
An Alert Communication Infrastructure for a
Decentralized Attack Prevention Framework

Joaquin Garcia-Alfaro, Joan Borrell
dEIC, Autonomous University of Barcelona,

08193 Bellaterra, Catalonia, Spain
Email: Name.Surname@uab.es

Michael A. Jaeger, Gero Mühl
KBS, Berlin University of Technology,

EN6, Einsteinufer 17, D-10587 Berlin, Germany
Email: {michael.jaeger,gmuehl}@acm.org

Abstract

The cooperation between the different entities of a decen-
tralized prevention system can be solved efficiently through
the use of a publish/subscribe system. Clients share and
correlate alert information about the systems they moni-
tor. The brokers themselves form the infrastructure used for
the routing of alerts. In this paper we present the advan-
tages and convenience in using this communication model
for a general decentralized prevention framework. Then, we
present the design for a specific architecture, and evaluate
our design through an available publish/subscribe message
oriented middleware.

1 Introduction

We are currently working on the design and development of
an attack prevention framework that is targeted at detecting
as well as reacting to distributed and coordinated attack sce-
narios [4]. Both, distributed and coordinated attacks, rely
on the combination of actions performed by a malicious ad-
versary to violate the security policy of a target computer
system. Our approach is based on gathering and correlating
information held by multiple sources. We use a decentral-
ized scheme, based on message passing, to share alerts.

The communication between the different sources in our
approach has been realized efficiently through the use of
the publish/subscribe communication paradigm. A pub-
lish/subscribe system consists of brokers and clients thatare
connected to brokers. The brokers themselves form the in-
frastructure (notification service) used for the routing ofno-
tifications. Clients can publish notifications and subscribe
to filters that are matched against the notifications passing
through the broker network. If a broker receives a new noti-
fication it checks if there is a local client that has subscribed

to a filter that matches this notification. If so, the message
is delivered to this client. Next, the broker forwards the
message to other brokers according to the applied routing
algorithm.

In this paper we propose a decentralized infrastructure to
share alerts between components. The information ex-
change between peers is intended to achieve a more com-
plete view of the whole system. Once achieved, one can
detect and react on the different actions of a coordinated or
distributed attack. As we discuss in Section 2, the use of a
publish/subscribe paradigm efficiently fits for the commu-
nication between the different sources in our approach.

The rest of this paper is organized as follows. We first
present in Section 2 the advantages and convenience in us-
ing the publish/subscribe communication paradigm for our
problem domain, analyzing some related work. Then, we
discuss and evaluate in Section 3 the communication mech-
anism used to exchange information among the components
of our system through the use of xmlBlaster, an open source
publish/subscribe message oriented middleware.

2 Motivations

Traditional client/server solutions for the prevention ofdis-
tributed and coordinated attacks can quickly become a bot-
tleneck due to saturation problems associated with the ser-
vice offered by centralized or master domain analyzers.

Centralized systems, such as DIDS [11] and NADIR [5],
process their data in a central node although the collection
of data is distributed. These schemes are straightforward as
they simply place the data at a central node and perform the
computation there.

Hierarchical approaches, such as GrIDS [12] and NetSTAT
[13], have a layered structure where data is locally prepro-
cessed and filtered. This way, they mitigate some weak-

1



nesses present in centralized schemes, but they still cannot
avoid bottlenecks, scalability problems and fault tolerance
vulnerabilities at the root level.

Current approaches try to eliminate the need for dedicated
elements. The idea of distributing the detection process,
has some advantages regarding centralized and hierarchi-
cal approaches. Mainly, decentralized architectures haveno
single point of failure or and bottlenecks can be avoided.

Some message passing designs, such as CSM [14] and
Quicksand [6], try to eliminate the need for dedicated el-
ements by introducing a peer-to-peer architecture. Instead
of having a central monitoring station to which all data has
to be forwarded, there are independent uniform working en-
tities at each host performing similar basic operations. To
detect attacks, the different entities have to collaborateon
the detection activities and cooperate to perform a decen-
tralized correlation algorithm.

