. Viega, and G. McGravBuilding Secure Software - How to Avoid Security Problenes th
Right Way Addison-Wesley, 2002.

11. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroarthhan. Linux Security Mod-
ules: General Security Support for the Linux Kerndllth USENIX Security Symposium
USA, 2002.

12. ITU-T. The Directory: Public-key and attribute certifie frameworks. ITU-T Recommen-
dation X.509, 2000.

