Protecting on-line casinos against fraudulent player drop-out*

Joaquin Garcia', Frédéric Cuppens?, Fabien Autrel®, Jordi Castella-Roca?,
Joan Borrell!, Guillermo Navarro!, and Jose A. Ortega-Ruiz!

1 UCCD-UAB, 08193 Bellaterra (Catalonia), Spain
2 GET-ENST-Bretagne, 35576 Cesson Sévigné, France
3ONERA-CERT, 31055, Toulouse Cedex, France
4 ETSE-URY, 43007 Tarragona (Catalonia), Spain

Email: joaquin.garcia@uab.es, frederic.cuppens @enst-bretagne.fr,
fautrel @cert.fr, jcaste @etse.urv.es, {jborrell,gnavarro,jao} @ccd.uab.es

Abstract

Some multiplayer, on-line games rely on the collabo-
ration of all participating players. If a player’s gamble
is aborted, the rest of players cannot continue playing.
This behavior can be used by fraudulent players to avoid
paying by simply quitting the game before its completion.
It is difficult to decide whether a player has left the game
in a deliberated, fraudulent way, because there are many
factors, both intentional and inadvertent, that can cause
the abandonment. This paper presents a fraud detection
system that specially fits to such scenarios. By gathering
and correlating information held by multiple sources, our
approach will help the on-line casino administrator to
decide if a player leaving a game is actually cheating.
Results of our work can be easily adapted for use against
other existing on-line gambling frauds.

1 Introduction

We shall use the term “on-line gambling” to refer to gam-
bling services accessed via a remote connection, including
the Internet, interactive television and mobile phones [8].
On-line gambling has attracted a high number of players
and revenues during the last years, probably due to its space
and time independence, which result in highly improved ac-
cessibility. Thus, in 2001, more than one million Americans

*Part of this work has been founded by the Spanish Government,
through its projects TIC2003-02041 and SEG-2004-04352-C04-01, and
the Catalan Government Department DURSI, with the grant 2003FI-126.

per day logged on to the Internet and played casino-style
games, or made sports wagers for real money [15]. The
same year, the on-line gambling industry was valued at ap-
proximately two billion dollars and is projected to exceed
six billion dollars by 2004 [1].

Despite its popularity, remote gambling is plagued by
several open issues to be addressed to guarantee players and
casino protection [8]. The technical and organizational e-
commerce issues of government legislation relating to In-
ternet gambling, transaction security and internal control
procedures were briefly addressed in [11].

An outstanding problem is game aborting, or player
drop-out. In most on-line games if one player drops out
the rest of players cannot continue and the game must be
aborted.

The Interactive Gambling (Player Protection) Act [14]
tries to protect the players. Thus, if after making a wager
in an authorized game conducted by a licensed provider, a
player’s participation in the game is interrupted by a tech-
nical failure that prevents the player from continuing with
the game, the licensed provider must refund the amount of
the wager to the player as soon as practicable. However,
players can abuse this protection. For instance, a malicious
player with a bad game hand can decide to make a denial
of service attack against another player to avoid losing his
money. The victim cannot continue playing and the game
must be interrupted. As a result, the on-line casino must
refund the amount of the wager to all the players and the
cheater avoids paying.

In [12, 13] a fraud detection in an IP-based media-on-
demand service is discussed. It is suggested that intrusion
detection systems (IDS) can be used to detect fraud attempts

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

in a gambling site. Based on the same idea, we propose in
this paper the utilization of a detection and reaction mech-
anism to detect if the player drop-out is due to a fraudulent
attack. This information will help the on-line casino admin-
istrator to decide if a player drop-out is fraudulent.

The rest of this paper is organized as follows. Section 2
presents our detection mechanism based on alert correla-
tion. This detection mechanism uses LAMBDA, a language
suggested in [6] to model actions and objectives, and to de-
tect incoming scenarios. In Section 3, we present a sec-
ond mechanism to react on detected scenarios. Section 4
shows the application of a research prototype that imple-
ments these two mechanisms to prevent a fraudulent player
drop-out scenario. Finally, the last section lists our conclu-
sions.

