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Summary: 
 
Current research in Intrusion Detection Systems (IDSs), targeted 
towards preventing computer attacks, is mainly focused on 
improving detection and reaction mechanisms, without 
preserving the protection of the system itself. This way, if an 
attacker compromises the security of the detection system, she 
may be able to disarm the detection or reaction mechanisms, as 
well as delete log entries that may reveal her actions. Given this 
scenario, we introduce in this paper the use of an access control 
mechanism, embedded into the operating system’s kernel, to 
handle the protection of the system itself once it has been 
compromised by an attacker. We also show an overview of the 
implementation of such mechanism on a research prototype, 
developed for GNU/Linux systems, over the Linux Security 
Modules (LSM) framework. 
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Introduction 

Recent network attacks are deploying distributed and 
coordinated techniques, which open the possibility to 
perform more complex attacks, such as distributed denial 
of service or coordinated port scans. These techniques are 
also useful to make their detection more difficult and, 
normally, these attacks will not be detected by exclusively 
considering information from isolated sources of the 
network. Likewise, Network Intrusion Detection and 
Response Systems also benefit from a distributed 
implementation. Different components of the system may 
look for different attack evidences, in order to detect this 
new kind of attacks.  
 
We are currently working on a decentralized approach for 
achieving this distribution. Our solution uses a tuple space 
to communicate the different components within and with 
each other. Sensors, or middle-level analyzers place data 
(e.g. alerts) into a distributed tuple space, and higher-level 
analyzers consume those tuples to perform a detection and 
reaction process based on alert correlation [5].  

 
 
The design of our prevention system has three main goals. 
The first goal is to obtain a modular architecture composed 
by a set of independent entities. These entities collaborate 
to detect when the resources where they are lodged are 
becoming part of an attack against the network where they 
are located or against a third party network. Once 
detected, they must be able to prevent the use of their 
associated resources to finally avoid their participation on 
the detected attack. The second goal is to achieve a 
complete independent relationship between the different 
components which form these cooperative entities. In this 
case, we distribute these components according to the 
needs of each resource we want to disarm. These two first 
objectives have been solved and discussed in [5].  
 
The third goal is to obtain a system able to fulfill intrusion 
tolerance [4]. The system itself must maintain acceptable, 
though possibly degraded, service despite attacks in parts 
of the system, be them at network, application or system 
level. In order to achieve this third goal, we started out 
doing research on protection mechanisms to handle the 
security and strength of our prevention system’s 
components. As a result of our current work, we present in 
this paper the development of ACAPS (which stands for 
An Access Control Mechanism to Protect the Components 
of an Attack Prevention System), a protection module 
integrated into the kernel of our research prototype’s 
operating system, GNU/Linux, and implemented over the 
Linux Security Modules (LSM) framework [11].  
 
The protection mechanism behind ACAPS consists of 
building a complementary kernel access control scheme, 
to handle the protection of the system itself once it has 
been compromised by an attacker. To do this, it intercepts 
and cancels unlawful system calls launched by the 
attacker. Thus, even if the attacker gains administrator 
permissions, she will not achieve her purpose. This 
security enhancement is solved without having to 
recompile the kernel, and with a high degree of flexibility 
and portability when compared to other proposals for the 
GNU/Linux kernel, such as [7] and [8].  
 



  

Another important feature of our approach is that it allows 
to enforce the components’ protection in an independently 
fashion. Hence, even if one of the components is 
compromised, the rest of them can continue to work in a 
trusted way. Although it will not be always possible to 
achieve the full independence between all the components, 
we show a first proposal for our work, by considering 
different protection levels. This way, we manage as much 
as possible the fulfillment of this requirement, and we 
offer the administrator in charge of the system the ability 
to perform component protection at different levels, such 
as application level, communication level, etc.  
 
The rest of this paper is organized as follows. Section 2 
describes the main properties of our proposed attack 
prevention system, as well as the main components to 
protect it through ACAPS. Then, we take a closer look to 
the protection scheme behind ACAPS in Section 3. 
Section 4 introduces a first implementation of ACAPS on 
our research prototype, through the Linux Security 
Modules (LSM) framework, as a kernel based access 
control mechanism. An evaluation concerning the 
efficiency, security, and usability of ACAPS is then 
presented in Section 5. Finally, Section 6 closes the paper 
with a list of conclusions and future work.   

2. System Overview 

The main purpose of our prevention system is to detect 
and react to coordinated or distributed attacks. By means 
of a set of cooperative entities which are lodged inside the 
network, the system avoids the use of network resources 
to perform coordinated attacks against third party 
networks. The aim of this system is not only to detect in-
coming attacks against these entities, but also to detect 
when these nodes are the source of one of the different 
steps of a coordinated attack to avoid it. 
 