These designs seem to be a promising technology to imple-
ment decentralized architectures for the detection of attacks.
However, the presented systems still exhibit very simplistic
designs and suffer from several limitations. For instance,in
some of them, every node has to have complete knowledge
of the system: all nodes have to be connected to each other
which can make the matrix of the connections, that are used
for providing the alert exchanging service, grow explosively
and become very costly to control and maintain.

Another important disadvantage inherent to these designs is
that the different entities always need to know where a re-
ceived notification has to be forwarded (similar to a queue
manager). This way, when the number of possible destina-
tions grows, the network view can become extremely com-
plex, which leads to scalability problems. Other designs are
based on flooding which makes the system easy to maintain
but still lacks scalability, as the message complexity grows
fast with the number of brokers. Most of these limitations
can be efficiently solved by means of a publish/subscribe
based system.

The advantage of the publish/subscribe model over other
communication paradigms for our problem domain is, that
it keeps the producer of messages separated from the con-
sumer and that the communication itself is information-
driven. This model can avoid problems regarding the scal-
ability and the mangagement inherent to other designs, by
means of a network of publishers, brokers, and subscribers.
A publisher in a publish/subscribe system does not need to
have any knowledge about any of the entities that consume
the published information. Likewise, the subscribers do not
need to know anything about the publishers. New services
can simply be added without any impact on or interruption
of the service to other users.

3 Alert Communication Infrastructure

This section describes the alert communication infrastruc-
ture and implementational details of our approach. Basi-
cally, it consists of a set of nodes which are connected by
a network and exchange alerts using a publish/subscribe
model. As our motivation is not targeted on developing a
publish/subscribe system, we try to reuse as much available
code and tools as possible. For our experiments we usexml-
Blaster, an open source publish/subscribe message oriented
middleware [10]. The alerts are formulated in XML as xml-
Blaster uses this format for its message syntax [1]. Each
message consists of a header filtering can be applied to, a
body, and a system control section. Filters are XPath ex-
pressions [2] that are evaluated over the header to decide if
a message will be delivered to a subscriber.

3.1 Interface Operations

Conceptually, the alert communication infrastructure of-
fered through xmlBlaster can be viewed as a black box with
an interface. Thisinterfaceoffers a number ofoperations,
each of which may take a number ofparameters. Clients
can invokeinput operationsfrom the outside, and the sys-
tem itself invokesoutput operationsto deliver information
to the outside. As pointed out in [9], these input and output
operations can be formally described using linear temporal
logic [7]. To publish alerts, clients invoke thepub(a) opera-
tion, giving the alerta as parameter. The published alert can
potentially be delivered to all connected clients via an out-
put operation callednotify(a). Clients register their interest
in specific kinds of alerts by issuing subscriptions via the
sub(F ) operation, which takes a filterF as parameter. Each
client can have multiple active subscriptions which must be
revoked separately by using theunsub(F ) operation.

All these operations are instantaneous and take parameters
from the set of all clientsC, the set of all alertsA, and the
set of all filtersF . Formally, a filterF ∈ F is a map-
ping fromA to the boolean valuestrue and false. Hence,
a noticationn matches filterF ∈ F iff F (a) evaluates to
true. Additionally, we also assume that each alert can only
be published once, and that every filter is associated with a
unique identifier in order to enable the alert communication
infrastructure to identify a specific subscription.

Each node in the architecture is made up of a set of local
analyzers (with their respective detection units or sensors),
and a set of alert managers (to perform alert process and
manipulation functions). These components, and the inter-
actions between them, are described below.



3.2 Analyzers

Analyzers are local elements which are responsible for pro-
cessing audit data. They process the information gathered
by associated sensors to infer possible alerts. Their task is
to identify occurrences which are relevant for the execution
of the different steps of an attack and pass this information
to the correlation manager via the publish/subscribe system.
The interesting occurrences are local alerts. Each local alert
is detected in a sensor’s input stream and published through
the publish/subscribe system by invoking thepub(la) oper-
ation, giving the notificationla (local alert) as parameter.