2 Detection Mechanism

We present in this section a detection mechanism based
on alert correlation. Correlating information held by multi-
ple sources is a technique that has been discussed in several
papers. Nevertheless, the goal aimed by those approaches
are different and need to be explained.

With the rise of cooperative or distributed detection
tools, the problem of reasoning on information coming from
multiple sources spread across a monitored system is key.
Correlating this information allows to fulfill different goals:

e Information consolidation: using a set of distributed
detection probes increases the detection power, but
usually provokes that each detected event raises multi-
ple alerts. These alerts must be aggregated and fused,
associating them to a unique source, before further
processing.

e Scenario detection: the granularity of detection alerts
is low. The event associated to an alert can be non ma-
licious when considered alone but when a more global
vision is adopted we may conclude that this elementary
event is part of an ongoing scenario.

The notion of alert correlation as the process of aggregat-
ing alerts related to the same event has been studied in [7]
and [3]. In order to aggregate alerts, they define a similar-
ity relationship between alert attributes. A second approach
to perform alert correlation, discussed in [4] and [2], is the
process of detecting scenarios of alerts. In our proposal we
use the latter approach, introducing the notion of alert cor-
relation as the process of finding a set of alerts in the stream
of detection alerts organized into a scenario. Our formalism
is explained below.

2.1 Modeling Actions and Objectives

We can model the actions of a fraudulent player during
an on-line game as the planning activity of an agent [4].
This agent’s actions will be registered as facts about its us-
age of the on-line services. Often, these actions will fol-
low a pattern indicating their illicit goals. Thus, we can
use these indicators, in combination with other environment
events, to predict the agent’s fraudulent objectives, consid-
ered as a reachable set of objectives for the agent’s plans.
These goals constitute, of course, a violation of the system’s
security policy, which is accomplished via a concrete activ-
ity scenario. Our aim will be detecting such attack scenarios
via associated sets of alerts detectable via a monitoring sys-
tem.

We propose the use of the LAMBDA language [6] to
model the possible agent actions leading to one or more
(fraudulent) objectives. LAMBDA is the acronym for LAn-
guage to Model a dataBase for Detection of Attacks. This
language provides a logical, synthetic description of generic
actions, which are defined in terms of the following at-
tributes:

e Pre-condition: defines the state of the system needed
in to carry out the desired action.

e Post-condition: defines the state of the system after ex-
ecution of the action.

e Detection: is a description of an alert expected when-
ever the action is executed.

o Verification: specifies the conditions to verify the suc-
cess of an action.

The alerts launched by a detection system provide ev-
idence of the occurrence of some events but are not suf-
ficient to conclude that these events will actually cause a
change in the state. This is why a LAMBDA description
also includes a verification attribute that provides conditions
to be checked to conclude that the execution of the action
has been successful.

On the other hand, we define an objective as a specific
system state characteristic of a violation of the security
policy[4]. A LAMBDA description of an objective consists
of just one attribute, namely:

e State: defines the state of the system that corresponds
to a security policy violation.

2.2 Correlating Actions and Objectives
Reference [5] shows how to correlate detected actions to

identify activity scenarios using LAMBDA. It is then pos-
sible to extrapolate such scenarios to predict future actions

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

and even the objective pursued by a given set of actions.
An extrapolation can yield several possible scenarios, which
can be ordered from most to least likeness according to the
algorithm described in [2].

The ordering algorithm uses correlations based on a uni-
fication principle on predicates [9]. We mainly rely on the
concept of direct correlation.

Direct correlation represents the idea of positive in-
fluence between two actions. We say that an action a
has a positive influence over an action b if a is directly
correlated to b. In such a case, the effects of a, namely
the set of predicates in post,, allows to satisfy a subset of
the pre-requisites of pre,. More concretely, the concept of
direct correlation is defined as follows. Let a and b be two
LAMBDA descriptions of actions, and post, and post,
the set of literals of post-condition in conjunctive form for,
respectively, a and b.