Our approach is based on gathering and correlating 
information held by multiple sources. We use a 
decentralized scheme based on message passing to share 
alerts in a secure communication infrastructure [5]. The 
information exchange between peers is intended to 
manage a more complete view of the whole system. Once 
achieved, one can detect and react on the different actions 
of the corresponding attack. 
 
As shown in Figure 1, each node of the architecture is 
made up of a set of analyzers (with their respective 
detection units or sensors), a set of alert managers (to 
perform alert processing and manipulation functions), and 
a set of local reaction units (or effectors). These 
components, and the interactions between them, are 
described in the following subsections. 

 
 

 

Fig. 1. Main components of each node 
 
 

2.1 Analyzers  

Analyzers are the local elements in charge for processing 
audit data. They process the information gathered by 
associated sensors, implemented as operating system’s 
kernel modules, to infer possible alerts. Their task is to 
identify occurrences which are relevant for the execution 
of the different steps of an attack and pass this information 
to an alert correlation manager. The interesting 
occurrences are local alerts.  
 
Each local alert is detected in a sensor’s input stream and 
exchanged as an IDMEF message [2]. The Intrusion 
Detection Message Exchange Format (IDMEF) is 
intended to be a standard data format that automated 
intrusion detection systems can use to raise alerts about 
events that they report as suspicious. It allows analyzers 
and managers to assemble very complex alert descriptions. 
In accordance with the IDMEF format, each local alert has 
a unique classification, and a list of attributes with their 
respective types, to identify the analyzer that originated 
the alert, the time the alert was created, etc. 
  
All possible classifications and their respective attributes 
are known by all system components (i.e. sensors, 
analyzers and managers) and all analyzers are capable of 
exchanging various instances of local alerts of one or more 
types.  
 
Once formulated each local alert as an IDMEF message, 
using XML syntax, each local alert is published to the local 
communication channel via the publish/subscribe system, 



 
 

  

xmlBlaster [9]. A publish/subscribe system consists of 
brokers and clients that are connected to brokers. The 
brokers themselves form the infrastructure (notification 
service) used for routing the notifications. Clients can 
publish notifications and subscribe to filters that are 
matched against the notifications passing through the 
broker network. If a broker receives a new notification, it 
checks if there is a local client subscribed to a filter that 
matches this notification. If so, the message is delivered to 
this client. Additionally, the broker forwards the message 
to neighbor brokers according to the applied routing 
algorithm. 
 
On the other hand, the exchanging of information between 
sensors and analyzers is based on a different 
communication mechanism, since sensors are working as 
modules in kernel space, and analyzers as daemon 
processes in user space. This communication is efficiently 
solved through the use of Netlink sockets [3], a Linux 
specific mechanism that allows us to perform 
communication between kernel modules and user space 
processes via the well known primitives from the socket 
treatment, and providing us transparency with the 
buffering mechanisms. 
 

2.2 Managers  

The use of multiple analyzers and sensors together with 
heterogeneous detection techniques increases the detection 
rate, but it also increases the number of alerts to process. 
In order to facilitate this process and to reduce the number 
of false negatives our architecture provides a set of 
cooperation and correlation managers, which performs 
aggregation and correlation of both, local alerts (i.e., 
messages provided by the node’s analyzers) and external 
messages (i.e., the information received from other 
collaborating nodes). Just like for the communication 
between the analyzer and the correlation manager (c.f. 
Section 2.1), the communication between managers is also 
implemented through the use of the publish/subscribe 
system xmlBlaster [9].  
 
The basic functionality of the cooperation manager is to 
cluster alerts that correspond to the same occurrence of an 
action. It also provides mechanisms to represent the infor-
mation contained in the various alerts belonging to this 
cluster, applying aggregation and fusion techniques [5]. 
Each cooperation manager registers its interest in a subset 
of local alerts, by subscribing itself to the corresponding 
channel.  
Similarly, the cooperation manager also registers its 
interest in related external alerts, and its interest in local 
correlated alerts. Once subscribed to these three filters, the 
alert infrastructure will notify the subscribed managers of 

all matching alerts. All the notified alerts are processed 
and, depending on the clustering and synchronization 
functions, the cooperation manager can publish some 
global and external alerts.  
 
On the other hand, the main task of the correlation 
manager is the implementation and execution of the 
weighted alert correlation algorithm described in [5].  The 
correlation manager operates on the global alerts 
published by the local cooperation manager  (i.e. it 
registers its interest in these alerts). Then, the alert 
infrastructure will notify of all matched alerts. Each time a 
new alert is received, the correlation mechanism finds a set 
of action models that can be correlated in order to form a 
scenario leading to an objective. At last, it includes this 
information into the CorrelationAlert field of a new 
IDMEF message and publishes the correlated alert.  
 
