
AMAPOLA: A Simple Infrastructure for Ubiquitous
Computing?

G. Navarro, J. Peñalver, J. A. Ortega-Ruiz, J. Ametller, J. Garcı́a, and J. Borrell

Dept. of Information and Communications Engineering,
Universitat Autònoma de Barcelona,

08196 Bellaterra, Spain,
{gnavarro,jpenalver,jao,jametller,jgarcia,jborrell@ccd.uab.es}

Abstract. In this paper we present a simple framework for the management
of entities in ubiquitous computing and ad-hoc networks. It provides mecha-
nisms to identify entities, create and manage groups, and a simple management
mechanism to allow the coordination of several entities. The framework is called
AMAPOLA, and is built on top of a popular multiagent systems (JADE), al-
though, its simplicity makes it suitable for any kind of environment. The frame-
work provides an modular API, which is easy to use for programmers.

1 Introduction

The current development of computer systems is leading to a situation where the num-
ber of processors and computer networks is becoming more and more pervasive. Nowa-
days, there are processors embedded in lots of everyday devices. From personal com-
puters, laptops, PDAs, and mobile phones, to refrigerators, heaters, coffee machines, or
toasters. Furthermore, these devices can be interconnected through computer networks.
The increased research on wireless and ad-hoc networks is making possible to have
cheap networks at home, at the office or even at the streets.

One of the problems that pervasive computing introduces is the management of
all those devices interacting one with another [1], and the security implications of this
management. A desired property of pervasive computing systems is self-management.
Self-management is the ability for those systems to manage themselves with a minimum
human intervention. For example, to tune and set up the configuration to make the
system work optimally, to adapt the system to changing workloads, to detect potential
attacks against the system itself, etc.

This is one of the reasons why multi-agent systems are becoming very popular in
pervasive computing. A software agent is an autonomous entity that can interact and
perceive the context of its own execution. Hence, it is a clear candidate to build self-
managing systems in pervasive computing. A problem of multi-agent systems is that
sometimes they present too much complexity for embedded devices. Most of the mech-
anisms used, for instance, to make up coalitions in agent systems, are quite complex
and may not be suitable for some constrained environments.
? This work has been partially funded by the Spanish Ministry of Science and Technology

(MCYT) though the project TIC2003-02041.



In this paper we present a simple framework for the management of entities in perva-
sive computing and ad-hoc networks. It provides mechanisms to identify entities, create
and manage groups, and a simple management mechanism to allow the coordination of
several entities. The framework is called AMAPOLA (simple Agent-based MAnage-
ment for Pervasive cOmputing). Although it is originally based on a multiagent system
its simplicity makes it suitable for any kind of environment. The framework provides
an modular API, which is easy to use for programmers.

In Section 2 we describe the motivations behind the AMAPOLA framework. Sec-
tion 3 describes how identities and groups are managed in AMAPOLA, and Section 4
describes the simple management protocols. We give some high level details of the
implementation of the framework in Section 5. Finally, Section 6 summarizes our con-
clusions.

2 Related Work and Motivations

Despite the popularity of ubiquitous computing and the growing research initiatives,
many of the current frameworks, systems, and prototypes lack scalability and are tied
to third party proprietary solutions [2]. On the other hand most proposals are also tied
to specific hardware designs, making it difficult to reuse existing appliances and appli-
cations, and fail to provide a generic framework for ubiquitous computing spaces.

Some projects like Smart-Its [3] provide some generic programmable framework
although it relies on an specific hardware architecture. An important contribution is the
recent Framework for Programmable Smart Spaces project at the University of Florida.
This project, presents a middleware architecture intended to be applicable to any perva-
sive computing spaces [4], which relies on the Open Service Gateway initiative (OSGi)
framework. There is no doubt that it is a good step, but we think some applications may
need a simpler approach.

The use of agent technology in ubiquitous computing has been motivated by the au-
tonomy and AI applications that multiagent systems can introduce in ubiquitous com-
puting [5, 6].

AMAPOLA provides a novel approach for dealing with entities in ubiquitous com-
puting environments, in a simple way. The main key points of AMAPOLA is simplicity,
security, and easy of use. Security is built into the system beginning for how this enti-
ties are identified. As we will see the implementation of the framework makes it very
easy to use for developers to program applications in ubiquitous environments, we also
provide tools to help the programmers in their tasks.