Direct correlation: a and b are directly correlated if 3 E,
and FE, such that:

- (B, € post, n Ey € prep) or (not(E,) € posty a
not(Eyp) € prep)

- E, and Ej, are unifiable through a most global unifier
0.

It is also useful for our proposal to integrate in the
detection process the preliminary steps that an agent can
perform to collect data on a specific system, by means of
the concept of Knowledge gathering correlation [5]:

Knowledge gathering correlation: ¢ and b are knowledge
gathering correlated if 3 £, and F}, such that:

- (knows(Agent, E,) € post, » E, € prey) or
(knows(Agent,not(E,)) € post, n not(Ep) €
prep)

- E, and Ej, are unifiable through a most global unifier
0.

The notion of correlation unifier allows us to apply on-
line correlation. Since two actions a and b are correlated as
soon as they have one predicate in common in post, and
prep, we may have several unifiers for two actions. Thus,
the set of unifiers allows us to know which action can be
correlated with a given action under some unification con-
dition between their variables. Applying on-line correlation
consists in exploring the set of correlation unifiers each time
anew alert is received, given that the alert corresponds to an
instance of an action model. More concretely, we define the
concept of correlation unifier as follows:

Correlation unifier: denoted =,;,, is defined as the set
of all possible unifiers of direct correlation or knowledge
gathering correlation that correlate post, and prey,.

Similarly, we can also apply the notion of correlation be-
tween an action and an objective. In this case, we can detect
that an action may allow to reach or help to reach the fraud
objective. We simply have to correlate the post-condition of
an action and the state condition of an objective.

2.3 Detecting Scenarios

Once all the actions and objectives available for the agent
have been modeled in LAMBDA, we can generate the set
of unifiers between each pair of actions, and respectively
between an action and an objective. This generation is done
off-line. When an alert is received, we will bind this alert
to an action model and then check for a unifier between
the new and past alerts. If some unifier in the unifier set is
identified, we can then say that the associated actions are
correlated in the same scenario.

Siic'm a(x) ——>» correlation
post: p(x)
ab = {{>/x"}} o
objective o(y”)
action b(x”,Y state - at7)

pre : p(x”) Q vo = {¥/Y7) [j
post: q(v)

Figure 1. Sample correlation graph

Using this approach, it is possible to build a correlation
graph, as shown in Figure 1, where nodes are LAMBDA
descriptions and edges are correlation unifiers. In this ex-
ample, we assume that two actions a and b are detected: an
occurrence of a with argument X = x and an occurrence of
b with argument Y = y. The correlation process diagnoses
that action a is correlated with action b, that action b is cor-
related with a given fraud objective o, and that this objective
is achieved.

3 Reaction Mechanism

Just detecting activity scenarios does not prevent the
agent from reaching its objective: we need an additional
mechanism to decide when to execute a counter measure
once the scenario has been partially observed. Through this
mechanism, the next expected action will be blocked via an
anti-correlated action. Using the formalism presented in [2]

TEEE .2

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

to model counter measures as actions launched by the sys-
tem, counter measures will have attributes similar to those
of actions. The main difference is that the detection attribute
associated with a normal action is replaced by a new one,
called response, which defines the corresponding attributes
to perform the counter measure.

From the modeling point of view, the models for counter
measures are not different from the ones representing the
set of actions available to the agent. Actually, a counter
measure is an action b anti-correlated with another action a,
i.e., one of the predicates in a’s post-condition is correlated
with the negation of one predicate in the pre-condition of
action b. More formally, using the notation of previous
sections, we define anti-correlated actions as follows:

Anti-correlation: a and b are anti-correlated if 3 F, and
E}, such that:

- (E, € post, a not(Eyp) € prey) or (not(E,) € post,
A By € prey)

- E, and Ej, are unifiable through a most global unifier
0.