The correlation manager is also responsible for reacting on 
detected security violations. The algorithm used is based 
on the anti-correlation of actions, to select appropriate 
countermeasures in order to react and prevent the 
execution of the whole scenario [5]. As soon as a scenario 
is identified, the correlation mechanism looks for possible 
action models that can be anti-correlated with the different 
actions of the incoming scenario, or even with the goal 
objective.  
 
The set of anti-correlated actions becomes the set of 
countermeasures available for the observed scenario. The 
definition of each anti-correlated action contains a 
description of the countermeasures which should be 
invoked (e.g. hardening the security policy). Such 
countermeasures are included into the Assessment field of 
a new IDMEF message, and published through the alert 
infrastructure. Another manager, the assessment manager, 
will register and revoke its interest in these assessment 
alerts.  
 
Once notified, the assessment manager performs a post-
processing of the received alerts before sending the 
corresponding reaction to the local response units (or ef-
fectors). Just like for sensors and analyzers (c.f. Section 
2.1), the communication from the assessment manager to 
the effectors (also implemented as Linux kernel modules) 
has also been implemented through the use of netlink 
sockets. 
 

3. Protection Mechanisms 

As described in the previous section, the entities of our 
platform cooperate to detect if the resources, where they 
are lodged, are taking an active part of a coordinate attack. 



  

As it happens with a traditional IDS, with the proper 
manipulation of the processes associated to each node, an 
attacker could bypass the detection mechanisms. Thus, the 
intruder could make its way to hide the local part of the 
attack from the node. Furthermore, she could generate 
false alerts in order to cause a malfunction of the whole 
platform.  
 
This problem leads to the need for introducing a protection 
mechanism on the different components of each node, 
keeping with their protection and mitigating or even elimi-
nating any attempt to attack or compromise the platform 
and its operation. This way, even if an attacker 
compromises the security of the system, she would not be 
able to disarm the detection and reaction mechanisms.  
 
Given the inherent characteristics of the design of our 
prevention platform, and according to [7], we consider the 
following two protection mechanisms: the auto-protection 
carried by the elements of each node, and the protection of 
the elements carried by the kernel of the operating system.  
In the first case, each component is responsible for its own 
protection, using mechanisms such hiding its processes, 
mobile agent systems, or cryptographic techniques 
associated to the system logs. Most of the current 
proposals in this field, such as [3, 14, 15], are inefficient 
against some attacks. For example, when the intruder is in 
a privileged position, she may interact without restriction 
with the components through the underlying operating 
system.  
 
Therefore, the cancellation of processes associated with 
the detection system, or the deletion of logs, show the 
problems of these methodologies. This problem relies in 
two facts. First, the existence of privileged users 
(administrators) in most of the current operating systems, 
that can freely interact with the system. And second, the 
delegation of part of the protection to the operating system 
access control mechanism, which does not consider that an 
attacker could gain privileged user permissions from a bug 
or security failure.  
 
In the second case, the kernel of the operating system 
provides the proper protection mechanisms, detached from 
the detection and reaction system. Protection is achieved 
by incorporating an access control mechanism into the 
kernel system calls. This way, one may allow or deny a 
system call based on several criteria such as the identifier 
of the process making the call, parameters of the call, etc. 
The kernel’s access control allows to eliminate the notion 
of trust associated to privileged users, delegating the 
authorization for the execution of a given system call to 
the internal access control mechanisms. In addition, and 
contrary to the previous auto-protection mechanisms, it 

provides a unified solution, avoiding the implementation 
of different specific mechanisms for each component.  
 

3.1 Proposed Scheme  

In order to protect the components of our platform we 
propose an access control mechanism integrated into the 
kernel of the operating system. This way, even if an 
attacker gains administrator permissions, she will not be 
able to generate actions attempting on the node. Each 
unlawful system call to the components is intercepted and 
cancelled by the access control.  
 
This methodology also allows us to provide a second level 
of protection. The mechanism provided by the kernel and 
the modularity based on components allows to enforce the 
compartimentalization principle [10].  
 
This principle is based in the segmentation of a system, so 
several components can be protected independently one 
from another. This ensures that even if one of the 
components is compromised, the rest of them can operate 
in a trusted way. In our case, several components from the 
node can be executed as processes. By specifying the 
proper permission based on the process ID, we can limit 
the interaction between elements of the node. If an 
intruder takes control of a process associated to a given 
component (through a buffer overflow, for example), she 
will be limited to make the system call for this given 
process.  
 
