
ACAPS – An Access Control Mechanism to Protect
the Components of an Attack Prevention System

Joaquín García, Sergio Castillo, Guillermo Navarro, Joan Borrell
{jgarcia,scastillo,gnavarro,jborrell}@deic.uab.es

Information and Communications Engineering Dept.
Autonomous University of Barcelona, Bellaterra , Spain

Summary:

Current research in Intrusion Detection Systems (IDSs), targeted
towards preventing computer attacks, is mainly focused on
improving detection and reaction mechanisms, without
preserving the protection of the system itself. This way, if an
attacker compromises the security of the detection system, she
may be able to disarm the detection or reaction mechanisms, as
well as delete log entries that may reveal her actions. Given this
scenario, we introduce in this paper the use of an access control
mechanism, embedded into the operating system’s kernel, to
handle the protection of the system itself once it has been
compromised by an attacker. We also show an overview of the
implementation of such mechanism on a research prototype,
developed for GNU/Linux systems, over the Linux Security
Modules (LSM) framework.

Key words:

Network Security, Access Control, Attack Prevention,
Intrusion Detection Systems, Linux Security Modules

Introduction

Recent network attacks are deploying distributed and
coordinated techniques, which open the possibility to
perform more complex attacks, such as distributed denial
of service or coordinated port scans. These techniques are
also useful to make their detection more difficult and,
normally, these attacks will not be detected by exclusively
considering information from isolated sources of the
network. Likewise, Network Intrusion Detection and
Response Systems also benefit from a distributed
implementation. Different components of the system may
look for different attack evidences, in order to detect this
new kind of attacks.

We are currently working on a decentralized approach for
achieving this distribution. Our solution uses a tuple space
to communicate the different components within and with
each other. Sensors, or middle-level analyzers place data
(e.g. alerts) into a distributed tuple space, and higher-level
analyzers consume those tuples to perform a detection and
reaction process based on alert correlation [5].

The design of our prevention system has three main goals.
The first goal is to obtain a modular architecture composed
by a set of independent entities. These entities collaborate
to detect when the resources where they are lodged are
becoming part of an attack against the network where they
are located or against a third party network. Once
detected, they must be able to prevent the use of their
associated resources to finally avoid their participation on
the detected attack. The second goal is to achieve a
complete independent relationship between the different
components which form these cooperative entities. In this
case, we distribute these components according to the
needs of each resource we want to disarm. These two first
objectives have been solved and discussed in [5].

The third goal is to obtain a system able to fulfill intrusion
tolerance [4]. The system itself must maintain acceptable,
though possibly degraded, service despite attacks in parts
of the system, be them at network, application or system
level. In order to achieve this third goal, we started out
doing research on protection mechanisms to handle the
security and strength of our prevention system’s
components. As a result of our current work, we present in
this paper the development of ACAPS (which stands for
An Access Control Mechanism to Protect the Components
of an Attack Prevention System), a protection module
integrated into the kernel of our research prototype’s
operating system, GNU/Linux, and implemented over the
Linux Security Modules (LSM) framework [11].

The protection mechanism behind ACAPS consists of
building a complementary kernel access control scheme,
to handle the protection of the system itself once it has
been compromised by an attacker. To do this, it intercepts
and cancels unlawful system calls launched by the
attacker. Thus, even if the attacker gains administrator
permissions, she will not achieve her purpose. This
security enhancement is solved without having to
recompile the kernel, and with a high degree of flexibility
and portability when compared to other proposals for the
GNU/Linux kernel, such as [7] and [8].

Another important feature of our approach is that it allows
to enforce the components’ protection in an independently
fashion. Hence, even if one of the components is
compromised, the rest of them can continue to work in a
trusted way. Although it will not be always possible to
achieve the full independence between all the components,
we show a first proposal for our work, by considering
different protection levels. This way, we manage as much
as possible the fulfillment of this requirement, and we
offer the administrator in charge of the system the ability
to perform component protection at different levels, such
as application level, communication level, etc.

