
SECURE AGENT-BASED MANAGEMENT FOR PERVASIVE ENVIRONMENTS

G. Navarro, J.A. Ortega-Ruiz, J. Garcı́a and S. Robles

Dept. of Information and Communications Engineering,
Univeristat Autònoma de Barcelona,

08193 Bellaterra (Spain)
{gnavarro,jao,jgarcia,srobles}@ccd.uab.es

ABSTRACT

A typical pervasive computing scenario may consists of a
wide range of devices interconnected through ad-hoc net-
works. One of the problems that pervasive computing in-
troduces is the management and interaction between these
devices, as well as the security implications of this manage-
ment. We present in this paper an architecture, which pro-
vides initial mechanisms to solve these problems. Inspired
by trust management systems, our architecture is built on
top of a multi-agent system. However, our proposal is suf-
ficiently open to allow the integration with other technolo-
gies. Results of our work can be easily applied to existing
pervasive computing software and associated technologies.

1. INTRODUCTION

The current development of computer systems are leading
to a situation where the number of processors and computer
networks is becoming more and more pervasive. Nowa-
days, there are processors embedded in lots of everyday de-
vices. From personal computers, laptops, PDAs, and mo-
bile phones, to refrigerators, heaters, coffee machines, or
toasters. Furthermore, these devices can be interconnected
through computer networks. The increased research on wi-
reless and mobile networks is making possible to have che-
ap networks at home, at the office or even at the streets.

One of the problems that pervasive computing introduce
is the management of all those devices interacting one with
another [10], and the security implications of this manage-
ment. A desired property of pervasive computing systems is
self-management. Self-management is the ability for those
systems to manage themselves with a minimum human in-
tervention. For example, to tune and set up the configuration
to make the system work optimally, to adapt the system to
changing workloads, to detect potential attacks against the
system itself, etc.

This work has been partially funded by the Spanish Government Com-
mission CICYT, through its grant TIC2003-02041.

This is one of the reasons why multi-agent systems are
becoming very popular in pervasive computing. A software
agent is an autonomous entity that can interact and perceive
the context of its own execution. Hence, it is a clear can-
didate to build self-managing systems in pervasive comput-
ing. A problem of multi-agent systems is that sometimes
they present too much complexity for embedded devices.
Most of the mechanisms used, for instance, to make up
coalitions in agent systems, are quite complex and may not
be suitable for some constrained environments.

In this paper we present an architecture for pervasive
computing, which provides some basic mechanisms to in-
troduce multi-agent systems in pervasive environments. It
is a trust management inspired system, which provides a
simplistic approach to allow the management of pervasive
computing systems. The main idea is to be build on top
of multi-agent systems, but it is enough open to allow the
integration with other technologies.

The architecture we present is called SAMAP, Secure
Agent-based MAnagement for Pervasive computing. It is
originally based on a mobile agents platform, although as
we will show it is not restricted to mobile agents or agents in
general. The system has been inspired by some other work
on pervasive computing such as [11, 7, 3]. Nevertheless, we
think that SAMAP provides a novel approach to deal with
agent systems in pervasive computing, in a very simple way.

Section 2 provides an overview of SAMAP. In Section 3
we present the main entities that conform the system, their
role, and the naming schema used in SAMAP. Section 4
introduces the management protocols. Finally, Section 5
summarizes our conclusions and further work.

2. ARCHITECTURE OVERVIEW

Although SAMAP does not require any specific base tech-
nology, we have built a prototype in top of JADE (Java
Agent DEvelopment Environment)[12]. JADE is a popu-
lar open source multi-agent platform implemented in Java
and supports the FIPA (Foundation for Intelligent Physical
Agents) specifications[6]. Although, JADE does not sup-



port agent mobility we have extended it to support it [1].
We have also provided several security mechanisms for mo-
bile agents[9], including resource access control, itinerary
protection, . . .