In our proposal the compartimentalization principle is 
used as follows. In each node we assume that the 
execution of the analyzers is isolated from the cooperation 
manager. The protection at kernel level avoids that 
potentially dangerous system calls (such as killing a 
process) could be produced from one component against 
another one.  
 
For example, if a malicious user gains the control of a 
process associated to an analyzer, she will not be able to 
abort the execution of the cooperation manager.  
 
Even so, it is not always possible to achieve a complete 
independence between the components. There is a need to 
determine which system calls may be considered as a 
threat when launched against an element from the node. 
  
This requires a meticulous study of each one of the system 
calls provided by the kernel, and how can they be misused.  
On the other hand, we have to define the access control 
rules for each one of these system calls. Despite its 
complexity, we can consider three basic protection levels 
to classify the system calls:  



 
 

  

 
• Critical process protection: comprises actions that can 

attempt on the proper execution of the processes 
associated to a node, either by interaction over them 
by signals, or the manipulation of the memory space.  

Some examples are: execution of a new application 
already in memory, cancellation or manipulation of 
the address space and process traces, etc.  

• Communication mechanisms protection: comprises all 
the processes that allows an attacker to modify, 
generate or eliminate all kinds of messages 
interchanged between the node elements.  

• Protection of files associated to the components: 
comprises all spiteful actions addressed to the files 
used by the components of the node, such as 
executable, configuration, or log files.  

4. Implementation 

In this section we outline the current implementation of 
ACAPS. In accordance with the protection scheme 
proposed in Section 3.1, it consists of a kernel based 
access control mechanism, and its development has been 
done over the Linux Security Modules (LSM) framework 
for GNU/Linux systems [11].  
 
The LSM framework does not consist of a single specific 
access control mechanism; instead it provides a generic 
framework, which can accommodate several approaches. 
There are several hooks (i.e. interception points) across 
the kernel that can be used to implement different access 
control strategies. Such hooks are: Task hooks, Program 
Loading Hooks, Filesystems Hooks and Network hooks.  
 
These LSM hooks, can be used to provide protection at the 
three levels commented in the previous section. 
Furthermore, LSM adds a set of benefits to our 
implementation.  
 
First, it introduces a minimum load to the system when 
comparing it to kernels without LSM, and does not 
interfere with the detection and reaction processes. In the 
second place, the access control mechanism can be 
composed in the system as a module, without having to 
recompile the kernel. And third, it provides a high degree 
of flexibility and portability to our implementation when 
compared to other proposals for the Linux kernel, such as 
[7] and [8], where the implementation requires the 
modification of some features of the original kernel 2.6.x.  
 
 

 

Fig. 2. Linux Security Module (LSM) Hook 

 
The LSM interface provides an abstraction, which allows 
the modules to mediate between the users and the internal 
objects from the operating system kernel. To this effect, 
after accessing the internal object, the hook calls the 
function provided by the module and which will be 
responsible to allow or deny the access. This can be seen 
in Figure 2. There, a module registers the function to make 
a check over the inodes of the filesystem. At the same 
time, LSM allows to keep the discretionary access control 
(DAC) provided by Linux by standing between the 
discretionary control and the object itself. This way, if a 
user does not have permissions in relation to a given file, 
the DAC of the operating system will not allow the access 
and no call to the function registered by the LSM will be 
made. This architecture reduces the load of the system 
when compared to an access control check centralized in 
the operating system call interface, which always gets used 
for all the system calls.   
 
The node components will be allowed to make operations 
only permitted to the system administrator (such as packet 
filtering, process or application cancellation, etc.). This 
implies that the system processes associated to the 
components will be executed by the root user. On the 
contrary, if we associate the processes to a non privileged 
user, the discretionary access control of Linux will not 
allow the execution of some specific calls. The internal 
access control mechanisms at the kernel is based in the 
process identifier (PID) that makes the system call, which 
will be associated to a specific component. Each function 
registered by an LSM module, determines which 
component is making the call from the PID of the 
associated process. It then, applies the access control con-
straints taking also into account the parameters of the 
system call. So, for example, a given component can 
access its own configuration files but not configuration 
files from other components.  