The rest of this paper is organized as follows. Section 2
describes the main properties of our proposed attack
prevention system, as well as the main components to
protect it through ACAPS. Then, we take a closer look to
the protection scheme behind ACAPS in Section 3.
Section 4 introduces a first implementation of ACAPS on
our research prototype, through the Linux Security
Modules (LSM) framework, as a kernel based access
control mechanism. An evaluation concerning the
efficiency, security, and usability of ACAPS is then
presented in Section 5. Finally, Section 6 closes the paper
with a list of conclusions and future work.

2. System Overview

The main purpose of our prevention system is to detect
and react to coordinated or distributed attacks. By means
of a set of cooperative entities which are lodged inside the
network, the system avoids the use of network resources
to perform coordinated attacks against third party
networks. The aim of this system is not only to detect in-
coming attacks against these entities, but also to detect
when these nodes are the source of one of the different
steps of a coordinated attack to avoid it.

Our approach is based on gathering and correlating
information held by multiple sources. We use a
decentralized scheme based on message passing to share
alerts in a secure communication infrastructure [5]. The
information exchange between peers is intended to
manage a more complete view of the whole system. Once
achieved, one can detect and react on the different actions
of the corresponding attack.

As shown in Figure 1, each node of the architecture is
made up of a set of analyzers (with their respective
detection units or sensors), a set of alert managers (to
perform alert processing and manipulation functions), and
a set of local reaction units (or effectors). These
components, and the interactions between them, are
described in the following subsections.

Fig. 1. Main components of each node

2.1 Analyzers

Analyzers are the local elements in charge for processing
audit data. They process the information gathered by
associated sensors, implemented as operating system’s
kernel modules, to infer possible alerts. Their task is to
identify occurrences which are relevant for the execution
of the different steps of an attack and pass this information
to an alert correlation manager. The interesting
occurrences are local alerts.

Each local alert is detected in a sensor’s input stream and
exchanged as an IDMEF message [2]. The Intrusion
Detection Message Exchange Format (IDMEF) is
intended to be a standard data format that automated
intrusion detection systems can use to raise alerts about
events that they report as suspicious. It allows analyzers
and managers to assemble very complex alert descriptions.
In accordance with the IDMEF format, each local alert has
a unique classification, and a list of attributes with their
respective types, to identify the analyzer that originated
the alert, the time the alert was created, etc.

All possible classifications and their respective attributes
are known by all system components (i.e. sensors,
analyzers and managers) and all analyzers are capable of
exchanging various instances of local alerts of one or more
types.

Once formulated each local alert as an IDMEF message,
using XML syntax, each local alert is published to the local
communication channel via the publish/subscribe system,

xmlBlaster [9]. A publish/subscribe system consists of
brokers and clients that are connected to brokers. The
brokers themselves form the infrastructure (notification
service) used for routing the notifications. Clients can
publish notifications and subscribe to filters that are
matched against the notifications passing through the
broker network. If a broker receives a new notification, it
checks if there is a local client subscribed to a filter that
matches this notification. If so, the message is delivered to
this client. Additionally, the broker forwards the message
to neighbor brokers according to the applied routing
algorithm.

On the other hand, the exchanging of information between
sensors and analyzers is based on a different
communication mechanism, since sensors are working as
modules in kernel space, and analyzers as daemon
processes in user space. This communication is efficiently
solved through the use of Netlink sockets [3], a Linux
specific mechanism that allows us to perform
communication between kernel modules and user space
processes via the well known primitives from the socket
treatment, and providing us transparency with the
buffering mechanisms.

2.2 Managers

The use of multiple analyzers and sensors together with
heterogeneous detection techniques increases the detection
rate, but it also increases the number of alerts to process.
In order to facilitate this process and to reduce the number
of false negatives our architecture provides a set of
cooperation and correlation managers, which performs
aggregation and correlation of both, local alerts (i.e.,
messages provided by the node’s analyzers) and external
messages (i.e., the information received from other
collaborating nodes). Just like for the communication
between the analyzer and the correlation manager (c.f.
Section 2.1), the communication between managers is also
implemented through the use of the publish/subscribe
system xmlBlaster [9].