Each local alert notification (la) has a unique classification,
and a list of attributes with their respective types, to identify
the analyzer that originated the alert (AnalyzerID), the time
the alert was created (CreateTime), the time the event(s)
leading up to the alert was detected in the sensor’s input
stream (DetectTime), the current time on the analyzer (An-
alyzerTime), and the source(s) and target(s) of the event(s)
(Source and Target). All possible classifications and their
respective attributes must be known by all system compo-
nents (i.e. sensors, analyzers and managers) and all analyz-
ers are capable to publish various instances of local alertsof
one or more types.

The local alerts are exchanged as IDMEF messages [3], and
formulated using XML syntax [1]. TheIntrusion Detec-
tion Message Exchange Format(IDMEF) is intended to be
a standard data format that automated intrusion detection
systems can use to raise alerts about events that they report
as suspicious. It allows analyzers and managers to assemble
very complex alert descriptions.

3.3 Managers

The use of multiple analyzers and sensors using heteroge-
neous detection techniques increases the detection rate, but
it also increases the number of alerts to process. In order
to facilitate this process, and to reduce the number of false
negatives, our architecture provides a set of cooperation and
correlation managers, which perform aggregation and cor-
relation of both, local alerts (i.e., messages provided by the
node’s analyzers) and external messages (i.e., the informa-
tion received from other collaborating nodes).

The basic functionality of each cooperation manager is the
clustering of alerts that correspond to the same occurrence
of an action. Each cooperation manager registers its inter-
est in local alerts (LA) by invoking thesub(LA) operation,
which takes the filterLA as parameter. The filterLA ∈ LA

is a mapping fromLA ⊆ A (i.e., the subset of alerts pub-
lished by analyzers of the same node). Similarly, the coop-
eration manager also registers its interest in related external

alerts (EA) by invoking thesub(EA) operation, with the fil-
ter EA ∈ EA ⊆ A as parameter, and its interest in local
correlated alerts (CA) by invoking thesub(CA) operation,
with the filterCA ∈ CA ⊆ A as parameter.

Once subscribed to these three filters, the alert infrastructure
will notify of all matching alerts via the output operations
notify(la), notify(ea) andnotify(ca). All the notified alerts
are processed and, depending on the clustering and syn-
chronization functions, the cooperation manager can pub-
lish some global and external alerts by invoking the opera-
tionspub(ga) andpub(ea). Finally, it can revoke separately
the active subscriptions by using the operationsunsub(CA),
unsub(EA) andunsub(LA).

The main task of the correlation manager is the execution of
the alert correlation algorithm described in [4]. The corre-
lation manager operates on the global alerts (GA) published
by the local cooperation manager. To register its interest in
these alerts, it invokes thesub(GA) operation, which takes
the filterGA ∈ GA ⊆ A as parameter. Then, the alert in-
frastructure will notify of all matched alerts with the output
operationsnotify(ga).

Each time a new alert is received, the correlation mecha-
nism finds a set of action models that can be correlated in
order to form a scenario leading to an objective. At last, it
includes this information into the CorrelationAlert field of
a new IDMEF message and publishes the correlated alert
by invoking thepub(ca) operation, giving the notification
ca as parameter. To revoke the subscription, it uses theun-
sub(GA) operation.

3.4 Evaluation

To evaluate the performance of the implemented alert com-
munication infrastructure for our proposed architecture,we
deployed a set of three analyzers publishing ten thousand
messages, which are notified as local alerts through the
communication infrastructure, and then processed and pub-
lished in turn to three subscribed managers.

The throughput on the alert communication infrastructure is
above 150 messages per second on a Intel-Pentium M (Cen-
trino) processor 1400MHz with 512MB RAM (both, ana-
lyzers and managers, on the same machine running Linux
2.6.8, and using Java HotSpot Client VM 1.4.2 for the exe-
cution of the java based broker).

Both analyzers and managers are based on thelibidmef
C library [8], which is used to build and parse compliant
IDMEF messages, and the xmlBlaster client C socket li-
brary [10], which supports access to xmlBlaster with asyn-
chronous callbacks.