  

 
 
 

Fig. 3. Access control example through ACAPS 

 
An important issue in the implementation is the 
administration of the access control mechanisms and the 
management of each one of the nodes. As described in the 
previous section, the administrators should not be able to 
throw a system call, which may suppose a threat to the 
node. This prevents an intruder to do any harm to the node 
even if she could scale its privileges to the administrator 
ones. This contrasts with the administration of the node, if 
an administrator cannot interact with the components of 
the node, she will not be able to carry on any management 
or configuration process and activities. To solve this 
problem, we have introduced a temporal authentication 
process based on a cryptographic USB token [1]. While 
the device is connected to the system, the administrator 
will be able to hold the indispensable privileges to 
manipulate the node. When the device is retired, the 
access control enforcement will come to its normal 
operation. Figure 3 shows how a function, registered by 
ACAPS, allows the modification of a configuration file. 
 

5. Evaluation 

In order to show the applicability of our proposal, we 
evaluate in this Section the implementation of ACAPS 
from two different points of view. We first examine its ef-
ficiency, and we then discuss the security enhancement 
that it offers. This way, we can finally conclude whether 
the performance penalty introduced by ACAPS, in 
contrast to the security enhancement offered by, is 
acceptable to be deployed on a real system.  

5.1 Efficiency  

The efficiency of ACAPS can be decomposed into the 
following three classical perspectives: performance, 
scalability and modularity.  
 
First of all, the overhead introduced by ACAPS can be 
considered as the impact in the system’s performance 
introduced by the LSM framework and the access control 
hooks implementation. On one hand, and as pointed out in 
[11], the overhead of the LSM framework in the system is 
minimal compared to the standard Linux kernel, about 0-
5%. On the other hand, a set of tests over our access 
control hooks implementation, through LMbench [6] and 
the OProfile system profiling support offered by the 2.6 
series of the Linux kernel, also reveals that the 
performance impact is minimal.  
 
From the point of view of scalability, our proposed 
protection mechanism can be extrapolated to other new 
components, by considering its own environment and the 
interaction with it in terms of access control. Thus, this 
protection methodology reinforces the modularity 
providing an easy and generic way to incorporate new 
components in the global architecture, without considering 
particular strategies to protect each one of them. In the 
same scope, the inclusion of new components guarantees a 
low degradation performance scalability, since the LSM 
framework and the access control implementation do not 
introduce complex computation. 
 

5.2 Security  

To be deployed on a real system, a protection mechanism 
must be both efficient and secure. However, efficiency and 
security are often a contrary criteria. Hence, we must also 
evaluate ACAPS from the perspective of the security 
enhancement that offers. The security introduced by our 
approach enforces the components’ protection in an 
independently manner, and ensures that even if an intruder 
gets the administration privileges in a protected machine, 
she will not interact with the components of our 
prevention system. In contrast with other approaches that 
could offer similar solutions, the proposed access control 
provides us an additional level of security, reducing the 
impact caused if an attacker gets the control of one 
component. For reinforcement security purposes, the 
authentication token acts as a complement of the access 
control, translating the security authentication for 
administration to a physical element. This idea allow us to 
avoid some kind of logical attacks focused on getting the 
rights of the administrative entity, such as stolen password 
or buffer overflows. 



 
 

  

6. Conclusions 

Intrusion Detection Systems (IDSs) are currently very 
popular in corporate networks and successfully used by 
security staff and administrators to prevent, detect and 
react to security threats. Nevertheless, they may become a 
vulnerable point in the whole system. If the IDS or one of 
its components is compromised by an attacker, the conse-
quences for the security of the system it is protecting may 
be disastrous. Protecting the components of an IDS is not 
easy, specially when dealing with distributed IDSs, made 
up of different components distributed over a network and 
with lost of communications involved. 
 
In this paper we have presented an access control 
mechanism specially suited for a distributed prevention 
and reaction system. The distributed systems is made up of 
several components such as sensors, analyzers, managers, 
etc. that may be distributed in a network. We provide a 
solution for the protection of the components by making 
use of the LSM system in the Linux kernel. 
 
The mechanism we have developed, called ACAPS, works 
by providing and enforcing access control rules at system 
calls. It is based on a protection module integrated into the 
operating system’s kernel, providing a high degree of 
modularity and independence between components.  
 
Summarizing the evaluation of our first implementation, 
we conclude that the low performance penalty introduced 
by ACAPS, the security enhancement offered by, as well 
as its scalability and modularity, is more than acceptable to 
be deployed and utilized on a real system.  
 
We can also conclude that ACAPS offers a good degree of 
transparency to the administrator in charge, since the 
access control is integrated inside the operating system’s 
kernel, and it does not interfere directly with user space’s 
processes. At the same time, the token based 
authentication for administration purposes, provides a 
transparent and secure management of the platform.  
 
As future work we are considering to continue our study 
about attack and intrusion tolerant mechanisms, to address 
the security of our proposed architecture from a wider and 
more global point of view. 
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