Another reason for the election of JADE is the possi-
bility of using JADE-LEAP (JADE Lightweight Extensible
Agent Platform). A platform based on JADE, which is in-
tended to run on top of J2ME MIDP (Java 2 Micro Edi-
tion, Mobile Information Device Profile) or PersonalJava
for small devices such as PDAs or cell phones. This plat-
form is provided as an add-on to JADE.

An important feature of SAMAP is the communication
procedures. We rely in the FIPA Agent Communication
Language (ACL), which is highly used and supported in
multi-agent systems. It can be extended or combined with
lots other languages such as RDF, FIPA Semantic Language
(SL), KIF (Knowledge Interchange Format), DAML (Darpa
Agent Markup Language), or the current OWL (Web Ontol-
ogy Language). There are also bindings to use FIPA ACL
on top of most common network protocols such as HTTP,
IIOP, SMTP, or TFTP.

In general, we consider an entity or SAMAP-entity any
software entity with autonomy to run by itself, or in other
words with its own thread of execution. Although most
times a SAMAP entity will be a software agent, we have
not restricted a SAMAP entity to be a software agent be-
cause we think it is too restrictive. For example, one can
think of a simple temperature sensor which runs a very sim-
ple daemon to answer queries of the current temperature.
Section 3 provides a description of the main SAMAP enti-
ties.

SAMAP provides a simple naming system, which is so-
mehow a simplified local name system based on the SPKI/-
SDSI (Simple Public Key Infrastructure/Simple Distributed
Security Infrastructure). This naming system is a good base
to allow the creation of groups that can be self-managed by
agents.

It also provides some basic protocols for self-manage-
ment of entities. This protocols can be seen as very basic
step towards the management of pervasive computing envi-
ronments. They are based on the idea that entities can hold
other entities to coordinate tasks

3. SAMAP ENTITIES

We classify these entities in four categories: Simple Entity,
Control Station, Directory Data Station, and Environment
Data Station. This categories can be seen as roles, an entity
can act in one or more of these roles at the same time.

Simple Entity (SE) This is the most simple and basic en-
tity. The minimum requirements for an SE is to be
able to communicate with other entities. Although
not required, an SE can be a mobile entity, such as

a mobile agent, or generic mobile code with enough
autonomy to be considered an entity.

Control Station (CS) The Control Station, is an entity able
to manage and control other entities. A CS will nor-
mally need enough processing resources to perform
cryptographic operations. They can be autonomous
or interactively controlled by a user or another entity.
A CS can own other entities and use them.

Directory Data Station (DDS) The DDS is an entity that
stores directory information. It can be seen as a very
simplified UDDI or DNS server for SAMAP. The
DDS maintains a directory listing services and the
entities associated to the services, as well as single
entities and groups of entities. It can be consulted by
other entities to find services and other entities loca-
tion.

Environment Data Station (EDS) An Environment Data-
Station is an entity which provides context informa-
tion. Such entities can be sensor devices providing
information from the environment, such as location
information used to track users on a room, tempera-
ture, movement, . . .

It is important to note that there may be some possible
constraints on the mobility of entities due to secure require-
ments. Although entities will normally run in a controlled
environment, this may not be case for all the situations. For
instance, if we consider a mobile agent environment, where
there is not a complete trust relation in all the entities, secu-
rity operations may be very dangerous. A first approach is
to impose the constraint to a CS to be a static entity, which
will run always in a trusted platform. Obviously this restric-
tion can be bypassed when there are no security threads or
entities are running in a closed environment.

An important notion in SAMAP, is ownership. Each
non-CS entity has a CS owner associated to it (a CS can
or cannot have owner). The ownership is an static and im-
mutable property of the entities. It makes reference to the
origin of the entity, which will normally be the creator of
the specific application or service supplier. The owner of an
entity is the main responsible for the entity. If an entity mis-
behaves or produces some erratic execution due to bugs, the
owner can be made responsible for it. The owner has also to
take care of the execution of its entities, ensuring that an idle
entity does not run forever idle, providing a potential denial
of service. This is accomplished by a simple heart-breath
protocol, where the owner can get the status of its entities
every given period of time.