As for a correlation unifier, an anti-correlation unifier
defines which actions can be anti-correlated, telling how
the variables must be unified in the predicates involved in
the anti-correlation link. More concretely, we define the
concept of anti-correlation unifier as follows:

Anti-correlation unifier: denoted V,;, is the set of all
possible unifiers 6 that anti-correlate post, and prey.

Using the same approach, it is possible to define anti-
correlation between a counter measure and an objective. We
have just to replace pre-condition by state in the previous
definition.

3.1 Reacting on Detected Scenarios

The anti-correlation mechanism relies on the use of the
hypothesis generation mechanism [2]. Each time a new
alert is received, the correlation mechanism finds a set of
action models that can be correlated in order to form a sce-
nario leading to an objective. This set of hypothesis is then
instantiated into a set of virtual alerts.

When a scenario is identified, the correlation mechanism
then looks for action models that can be anti-correlated with
the virtual actions, and provides a graph of actions, virtual
actions and objective. The set of anti-correlated actions be-
comes the set of counter measures available for the hypoth-
esis represented by the partially observed scenario. Thus,

—— > correlation
77777777777 » anti-correlation

action b(x” 7)
pre:p(x”7)
post: not(p(x” 7))

bo = {{x"/ x}}

. v
action a(x)
pre : ... a0 = {x/x"}}
post: p(x)

objective o(x”)
state : p(x”)

Figure 2. Sample correlation graph with reac-
tion on objective

there is two possible prevention mechanisms. One that di-
rectly applies to virtual actions, and other that applies to the
objective.

Figure 2 presents a sample correlation graph with di-
rect reaction on objective. In this example, we assume that
an action a, with argument X = z, is correlated with a
given fraud objective o and this objective is achieved. The
anti-correlation mechanism finds a possible counter mea-
sure candidate: an action b with parameter X" = X' to in-
validate the condition p on the objective o. In our approach,
this action is then suggested to the administrator as a possi-
ble counter measure to prevent the scenario’s objective.

In the following section we show how to use the de-
tection and reaction mechanism presented in Section 2 and
Section 3 to design a prevention mechanism that detects and
reacts to the fraudulent player drop-out scenario described
in Section 1.

4 Preventing the Fraudulent Scenario

This section presents the Prevention Cells framework
[10], a detection and reaction platform which implements
the fraud prevention mechanism described in this paper.
This framework is a research prototype implemented in C
and C++.

Our platform works as follows. A set of gathering tools
(sensors) take information at application, host, and network
layer in various monitored targets. This audited data is then
filtered and pre-formated into alerts by analyzers. These
alerts are sent to an alert database. An enhanced version
of CRIM [5] analyzes these alerts using the detection and
reaction formalism presented in this paper.

CRIM is a correlation manager which implements the
needed functions to cluster different alerts that correspond
to the same occurrence of an action, as well as the functions
to correlate and anti-correlate actions and objectives. Thus,
to detect different scenarios, CRIM uses the approach based
on correlation defined in Section 2. Likewise, CRIM uses

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Action port-scan(A, H, P)

Pre: open(H, P)

Detection: classification(Alert, TCP-Scan’),
source(Alert, Agent, A),
target(Alert, Host, H),
target-service-port(Alert, Port, P)

Post: knows(A, open-service(H, P))

Verification: true

Action winnuke(A, H, S)
Pre: use-os(H, windows),
use-service(H, Netbios’),
open(H, 139)
Detection: classification(Alert, Winnuke’),
source(Alert, Agent, A),
target(Alert, Host, H)
Post: deny-of-service(A, H)
Verification: unreachable(H)

Action player-drop-out(P, H, G, t)

Pre: playing-game(P, G),
playing-from(P, H),
not-activity(H, t)

Detection: classification(Alert,” Player-Drop-Out’),
additional-data(Alert, player, P),
additional-data(Alert, host, H),
additional-data(Alert, game, G),
additional-data(Alert, timeout, t),

Post: cancelled-game-by-drop-out(P, H, G)

Verification: unreachable(H)

Action cancelled-game-by- fraud(A, P, H, G)