All the information used by AMAPOLA is expressed using the Secure Assertion
Markup Language (SAML) [7], which provides a popular standard XML-based frame-
work for exchanging security information between online business partners. Security
information is exchanged in form of assertions. Broadly speaking an assertion has an
issuer, a subject or subjects, some conditions that express the validity specification of
the assertion, and the statement (authentication, authorization decision, or attribute).
The assertion may be signed by the issuer. SAML also provide query/response proto-
cols to exchange assertions and bindings over SOAP and HTTP.



3 Identities and Group Management

The AMAPOLA framework uses a naming schema, which is influenced by the dis-
tributed local name system of the Simple Public Key Infrastructure/Simple Distributed
Security Infrastructure SPKI/SDSI [8]. Each entity in AMAPOLA is known as poppy1.
A poppy can be any piece of software taking active part in the framework, not only
mobile and static agents, but also client applications directly controlled by a human.

We differentiate between those poppies that have the capability of performing asym-
metric encryption operations and those that do not have it. In ubiquitous computing
systems there are devices with computational constraints including the battery con-
sumption. Asymmetric cryptography requires a considerable amount of computation
that may not be achieved by some limited embedded devices. Even so, the research on
cheap cryptographic processors for small appliances is very active, and there are cur-
rently a wide spectrum of solutions to provide asymmetric encryption capabilities to
small, and low consumption devices.

Each poppy is uniquely identified by the pID (poppy ID). In reference to the pID,
we can find two types of poppies:

Strong poppy (or simply, poppy) The pID is a public key. Entities with the ability to
perform asymmetric cryptographic operations, have a pair of cryptographic keys.
The public key acts as the identifier of the poppy. In order to make it more manage-
able one can use the hash of the public key as an abbreviation for the public key.
Each one of these entities may generate the keys by itself and is responsible of its
own identity, so there is no need for a centralized Certification Authority (CA), al-
though it can be used if it is needed. It is important to note that given the properties
of cryptographic keys, it is commonly assumed the uniqueness of the public key,
thus, we can assume that this kind of pID is globally unique.

Weak poppy : The pID is the hash of an object. For entities not capable of carry out
asymmetric cryptography operations, the identifier is computed as the hash of the
entity code. If for some reason it is not possible to obtain the hash of the poppy’s
code, the hash of a nonce (a random byte array) is used. In both cases, and given
the properties of the hash functions, we assume that the pID will be unique. This
kind of poppies present some limitations in the AMAPOLA framework as we will
see.

A poppy can define local names for other poppies under its own responsibility. In
order to do that, each poppy has an associated local name space called name container.
The name container has entries of the type: (<entity>,<local-name>), where
entity corresponds to the poppy for whom the local name is being defined, and local-
name is an arbitrary string. The entity may be specified as a pID or as a fully qualified
name (see below).

For example, consider a poppy with a pID PK0, which interacts with another one
with pID PK1 and wants to name it partner. The name container of the first poppy
will have an entry of the form: (PK1, partner). Now on, the poppy PK1 can be
referenced by the name partner in the local name space of PK0. An important issues

1 AMAPOLA means poppy in Spanish.



is that a third parties can make a reference to a name defined in other name containers
through a fully qualified name. A name container is identified by the pID of the owner,
so the fully qualified name “PK0 partner” makes reference to the name partner defined
in the name container of PK0 (which is PK1). Intuitively one could say that PK1 is
PK0’s partner.

3.1 Name Assertions

Entries of a name container can be made public to rest of the world. This is specially
relevant for groups and roles (see Section 3.2). In AMAPOLA, a local name may con-
sidered as an attribute associated to the corresponding poppy.

A name container entry can be expressed as a SAML assertion, where the issuer is
the owner of the name container, the subject is the principal and the name is expressed
as an AttributeStatement. We denote such an assertion as:

{(PK1 , partner)}
PK

−1

0

where PK−1

0
denotes the private key corresponding to the public key PK0, which

digitally sings the assertion determining the issuer or the owner of the name container
where the name is defined. The assertion may also contain validity conditions, which
are not shown for clarity reasons. As a consequence of the need for a digital signature,
only strong poppies can issue name assertions. If a weak poppy needs to publish a local
name from its name container, the assertion will have to be certified by another trusted
strong poppy (for example one of the holders of the poppy, see Section 4).

