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1. - Introduction

Coordinated Attacks

I “Combination of actions performed by a malicious adversary to violate the security

policy of a target computer system.”

I Networks resources can become an active part of a coordinated attack

I E.g. An attack might start with an intrusion

⇒ Nodes have to be monitored

I A global view of the whole system is needed for detection

⇒ Collection and combination of events from different nodes
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1. - Introduction

Components needed to prevent coordinated attacks

I Sensors (host, application or network based)

I Analyzers (misuse or anomaly based)

I Managers (data consolidation and alert correlation)

I Response units (active or passive reaction)

I Intrusion Detection Systems use these same components to prevent a node
getting compromised by an attacker

⇒ We use these components to prevent a compromised node becoming an active

part of a coordinated attack.
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2. - Classical architectures

Centralized event correlation
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I DIDS - University of California, Davis (1991)

I STAT - University of California, Santa Barbara (1992)
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2. - Classical architectures

Hierarchical event correlation
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I EMERALD - SRI International, California (1997)

I AAFID - CERIAS, Purdue University (1998)
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3. - Prevention Cells System

Prevention Cell
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I Message passing architecture

⇒ The detection process can be completely distributed
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3. - Prevention framework

Sample scenario
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3. - Prevention framework

Detection Process

I Find the set of actions which transforms the system from an initial state S0 to a

final state Sn.
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pre:  remote-access(A,H
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post:  deny-of-service(H
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                  target(Alert,H
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                  classification(Alert,’SynFlooding’)
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3. - Prevention framework

Detection process via alert correlation

I Two actions A and B can be correlated when the realization of A has a positive

influence over the realization of B (given that A occurred before B):

. (Ea ∈ post(A) ∧ Eb ∈ pre(B)) ∨ (not(Ea) ∈ post(A) ∧ not(Eb) ∈ pre(B))

. Ea and Eb are unifiable through a unifier θ

action spoofed-remote-login(A,U,H
1,

H
2
,n)

pre :  remote-access(A,H
2
)

knows(A,following-tcp-sequence(H
2
,n))

deny-of-service(H
1
)

         spoof-address(A,H
1
,n,remote-login-connection(U,H

2
))

post: remote-login(A,U,H
2
)

B

A
action tcp-sequence-prediction(A,H

2
,n)

pre :  remote-access(A,H
2
)

         obtain(A,following-tcp-sequence(H
2
,n))

post: knows(A,following-tcp-sequence(H
2
,n))
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3. - Prevention framework

Reaction process via anti-correlation

I Two actions A and B are anti-correlated when the realization of A has a negative

influence over the realization of B (given that A occurred before B):

. (not(Ea) ∈ post(A) ∧ Eb ∈ pre(B)) ∨ (Ea ∈ post(A) ∧ not(Eb) ∈ pre(B))

. Ea and Eb are unifiable through a unifier θ

action spoofed-remote-login(A,U,H
1,

H
2
,n)

pre :  remote-access(A,H
2
)

         knows(A,following-tcp-sequence(H
2
,n))

deny-of-service(H
1
)

         spoof-address(A,H
1
,n,remote-login-connection(U,H

2
))

post: remote-login(A,U,H
2
)

action undo-deny-of-service(A,H
1
,n

s
)

pre :  deny-of-service(H
1
)

         send-multiple-tcp-resets(A,H
1
,n

s
)

post: not(deny-of-service(H
1
))

B

A
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3. - Prevention framework

Detection and reaction graph for the sample scenario
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4. - Current Development

Current Development

cm-manager
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4. - Current Development
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5. - Summary

Results of our work

I State of the art about coordinated attack prevention

I Study about alert correlation mechanisms

I Development of a generic framework avoiding bottleneck of centralized

architectures using a distributed approach

I Both detection and reaction are performed by using the same formalism
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5. - Summary

Future work

I Incorporate fault tolerant mechanisms

I Make a more in-depth study of the format used for alerts

I Incorporate other information about the environment

– p. 15/16



6. - [C-x C-c]

Thank you! Questions?
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