
Decentralized publish-subscribe system

to prevent coordinated attacks
via alert correlation

J. Garcia, F. Autrel, J. Borrell,

S. Castillo, F. Cuppens, G. Navarro

{jgarcia,jborrell,scastillo,gnavarro}@ccd.uab.es,

{fabien.autrel,frederic.cuppens}@enst-bretagne.fr

– p. 1/16

0. - Content

Main Points

I Introduction

I Classical architectures

I Prevention framework

I Current Development

I Conclusions

– p. 2/16

1. - Introduction

Coordinated Attacks

I “Combination of actions performed by a malicious adversary to violate the security

policy of a target computer system.”

I Networks resources can become an active part of a coordinated attack

I E.g. An attack might start with an intrusion

⇒ Nodes have to be monitored

I A global view of the whole system is needed for detection

⇒ Collection and combination of events from different nodes

– p. 3/16

1. - Introduction

Components needed to prevent coordinated attacks

I Sensors (host, application or network based)

I Analyzers (misuse or anomaly based)

I Managers (data consolidation and alert correlation)

I Response units (active or passive reaction)

I Intrusion Detection Systems use these same components to prevent a node
getting compromised by an attacker

⇒ We use these components to prevent a compromised node becoming an active

part of a coordinated attack.

– p. 4/16

2. - Classical architectures

Centralized event correlation

SENSOR

Data Flow

ANALYZER

SENSOR

SENSOR

SENSOR

SENSOR

SENSOR

I DIDS - University of California, Davis (1991)

I STAT - University of California, Santa Barbara (1992)

– p. 5/16

2. - Classical architectures

Hierarchical event correlation

SENSOR

SENSOR

SENSOR

Domain

MASTER

ANALYZER

DOMAIN

ANALYZER

SENSOR

SENSOR

SENSOR

Domain

DOMAIN

ANALYZER

I EMERALD - SRI International, California (1997)

I AAFID - CERIAS, Purdue University (1998)

– p. 6/16

3. - Prevention Cells System

Prevention Cell

analyzers

sensors response

units

correlation

manager

counter

measure

managers

cooperation

manager

Prevention Cell

Prevention Cell

Prevention Cell

Prevention Cell

I Message passing architecture

⇒ The detection process can be completely distributed

– p. 7/16

3. - Prevention framework

Sample scenario

Server

192.168.0.2

vm2

192.168.0.1

vm1

SYN flooding DoS

12

TCP

sequence_numbers

prediction

3

IP spoofing

echo + + >>/.rhosts

1

192.168.0.3

vm3

DoS

– p. 8/16

3. - Prevention framework

Detection Process

I Find the set of actions which transforms the system from an initial state S0 to a

final state Sn.

S
0

S
1

A
1 S

2

A
2 . . .

S
n-1

S
n

A
n

action syn-flood(A,H
1
,n

s
)

pre: remote-access(A,H
1
)

 send-multiple-tcp-syns(A,H
1
,n

s
)

post: deny-of-service(H
1
)

detection: source(Alert,A)

 target(Alert,H
1
)

 classification(Alert,’SynFlooding’)

 additional-data(Alert,n
s
)

S
0

S
1

– p. 9/16

3. - Prevention framework

Detection process via alert correlation

I Two actions A and B can be correlated when the realization of A has a positive

influence over the realization of B (given that A occurred before B):

. (Ea ∈ post(A) ∧ Eb ∈ pre(B)) ∨ (not(Ea) ∈ post(A) ∧ not(Eb) ∈ pre(B))

. Ea and Eb are unifiable through a unifier θ

action spoofed-remote-login(A,U,H
1,

H
2
,n)

pre : remote-access(A,H
2
)

knows(A,following-tcp-sequence(H
2
,n))

deny-of-service(H
1
)

 spoof-address(A,H
1
,n,remote-login-connection(U,H

2
))

post: remote-login(A,U,H
2
)

B

A
action tcp-sequence-prediction(A,H

2
,n)

pre : remote-access(A,H
2
)

 obtain(A,following-tcp-sequence(H
2
,n))

post: knows(A,following-tcp-sequence(H
2
,n))

– p. 10/16

3. - Prevention framework

Reaction process via anti-correlation

I Two actions A and B are anti-correlated when the realization of A has a negative

influence over the realization of B (given that A occurred before B):

. (not(Ea) ∈ post(A) ∧ Eb ∈ pre(B)) ∨ (Ea ∈ post(A) ∧ not(Eb) ∈ pre(B))

. Ea and Eb are unifiable through a unifier θ

action spoofed-remote-login(A,U,H
1,

H
2
,n)

pre : remote-access(A,H
2
)

 knows(A,following-tcp-sequence(H
2
,n))

deny-of-service(H
1
)

 spoof-address(A,H
1
,n,remote-login-connection(U,H

2
))

post: remote-login(A,U,H
2
)

action undo-deny-of-service(A,H
1
,n

s
)

pre : deny-of-service(H
1
)

 send-multiple-tcp-resets(A,H
1
,n

s
)

post: not(deny-of-service(H
1
))

B

A

– p. 11/16

3. - Prevention framework

Detection and reaction graph for the sample scenario

attack syn-flood(A,H
1
,n

s
)

pre : remote-access(A,H
1
)

 send-multiple-tcp-syns(A,H
1
,n

s
)

post: deny-of-service(H
1
)

attack tcp-sequence-prediction(A,H
2
,n)

pre : remote-access(A,H
2
)

 obtain(A,following-tcp-sequence(H
2
,n))

post: knows(A,following-tcp-sequence(H
2
,n))

attack spoofed-remote-login(A,U,H
1,

H
2
,n)

pre : remote-access(A,H
2
)

 knows(A,following-tcp-sequence(H
2
,n))

 deny-of-service(H
1
)

 spoof-address(A,H
1
,n,remote-login-connection(U,H

2
))

post: remote-login(A,U,H
2
)

objective ilegal-remote-login(A,U,H
2
)

state : remote-login(A,U,
,
H

2
)

 not(authorized(remote-login(A,U,H
2
)))

counter-measure kill-remote-login(A,U,H
2
)

pre : remote-login(A,U,H
2
)

post: not(remote-login(A,U,H
2
))

counter-measure undo-deny-of-service(A,H
1
,n

s
)

pre : deny-of-service(H
1
)

 send-multiple-tcp-resets(A,H
1
,n

s
)

post: not(deny-of-service(H
1
))

Correlation

Anti-correlation

– p. 12/16

4. - Current Development

Current Development

cm-manager

syns_s

ps-manager
alerts

Linux 2.4.x modules

kill_ru pfilter_ru

response units

spoof_s conn_s flood_s

ewatcher

netlink sockets interface

events responses

execve_s

Elvin publish-subscribe

federated multicast channel

Elvin

publish-subscribe

system

Correlation Manager

CRIM

alerts

alerts

sensors

Kernel space

User space

– p. 13/16

4. - Current Development

– p. 13/16

5. - Summary

Results of our work

I State of the art about coordinated attack prevention

I Study about alert correlation mechanisms

I Development of a generic framework avoiding bottleneck of centralized

architectures using a distributed approach

I Both detection and reaction are performed by using the same formalism

– p. 14/16

5. - Summary

Future work

I Incorporate fault tolerant mechanisms

I Make a more in-depth study of the format used for alerts

I Incorporate other information about the environment

– p. 15/16

6. - [C-x C-c]

Thank you! Questions?

– p. 16/16