3.2 Group Management

The AMAPOLA naming schema, makes it very easy for a poppy to create groups or
roles. For instances, a poppy PKadm can create a group friends with members PKa,
PKb and PK1 (recall the previous example), with the following name assertions:

{(PK1, friends)}
PK

−1

adm

{(PK2, friends)}
PK

−1

adm

{(PK0 partner, friends)}
PK

−1

adm

This naming schema can also support role or group hierarchies, by means of group
inclusion. This allows for the introduction of authorization schemas, and access control
systems such a Role-based Access Control (RBAC). In order to do it one can declare a
group as member of another group. For example, consider the role family, which is a
super-role of friends. That is, members of family also have the attributes (permissions,
authorizations, etc.) associated to friends. And at the same time members of the role
family are also members of the role friends. This may be expressed as:

{(PKadm family, friends)}
PK

−1

adm



We differentiate between three types of group management based on the leader of
the group. The leader is the owner of the name container where the group is to be
defined. Depending on how this leader is set, there may be:

Single-leader group : this is the common scenario where a single leader creates and
manages a group. The way to do it is the one discussed in the previous example.

Set-leader group : in this case there is a set of users entitled to manage the group.
As an example, imagine that there are three poppies: PK0, PK1, and PK2, and
want to be the set of leaders for the group intellcomm. To do that, the poppies may
generate the assertions listed in Table 1.

PK0 PK1 PK2

{(PK0 α, intellcomm)}PK0
{(PK1 α, intellcomm)}PK1

{(PK2 α, intellcomm)}PK2

{(PK1 α, α)}PK0
{(PK0 α, α)}PK1

{(PK0 α, α)}PK2

{(PK2 α, α)}PK0
{(PK2 α, α)}PK1

{(PK1 α, α)}PK2

Table 1. Set-leader group management example.

The members agree upon a random value α, enough large to insure no collision with
names already listed in the name containers of each poppy. Each member issues a
name assertion binding the group intellcomm to the random value, and then, they
cross-certificate the α defined in each name container.
The use of α ensures no collision with names already defined. For example, imagine
PK2 already had defined the name intellcomm. Then, the first assertion of PK2

could be: (PK2 α, intellcomm2)PK2
. That is, the local name referencing the group

may not be the same in each name container, provided that they make reference to
the same α. Each poppy can now manage the membership of the group, and even
add new leaders either through simple inclusion or adding it to the initial set (this
last operation requires the approval of the whole set of leaders since they have to
cross-certificate the new one).

Threshold-leader group : In this case, a group of n poppies agree upon creating a
group, but in order to add new members to the group, a subset of k leaders has to
agree (k ≤ n). In order to do it, we use a (k, n)-threshold scheme [9, 10]. The n

leaders generate a shared key, so in order to issue a valid name assertion to define
a new member, at least, the signature of k leaders is needed. The generated shared
key acts as a virtual leader of the group, it is the key defining the group and sings
the assertions. Name assertions are maintained by the leathers of the group. This
procedure is considerably more complex than the previous ones, but its use will be
sporadic since only applications with high security requirements will use it.

In [11] the authors present as similar approach to the set-leader group, but there, the
leaders of the group are not equals in terms of group membership. There is an original
leader, which then adds new leaders to the group. In our case, a set of users can agree
to set up a group, and all of them will have the same leadership level.



3.3 Considerations on local names

The use of this local name system has several advantages over other more traditional
global naming schemas (for example PGP or X.509’s distinguished names).

– Easy creation and management of groups in distributed environments (as described
in previous sections).

– Local names are what humans are use to manage. Imagine a human in front of a
PDA-like device with a poppy that can control the TV, the video, the audio device,
etc. For the human it is most useful to refer to the TV with a custom local name
like hall-tv, or kitchen-tv, instead of a more complex and elaborated globally unique
name. The names are defined in the PDA poppy through name assertions, and the
user does not need to know the pID of the TV in her hall.

– Provide generic and common level of abstraction for applications. In the previous
example the poppy controlling the TV may run an application which tunes specific
programs at specific times. The application uses hall-tv to refer to the TV in the hall
of the house. The user may go to another house, and the application can still work
without any need of explicit configuration (the same name may be defined in other
name container referring to another pID).

– Security. Some empirical studies have shown that the use of global IDs or names
by humans induce to errors that may lead to important security threads (even with
email addresses) [12]. It is true that normally names in AMAPOLA will be man-
aged by devices and autonomous software agents. But an important desired re-
quirement of pervasive computing is to be smoothly integrated in the everyday life
of humans. The ability to use local names easies this integration.

4 Possession paradigm

In order to provide the poppies with a management infrastructure, the AMAPOLA
framework relies in a simple possession paradigm. A poppy may take control (take
possession) of other ones to coordinate a given task. In this case we consider two types
of poppies:

Control Station (CS) poppy . A Control Station is a poppy that can control and man-
age other poppies. It will normally be a strong poppy, which can coordinate several
entities to perform a concrete task.