The basic functionality of the cooperation manager is to
cluster alerts that correspond to the same occurrence of an
action. It also provides mechanisms to represent the infor-
mation contained in the various alerts belonging to this
cluster, applying aggregation and fusion techniques [5].
Each cooperation manager registers its interest in a subset
of local alerts, by subscribing itself to the corresponding
channel.
Similarly, the cooperation manager also registers its
interest in related external alerts, and its interest in local
correlated alerts. Once subscribed to these three filters, the
alert infrastructure will notify the subscribed managers of

all matching alerts. All the notified alerts are processed
and, depending on the clustering and synchronization
functions, the cooperation manager can publish some
global and external alerts.

On the other hand, the main task of the correlation
manager is the implementation and execution of the
weighted alert correlation algorithm described in [5]. The
correlation manager operates on the global alerts
published by the local cooperation manager (i.e. it
registers its interest in these alerts). Then, the alert
infrastructure will notify of all matched alerts. Each time a
new alert is received, the correlation mechanism finds a set
of action models that can be correlated in order to form a
scenario leading to an objective. At last, it includes this
information into the CorrelationAlert field of a new
IDMEF message and publishes the correlated alert.

The correlation manager is also responsible for reacting on
detected security violations. The algorithm used is based
on the anti-correlation of actions, to select appropriate
countermeasures in order to react and prevent the
execution of the whole scenario [5]. As soon as a scenario
is identified, the correlation mechanism looks for possible
action models that can be anti-correlated with the different
actions of the incoming scenario, or even with the goal
objective.

The set of anti-correlated actions becomes the set of
countermeasures available for the observed scenario. The
definition of each anti-correlated action contains a
description of the countermeasures which should be
invoked (e.g. hardening the security policy). Such
countermeasures are included into the Assessment field of
a new IDMEF message, and published through the alert
infrastructure. Another manager, the assessment manager,
will register and revoke its interest in these assessment
alerts.

Once notified, the assessment manager performs a post-
processing of the received alerts before sending the
corresponding reaction to the local response units (or ef-
fectors). Just like for sensors and analyzers (c.f. Section
2.1), the communication from the assessment manager to
the effectors (also implemented as Linux kernel modules)
has also been implemented through the use of netlink
sockets.

3. Protection Mechanisms

As described in the previous section, the entities of our
platform cooperate to detect if the resources, where they
are lodged, are taking an active part of a coordinate attack.

As it happens with a traditional IDS, with the proper
manipulation of the processes associated to each node, an
attacker could bypass the detection mechanisms. Thus, the
intruder could make its way to hide the local part of the
attack from the node. Furthermore, she could generate
false alerts in order to cause a malfunction of the whole
platform.

This problem leads to the need for introducing a protection
mechanism on the different components of each node,
keeping with their protection and mitigating or even elimi-
nating any attempt to attack or compromise the platform
and its operation. This way, even if an attacker
compromises the security of the system, she would not be
able to disarm the detection and reaction mechanisms.

Given the inherent characteristics of the design of our
prevention platform, and according to [7], we consider the
following two protection mechanisms: the auto-protection
carried by the elements of each node, and the protection of
the elements carried by the kernel of the operating system.
In the first case, each component is responsible for its own
protection, using mechanisms such hiding its processes,
mobile agent systems, or cryptographic techniques
associated to the system logs. Most of the current
proposals in this field, such as [3, 14, 15], are inefficient
against some attacks. For example, when the intruder is in
a privileged position, she may interact without restriction
with the components through the underlying operating
system.

Therefore, the cancellation of processes associated with
the detection system, or the deletion of logs, show the
problems of these methodologies. This problem relies in
two facts. First, the existence of privileged users
(administrators) in most of the current operating systems,
that can freely interact with the system. And second, the
delegation of part of the protection to the operating system
access control mechanism, which does not consider that an
attacker could gain privileged user permissions from a bug
or security failure.