Pre: cancelled-game-by-drop-out(P, H, G),
deny-of-service(A, H)

Response: classification(Alert,” Player-Drop-Out-Fraud’)
additional-data(Alert, agent, A),
additional-data(Alert, player, P),
additional-data(Alert, host, H),
additional-data(Alert, game, G),

Post: not(cancelled-game-by-drop-out(P, H, G))

Verification: true

Objective fraudulent-drop-out(A, P, H, G)
State: cancelled-game-by-drop-out(P, H, G)
deny-of-service(A, H)

Figure 3. Player drop-out scenario

the approach described in Section 3 to generate the corre-
sponding counter measures.

These counter measures are transmitted to a counter
measure manager component to perform a post-processing
of the received alerts before sending the corresponding re-
action to a set of response units. These responses do not
need to be necessarily automatic reaction functions. The
counter measure manager could provide the administrator
in charge with a report, so that the latter could decide the
needed response (be it passive or active).

The set of targets for our proposed player drop-out sce-
nario is made up by the expected actors involved in the
game. To simplify the scenario, let us suppose just the fol-
lowing ones. The Player’s Software, which provides to end
users (players) the functionality required to take part in the
game. Different information from its environment (CPU

player-drop-out

77777777777 > anti-correfation /cancelIed—game—by—fraud
———» direct correlation
ffffff » knowledge gathering

correlation

Figure 4. Correlation graph for the player
drop-out scenario

and memory usage, operating-system, etc.) will be moni-
tored. The Internet and Network Service Providers, which
offer access to the on-line casino and bear the main respon-
sibility for the game service. Since they serve as mediators
between the player and the on-line casino, this target can
offer technical data for the fraud detection process. Lastly,
the On-line Casino. This target is an important actor in the
prevention process since it delivers and receives the content
that conforms the game.

To make the prevention system effective, the different
components of our framework are distributed between the
set of targets by using a publish-subscribe model [10].
Thus, the components of our framework are brokers and
clients that are connected to them. The brokers themselves
form the infrastructure used for the routing of notifications.
Clients can publish notifications and subscribe to filters that
are matched against the notifications traversing the broker
network. When a broker receives a new notification, it
checks if there is a local client that has subscribed to a filter
matched by the notification. If so, the message is delivered
to this client.

Let us present a detailed sample scenario for the player
drop-out fraud. Corresponding to this scenario, Figure 3
shows a set of actions modeled using LAMBDA, together
with the fraud objective. First, a fraudulent Agent A per-
forms a port scanning of Host H. If port 139 is open,
A concludes that the Operating System running on H is
Windows and uses its NetBios service. Then, A can ex-
ecute a Winnuke denial of service attack to H. This de-
nial of service on H causes the Player P’s (which is play-
ing in Game G from H) abandonment, when a timeout 7 is
sent by the on-line casino. Actions port-scan(A, H, P),
winnuke(A, H,S), and player-drop-out(P, H,G,t) re-
spectively give the description in LAMBDA of the port
scanning, the denial of service, and the player drop out.
The correlation of these actions, together with the objective

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

fraudulent-drop-out(A, P, H,G), conducts to the viola-
tion of the security policy (cf. Figure 4). On the other hand,
the counter measure represented by the action cancelled-
game-by-fraud(A, P, H, G) is anti-correlated with the ob-
jective (cf. Figure 4). It notifies the administrator in charge
that the real cause of P’s quitting is may be a fraudulent
player drop-out instead a normal abandonment, and pro-
vides the corresponding attributes to perform the response.

5 Conclusions

We have presented in this paper a detection and reaction
mechanism to identify if an on-line casino player is a victim
of an attack. Our proposal uses an alert correlation and anti-
correlation mechanism by exchanging information between
the player’s software, the on-line casino, and the different
providers which collaborate to make possible the game. The
correlation of this exchanged information is used to decide
if a malicious player is trying to fraud the on-line casino.