4 Conclusions

In this paper we presented an infrastructure to share alerts
between the components of a prevention framework, that is
targeted at detecting, as well as reacting to, distributed and
coordinated attack scenarios, through the use of the pub-
lish/subscribe paradigm.

The information exchange between peers achieves a more
complete view of the whole system, which is necessary to
detect and react on the different actions of an attack, in an
indirect manner.

We have also introduced and evaluated a concrete imple-
mentation of such mechanism based on xmlBlaster, an open
source publish/subscribe message oriented middleware.

As future work we are considering the use of privacy mech-
anisms to address the exchanging of alerts in a pseudony-
mous manner, i.e. to provide the destination and origin in-
formation of alerts without violating the privacy of publish-
ers and subscribers located on different domains.

Acknowledgments

The collaboration and discussions between Joaquı́n Garcı́a,
Fabien Autrel, and Frédéric Cuppens sharpen many of the
arguments presented in this paper.

The work of Joaquı́n Garcı́a and Joan Borrell is funded
by the Spanish Government Commission CICYT, through
its grant TIC2003-02041, and the Catalan Government De-
partment DURSI, with its grant 2003FI-126. The work of
Michael A. Jaeger is funded by Deutsche Telekom Stiftung.
Gero Mühl is funded by Deutsche Telekom.

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible markup language
(XML) 1.0 (third edition), w3c recommendation.
http://www.w3.org/TR/REC-xml/, February
2004.

[2] J. Clark and S. DeRose. XML path lan-
guage (XPath) 1.0, w3c recommendation.
http://www.w3.org/TR/xpath/, Novem-
ber 1999.

[3] H. Debar, D. Curry, and B. Feinstein. Intrusion detec-
tion message exchange format data model and extensi-
ble markup language (xml) document type definition.
Internet draft, January 2005.

[4] J. Garcia-Alfaro, F. Autrel, J. Borrell, S. Castillo,
F. Cuppens, and G. Navarro. Decentralized publish-
subscribe system to prevent coordinated attacks via
alert correlation. InSixth International Conference
on Information and Communications Security, volume
3269 ofLNCS, pages 223–235, Málaga, Spain, Octo-
ber 2004. Springer-Verlag.

[5] J. Hochberg, K. Jackson, C. Stallins, J. F. McClary,
D. DuBois, and J. Ford. NADIR: An automated sys-
tem for detecting network intrusion and misuse. In
Computer and Security, volume 12(3), pages 235–
248. May 1993.

[6] C. Kruegel.Network Alertness - Towards an adaptive,
collaborating Intrusion Detection System.PhD thesis,
Technical University of Vienna, June 2002.

[7] Z. Manna and A. Pnueli.The Temporal Logic of Reac-
tive and Concurrent Systems. Spreinger-Verlag, 1992.

[8] A. C. Migus. IDMEF XML library version 0.7.3.
http://sourceforge.net/projects/lib-
idmef/, March 2004.

[9] G. Mühl. Large-Scale Content-Based Publish-
Subscribe Systems. PhD thesis, Technical University
of Darmstadt, 2002.

[10] M. Ruff. XmlBlaster: message oriented middle-
ware. http://xmlblaster.org/xmlBlas-
ter/doc/whitepaper/whitepaper.html,
2000.

[11] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.
Heberlein, C. Ho, K. N. Levitt, B. Mukherjee, S. E.
Smaha, T. Grance, D. M. Teal, and D. Mansur. DIDS
(distributed intrusion detection system) - motivation,
architecture and an early prototype. InProceedings
14th National Security Conference, pages 167–176,
October, 1991.

[12] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dil-
ger, J. Frank, J. Hoagland K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS – a graph-based intrusion de-
tection system for large networks. InProceedings of
the 19th National Information Systems Security Con-
ference, 1996.

[13] G. Vigna and R. A. Kemmerer. NetSTAT: A network-
based intrusion detection system.Journal of Com-
puter Security, 7(1):37–71, 1999.

[14] G. B. White, E. A. Fisch, and U. W. Pooch. Cooperat-
ing security managers: A peer-based intrusion detec-
tion system.IEEE Network, 7:20–23, January / Febru-
ary 1999.