In the second case, the kernel of the operating system
provides the proper protection mechanisms, detached from
the detection and reaction system. Protection is achieved
by incorporating an access control mechanism into the
kernel system calls. This way, one may allow or deny a
system call based on several criteria such as the identifier
of the process making the call, parameters of the call, etc.
The kernel’s access control allows to eliminate the notion
of trust associated to privileged users, delegating the
authorization for the execution of a given system call to
the internal access control mechanisms. In addition, and
contrary to the previous auto-protection mechanisms, it

provides a unified solution, avoiding the implementation
of different specific mechanisms for each component.

3.1 Proposed Scheme

In order to protect the components of our platform we
propose an access control mechanism integrated into the
kernel of the operating system. This way, even if an
attacker gains administrator permissions, she will not be
able to generate actions attempting on the node. Each
unlawful system call to the components is intercepted and
cancelled by the access control.

This methodology also allows us to provide a second level
of protection. The mechanism provided by the kernel and
the modularity based on components allows to enforce the
compartimentalization principle [10].

This principle is based in the segmentation of a system, so
several components can be protected independently one
from another. This ensures that even if one of the
components is compromised, the rest of them can operate
in a trusted way. In our case, several components from the
node can be executed as processes. By specifying the
proper permission based on the process ID, we can limit
the interaction between elements of the node. If an
intruder takes control of a process associated to a given
component (through a buffer overflow, for example), she
will be limited to make the system call for this given
process.

In our proposal the compartimentalization principle is
used as follows. In each node we assume that the
execution of the analyzers is isolated from the cooperation
manager. The protection at kernel level avoids that
potentially dangerous system calls (such as killing a
process) could be produced from one component against
another one.

For example, if a malicious user gains the control of a
process associated to an analyzer, she will not be able to
abort the execution of the cooperation manager.

Even so, it is not always possible to achieve a complete
independence between the components. There is a need to
determine which system calls may be considered as a
threat when launched against an element from the node.

This requires a meticulous study of each one of the system
calls provided by the kernel, and how can they be misused.
On the other hand, we have to define the access control
rules for each one of these system calls. Despite its
complexity, we can consider three basic protection levels
to classify the system calls:

• Critical process protection: comprises actions that can

attempt on the proper execution of the processes
associated to a node, either by interaction over them
by signals, or the manipulation of the memory space.

Some examples are: execution of a new application
already in memory, cancellation or manipulation of
the address space and process traces, etc.

• Communication mechanisms protection: comprises all
the processes that allows an attacker to modify,
generate or eliminate all kinds of messages
interchanged between the node elements.

• Protection of files associated to the components:
comprises all spiteful actions addressed to the files
used by the components of the node, such as
executable, configuration, or log files.

4. Implementation

In this section we outline the current implementation of
ACAPS. In accordance with the protection scheme
proposed in Section 3.1, it consists of a kernel based
access control mechanism, and its development has been
done over the Linux Security Modules (LSM) framework
for GNU/Linux systems [11].

The LSM framework does not consist of a single specific
access control mechanism; instead it provides a generic
framework, which can accommodate several approaches.
There are several hooks (i.e. interception points) across
the kernel that can be used to implement different access
control strategies. Such hooks are: Task hooks, Program
Loading Hooks, Filesystems Hooks and Network hooks.

These LSM hooks, can be used to provide protection at the
three levels commented in the previous section.
Furthermore, LSM adds a set of benefits to our
implementation.

First, it introduces a minimum load to the system when
comparing it to kernels without LSM, and does not
interfere with the detection and reaction processes. In the
second place, the access control mechanism can be
composed in the system as a module, without having to
recompile the kernel. And third, it provides a high degree
of flexibility and portability to our implementation when
compared to other proposals for the Linux kernel, such as
[7] and [8], where the implementation requires the
modification of some features of the original kernel 2.6.x.