Simple poppy : A simple poppy (or simply, a poppy), is a poppy that does not need to
control or manage other ones.

An important notion in AMAPOLA, is holdership and ownership. Each poppy has
an owner associated to it. The ownership is an static and immutable property of the
poppy. It makes reference to the origin of the entity, which will normally be the creator
of the specific application or service supplier. The owner of an entity is the ultimate
responsible for the entity. If an entity misbehaves or produces some erratic execution
due to bugs, the owner could be made responsible for it. The owner has also to take care
of the execution of its entities, ensuring that an idle entity does not run forever idle,
providing a potential denial of service. This is accomplished by a simple heart-breath



protocol, where a CS from the owner may get the status of its entities every given period
of time. There may be also third party applications monitoring the networks to detect
malfunction and misbehavior such as distributed intrusion detection systems.

Beside the owner, there is the holder. Each poppy can have one or several holders, or
none if it is idle. A holder is a CS, which is using the entity for an specific application or
service and normally for a temporary period of time. The notion of holder gives cause
for the possession paradigm.

4.1 Possession protocols

The main idea is to provide protocols as simple as possible, that can be extended and
combined to support more complex interactions. This protocols deal mainly with the
management of poppies, and more precisely with the possession of entities, that is, how
to become a holder of other entities, and related actions. These protocols are currently
defined in SAML over FIPA2’s Agent Communication Language and ontologies, al-
though given its simplicity it is easy to use other ontologies or languages. In fact, the
last prototype uses SAML protocols over SOAP.

The main possession protocols are:

– Take-possession: this protocol allows a CS to become the holder of another entity.
This is achieved in a two step protocol where both entities interchange their public
keys.

– Terminate-possession: since the possession of a poppy is ordered and initiated by a
CS, in a normal situation, it has to be terminated by the same CS. Only a holder of
a poppy can ask for a termination of the current possession, and the CS stops being
the holder of the poppy.

– Revoke-possession: there are some situations where the held entity may initiate the
termination of the possession. This situations does not correspond to the normal
operation between the holder and the poppy, thus we refer to them as revocation of
possession. The revocation can occur because the entity is detecting a malfunction,
has to stop doing its tasks, is going to be stopped (shutdown, killed, . . . ), or by
direct indication of the owner.

– Delegate-possession: a CS may delegate the possession of a poppy to another CS.
This is very useful in situations where there are complex interactions between sev-
eral CSs and entities. CSs can exchange their held poppies. This protocol is initi-
ated by a control station CS1, in possession of a poppy, to delegate it to another
CS, CS2. Then, CS1 is no longer a holder of the poppy, and CS2 becomes a new
holder. The poppy cannot deny the delegation, nevertheless, after the delegation,
the poppy can revoke the possession of CS2 if it needs to.

This protocols can be used to handle single poppies or groups of them. To manage
groups, the protocol is initiated with one of the group leaders, which is responsible for
propagating the protocol to the other members of the group.

Given that a CS can be the holder of another CS, possession can also be cascaded
through entities. A CS may possess another CS, which in turns possesses another poppy.

2 Foundation for Intelligent Physical Agents: http://www.fipa.org.



4.2 Some security considerations

AMAPOLA was designed with security in mind, and the possession protocols are an
example. One of the objectives was to provide a practical framework to accommodate
several possible solutions. For instances, the possession protocols and principles makes
it feasible to accommodate security policy models similar to the The Resurrecting Duck-
ing[13, 14]. There, a device recognizes as its owner the first entity that sends it a secret
key3. The process is called imprinting. The policy describes several mechanisms to
manage this imprinting, terminate it and so on. In our case the imprinting may be made
by taking possession of the entity. One difference with the resurrecting duckling model,
is that AMAPOLA allows a poppy to have more than one holder.

An important issue in ad-hoc networks and ubiquitous computing in general is au-
thentication. There are no warranties of having an on-line server that could act as an
authority (even in a distributed fashion). Thus, the possession protocols may assume an
anonymous authentication approach. When a CS wants to take control of a poppy that
serves and audio stream, i does it. The CS does not need to know the identity of the
poppy, it just needs to know that serves an audio stream and that it can be used. This
idea is also used in trust management systems such as [8, 15], which claim that you do
not really care who your interlocutor is, so long as she carries the right credentials.