Our approach is based on a logical representation of both
fraud actions and counter measures. This logical represen-
tation has been integrated on an experimental prevention
framework that collects and analyzes the alerts exchanged
between the different peers.

Up to now, we only use our response mechanism to pro-
vide support to the administrator of the on-line casino. He
takes the final decision to choose and launch a given re-
sponse. This is a prudent strategy, but it introduces an
overhead that is sometimes incompatible with real time
response. Therefore, we are currently analyzing situa-
tions where it would be possible to automatically decide to
launch the response.

References

[1] J. Baumgarten, A. Farr, and S. Brinkerhoff Proskauer
Rose. Congress again confronts Internet gambling, cy-
berspace law. vol. 6 no. 6, September, 13 2001.

[2] S. Benferhat, F. Autrel, and F. Cuppens. Enhanced cor-
relation in an intrusion detection process. In Mathemat-
ical Methods, Models and Architecture for Computer
Network Security, Russia, September 2003.

[3] F. Cuppens. Managing Alerts in a Multi-Intrusion
Detection Environment. In /7th Annual Computer
Security Applications Conference New-Orleans, New-
Orleans, USA, December 2001.

[4] F. Cuppens, F. Autrel, A. Miege, and S. Benferhat. Rec-
ognizing malicious intention in an intrusion detection
process. In Second International Conference on Hy-
brid Intelligent Systems, pp. 806-817, Santiago, Chile,
October 2002.

[5] F. Cuppens, A. Miege, Alert correlation in a coopera-
tive intrusion detection framework, In Proceedings of
the IEEE Symposium on Research in Security and Pri-
vacy, pp. 202-215, Oakland, USA, May 2002.

[6] F. Cuppens and R. Ortalo. LAMBDA: A language to
model a database for detection of attacks. In Third In-
ternational Workshop on the Recent Advances in Intru-
sion Detection (RAID’2000), Toulouse, France, 2000.

[7] H. Debar and A. Wespi. Aggregation and Correlation
of Intrusion-Detection Alerts. In Fourth International
Workshop on the Recent Advances in Intrusion Detec-
tion (RAID’2001), Davis, USA, October 2001.

[8] Department for Culture Media and Sport
of Great Britain. Gambling review body.
http://www.culture.gov.uk/global/publications/archive
-2001/gamb_rev _report.htm, July 17 2001.

[9] H.C.M. De Swart. Mathematics, Language, Computer
Science and Philosophy, volume 2, Peter Lang, 1994.

[10] J. Garcia, F. Autrel, J. Borrell, S. Castillo, F. Cuppens,
G. Navarro, Decentralized publish-subscribe system to
prevent coordinated attacks via alert correlation, In Pro-
ceedings of the Sixth International Conference on In-
formation and Communications Security, pp. 223-235,
Mailaga, Spain, October 2004.

[11] M. Gregory, S. Michener, and P. Swatman. In-
ternet gambling. In "AusWeb’99” - the Fifth Aus-
tralian World Wide Web Conference, Ballina, NSW,
April 17-21 1999. http://ausweb.scu.edu.au/aw99/ pa-
pers/gregoryl.

[12] H. Kvarnstrm, E. Lundin, and E. Jonsson. Combin-
ing fraud and intrusion detection - meeting new require-
ments. In In Proceedings of the fifth Nordic Workshop
on Secure IT systems (NordSec2000), Reykjavik, Ice-
land, October 12-13 2000.

[13] E. Lundin. Aspects of employing fraud and intrusion
detection systems. Master’s thesis, School of Com-
puter Science and Engineering, Department of Com-
puter Engineering, Chalmers University of Technology,
Gteborg, Sweden, 2002.

[14] Queensland Government. Interactive gambling (pla-
yer protection) act. http://www.legislation.qld.gov.au
/LEGISLTN/SLS/1998/98S1L.258.pdf, 1998.

[15] M. Schopper. Internet gambling, electronic
cash and money laundering: The unintended
consequences of a monetary control scheme.
http://www.igcouncil.org/021007Schopper.pdf.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