Fig. 2. Linux Security Module (LSM) Hook

The LSM interface provides an abstraction, which allows
the modules to mediate between the users and the internal
objects from the operating system kernel. To this effect,
after accessing the internal object, the hook calls the
function provided by the module and which will be
responsible to allow or deny the access. This can be seen
in Figure 2. There, a module registers the function to make
a check over the inodes of the filesystem. At the same
time, LSM allows to keep the discretionary access control
(DAC) provided by Linux by standing between the
discretionary control and the object itself. This way, if a
user does not have permissions in relation to a given file,
the DAC of the operating system will not allow the access
and no call to the function registered by the LSM will be
made. This architecture reduces the load of the system
when compared to an access control check centralized in
the operating system call interface, which always gets used
for all the system calls.

The node components will be allowed to make operations
only permitted to the system administrator (such as packet
filtering, process or application cancellation, etc.). This
implies that the system processes associated to the
components will be executed by the root user. On the
contrary, if we associate the processes to a non privileged
user, the discretionary access control of Linux will not
allow the execution of some specific calls. The internal
access control mechanisms at the kernel is based in the
process identifier (PID) that makes the system call, which
will be associated to a specific component. Each function
registered by an LSM module, determines which
component is making the call from the PID of the
associated process. It then, applies the access control con-
straints taking also into account the parameters of the
system call. So, for example, a given component can
access its own configuration files but not configuration
files from other components.

Fig. 3. Access control example through ACAPS

An important issue in the implementation is the
administration of the access control mechanisms and the
management of each one of the nodes. As described in the
previous section, the administrators should not be able to
throw a system call, which may suppose a threat to the
node. This prevents an intruder to do any harm to the node
even if she could scale its privileges to the administrator
ones. This contrasts with the administration of the node, if
an administrator cannot interact with the components of
the node, she will not be able to carry on any management
or configuration process and activities. To solve this
problem, we have introduced a temporal authentication
process based on a cryptographic USB token [1]. While
the device is connected to the system, the administrator
will be able to hold the indispensable privileges to
manipulate the node. When the device is retired, the
access control enforcement will come to its normal
operation. Figure 3 shows how a function, registered by
ACAPS, allows the modification of a configuration file.

5. Evaluation

In order to show the applicability of our proposal, we
evaluate in this Section the implementation of ACAPS
from two different points of view. We first examine its ef-
ficiency, and we then discuss the security enhancement
that it offers. This way, we can finally conclude whether
the performance penalty introduced by ACAPS, in
contrast to the security enhancement offered by, is
acceptable to be deployed on a real system.

5.1 Efficiency

The efficiency of ACAPS can be decomposed into the
following three classical perspectives: performance,
scalability and modularity.

First of all, the overhead introduced by ACAPS can be
considered as the impact in the system’s performance
introduced by the LSM framework and the access control
hooks implementation. On one hand, and as pointed out in
[11], the overhead of the LSM framework in the system is
minimal compared to the standard Linux kernel, about 0-
5%. On the other hand, a set of tests over our access
control hooks implementation, through LMbench [6] and
the OProfile system profiling support offered by the 2.6
series of the Linux kernel, also reveals that the
performance impact is minimal.

From the point of view of scalability, our proposed
protection mechanism can be extrapolated to other new
components, by considering its own environment and the
interaction with it in terms of access control. Thus, this
protection methodology reinforces the modularity
providing an easy and generic way to incorporate new
components in the global architecture, without considering
particular strategies to protect each one of them. In the
same scope, the inclusion of new components guarantees a
low degradation performance scalability, since the LSM
framework and the access control implementation do not
introduce complex computation.

5.2 Security

To be deployed on a real system, a protection mechanism
must be both efficient and secure. However, efficiency and
security are often a contrary criteria. Hence, we must also
evaluate ACAPS from the perspective of the security
enhancement that offers. The security introduced by our
approach enforces the components’ protection in an
independently manner, and ensures that even if an intruder
gets the administration privileges in a protected machine,
she will not interact with the components of our
prevention system. In contrast with other approaches that
could offer similar solutions, the proposed access control
provides us an additional level of security, reducing the
impact caused if an attacker gets the control of one
component. For reinforcement security purposes, the
authentication token acts as a complement of the access
control, translating the security authentication for
administration to a physical element. This idea allow us to
avoid some kind of logical attacks focused on getting the
rights of the administrative entity, such as stolen password
or buffer overflows.