In order to secure communications, two strong poppies can easily exchange their
public keys, and then use them to encrypt messages or most commonly, initiate a digital
envelope protocol to set a session secret key. In the case of interacting with a weak
poppy we use the imprinting approach, so the CS sends an unencrypted secret key to the
poppy together with the possession request. The first exchange has to be done through
a channel, which guarantees an acceptable degree of integrity and confidentiality. As
discussed in [14] a good approach is to require physical contact between both poppies
(or a very close proximity).

5 Implementation Details

The initial implementation of AMAPOLA is made in Java on top of the Java Agent DE-
velopment Framework (JADE) (http://jade.tilab.com/). JADE is a popular
open source multiagent platform, which also has a lightweight version (JADE-LEAP)
that can be executed in J2ME (Java 2 Micro Edition).

AMAPOLA is intended to facilitate the development of applications in pervasive
networked environments. It mainly consists of a simple API, which is presented to the
programmer as services. There are currently three main services:

– AmapolaIdentity: provides the identity of the poppy and naming related function-
ality, including the name container for the poppy.

– ControStationPoppy: provides the functionality for the possession protocols for a
CS.

– SimplePoppy: provides the functionality for the possession protocols for a simple
poppy.

3 By secret key we refer to the key of a symmetric cryptogram.



To create a poppy, the programmer just has to include the required service in it
main agent class. The way to do it is by composition and delegation, this way it does
not interfere with the possible existing inheritance hierarchy of the agent. Thus we favor
composition over class inheritance [16]. Figure 1 shows a very simplified and schematic
organization of the AMAPOLA API from the programmers point of view.

Fig. 1. Amapola API outline.

AMAPOLA also provides tools to help in the development and testing of applica-
tions. Figure 2 shows a screenshoot of the CS-console, a management interface for a
CS. It presents to the user a graphical interface, which provides the main functionality
of a CS so it can be used to test current applications or help in the development of new
ones.

Fig. 2. CS-console screenshoot.

6 Conclusions

In this paper we have presented AMAPOLA, a framework for developing applications
in ubiquitous computing environments. It provides a simple distributed infrastructure to
identify entities (called poppies) and manage groups. It also provides simple protocols



to manage the entities. Security is an important issue in AMAPOLA, as well as to easy
the task of developers. We have outlined the implementation of the framework, which
currently runs on top of a popular multiagent platform (JADE).

The framework makes use of SAML to express the information and the protocols,
which makes it easy to interact with other standardized applications in fields such as
Web Services, or Grid.

As future plans we are extending the framework to non-agent systems. Currently
we are working on a Python version which does not relay on the JADE framework and
uses SOAP to communicate the entities.

References

1. Sloman, M.: Will pervasive computers be manageable? Keynote Talk HP OpenView 2001,
New Orleans (2001)

2. Helal, S.: Standards & emerging technologies. IEEE Pervasive Computing 4 (2005)
3. Holmquist, L.E., Gellersen, H.W., Kortuem, G., Antifakos, S., Michahelles, F., Schiele, B.,

Beigl, M., Maze, R.: Building intelligent environments with smart-its. IEEE Computer
Graphics and Applications 24 (2004)

4. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech
smart house: A programmable pervasive space. IEEE Computer 38 (2005)

5. : 3APL-M: Platform for Lightweight Deliberative Agents. (http://www.cs.uu.nl/
3apl-m/references.html)

6. TOSHIBA: picoPlangent: Intelligent mobile agent system for ubiquitous computing.
(http://www2.toshiba.co.jp/rdc/plangent/)

7. S. Cantor, J. Kemp, R. Philpott and E. Maler, ed.: Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS XACML-TC, Committee Draft
04 (2005)

8. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI Certificate
Theory. RFC 2693, IETF (1999)

9. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: CRYPTO
’91: Proceedings of the 11th Annual International Cryptology Conference on Advances in
Cryptology, Springer-Verlag (1992) 457–469

10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: CRYPTO ’89: Proceedings of the 9th
Annual International Cryptology Conference on Advances in Cryptology, Springer-Verlag
(1990) 307–315

11. Ellison, C., Dohrmann, S.: Public-key support for group collaboration. ACM Trans. Inf.
Syst. Secur. 6 (2003) 547–565

12. Ellison, C.: Improvements on conventional PKI wisdom. In: 1st Annual PKI Research
Workshop. (2002)

13. Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc wireless
networks. In: Proceedings of the 7th International Workshop on Security Protocols. (2000)
172–194

14. Stajano, F.: The resurrecting duckling - what next? In: Revised Papers from the 8th Interna-
tional Workshop on Security Protocols, Springer-Verlag (2001) 204–214

15. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust Management
System. RFC 2704, IETF (1999)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series (1995)