6. Conclusions

Intrusion Detection Systems (IDSs) are currently very
popular in corporate networks and successfully used by
security staff and administrators to prevent, detect and
react to security threats. Nevertheless, they may become a
vulnerable point in the whole system. If the IDS or one of
its components is compromised by an attacker, the conse-
quences for the security of the system it is protecting may
be disastrous. Protecting the components of an IDS is not
easy, specially when dealing with distributed IDSs, made
up of different components distributed over a network and
with lost of communications involved.

In this paper we have presented an access control
mechanism specially suited for a distributed prevention
and reaction system. The distributed systems is made up of
several components such as sensors, analyzers, managers,
etc. that may be distributed in a network. We provide a
solution for the protection of the components by making
use of the LSM system in the Linux kernel.

The mechanism we have developed, called ACAPS, works
by providing and enforcing access control rules at system
calls. It is based on a protection module integrated into the
operating system’s kernel, providing a high degree of
modularity and independence between components.

Summarizing the evaluation of our first implementation,
we conclude that the low performance penalty introduced
by ACAPS, the security enhancement offered by, as well
as its scalability and modularity, is more than acceptable to
be deployed and utilized on a real system.

We can also conclude that ACAPS offers a good degree of
transparency to the administrator in charge, since the
access control is integrated inside the operating system’s
kernel, and it does not interfere directly with user space’s
processes. At the same time, the token based
authentication for administration purposes, provides a
transparent and secure management of the platform.

As future work we are considering to continue our study
about attack and intrusion tolerant mechanisms, to address
the security of our proposed architecture from a wider and
more global point of view.

Acknowledgments

This work was supported by the Spanish Government
project TIC2003-02041, and the Catalan Government
grants 2003FI126 and 2005BE77.

References

[1] Aladdin Knowledge Systems. eToken – USB Token

Authentication-Device, http://aladdin.com/etoken/,
2005.

[2] H. Debar, D. Curry, and B. Feinstein. Intrusion
detection message exchange format data model and
extensible markup language (xml) document type
definition. Internet draft, January 2005.

[3] G. Dhandapani and A. Sundaresan. Netlink sockets
overview. Technical report, The University of Kansas,
September 1999.

[4] P. Esteves-Verissimo, N. Ferreira Neves, and M.
Pupo-Correia. Intrusion-Tolerant Architectures:
Concepts and Design. Technical report, Computer
Science Department, University of Lisboa, Portugal,
April 2003.

[5] J. García, F. Autrel, J. Borrell, S. Castillo, F.
Cuppens, and G. Navarro. Decentralized publish-
subscribe system to prevent coordinated attacks via
alert correlation. In 6th International Conference on
Information and Commu-nications Security, October
2004.

[6] L. McVoy, and C. Staelin. LMbench – Tools for
Performance Analysis http://bitmover.com/lm-bench/,
1998.

[7] T. Onabuta, T. Inoue, and M. Asaka. A Protection
Mechanism for an Intrusion Detection System Based
on Mandatory Access Control. In 13th Annual
Computer Security Incident Handling Conference),
Toulouse, France, June 2001.

[8] A. Ott. The Role Compatibility Security Model. In 7th
Nordic Workshop on Secure IT Systems, Karlstad,
Sweden, November 2002.

[9] M. Ruff. XmlBlaster: message oriented middleware.
http://xmlblaster.org/xmlBlaster/doc/whitepaper/white
paper.html, 2000.

[10] J. Viega, and G. McGraw. Building Secure Software -
How to Avoid Security Problems the Right Way.
Addison-Wesley, September 2002.

[11] C. Wright, C. Cowan, S. Smalley, J. Morris, and G.
Kroah-Hartman. Linux Security Modules: General
Security Support for the Linux Kernel. In 11th
USENIX Security Symposium, San Francisco,
California, August 2002.