Beside the owner, there is the holder. Each entity can
have one or several holders, or none if it is idle. A holder is
a CS which is using the entity for an specific application or
service and normally for a temporary period of time.



3.1. SAMAP Identity

In SAMAP, each entity has to be uniquely identified. The
identity is a very important concept in the SAMAP frame-
work, since it is the base for all the trust relations and inter-
actions.

We use a cryptographic approach to provide security re-
lated features, including trust management, to SAMAP. In
SAMAP each entity has a pair of cryptographic keys (a pub-
lic key and a private key), and the public key acts as an iden-
tifier of the entity. Given the properties of common pub-
lic key algorithms we can assume public key uniqueness in
practice. This is a common approach of trust management
systems such as SPKI/SDSI [4] or KeyNote [2].

In order to simplify the management of public keys, we
define an SAMAP identifier, denoted as SID as the hash of
a public key. In our current implementation we use a MD5
functions, which gives a 128 bits SID. As a side effect it
results compatible in size with the 128 bits UUID (Univer-
sal Unique Identifier) identifier [8], which is widely used in
distributed environments.

The SAMAP identity is complemented with one or more
optional resolvers. Resolvers provide network addresses to
locate the entity or to locate some directory entity, which
can resolve the SID to a network address. It is important
to note that in most cases, resolvers won’t be used, given
the pervasive environment and characteristics of the appli-
cations of SAMAP, the most common way to locate an en-
tity is through service discovery services provided by Di-
rectory Data Stations.

3.2. SAMAP Entity and Service Discovery

In order to provide a fully distributed environment, we relay
on current service discovery algorithms to locate not only
services but also concrete entities. Since we base our sys-
tem in a multi agents system, we have opted for adapting
the current specification for agent discovery services from
FIPA [5].

The FIPA Agent Discovery Service provides a simple
agent discovery service, with its associated ontology. We
have used the same ontology, but we have adapted the speci-
fication to SAMAP. In our case the discovery service is pro-
vided by Directory Data Stations. Each DDS can perform
service and entity location by using a simplified gnutella-
like protocol. An we can discovery not only agents but ser-
vices (in an UDDI fashion), and individual entities. Also,
entities can advertise themselves to DDSs.

For example we can have some SAMAP-entities, which
can control the ambient conditions of the rooms when we
enter in a building. They adjust the lights, the temperature,
the humidity, etc. of the room we enter in. We can get one of
these entities to work for us by using our personal Control
Station to control it, but first of all we have to find it. We can

use a DDS to ask for the ambient adjuster service, which
will return to us the identity and location of entities that we
can use for that purpose.

Summarizing, DDSs offer a discovery service to other
entities to look for entities, groups, or services:

• SAMAP-entity-discovery: returns the location (net-
work address) of a given entity if the parameter is a
SID.

• SAMAP-service-discovery: returns a list of entities
that can offer a given service.

4. SAMAP MANAGEMENT PROTOCOLS

SAMAP provides some simple protocols to manage entities,
based on authorization or trust management. The main idea
is to provide protocols as simple as possible, that can be
extended to support more complex interactions. Here we
describe the main basic protocols, which deal mainly with
the management of the SAMAP entities, and more precisely
with the possession of entities, that is, how to become a
holder or other entities, and related actions. These protocols
are normally specified through simple FIPA ontologies.

4.1. Take Possession

The take-possession protocol allows a CS to become
the holder of another entity. This is achieved in a two step
protocol where both entities interchange their public keys.

1. The CS sends a possession-request together with its
public key, and an ontology corresponding the service
or task requested to the entity, say SID2.

2. SID2 replays with a possession-granted with its pub-
lic key if it accepts the possession. This normally
means that the entity is in an idle or engaged state.

3. If the possession is not accepted, the entity responds
with a possession-denied message, which optionally
may include the reason. The reason to reject a pos-
session will normally be due to the entity being in a
busy or transient state, or because the entity cannot
handle the ontology required by the holder.

4.2. Delegate Possession

A CS can delegate the possession of an entity to another
CS. This is very useful in situations where there are com-
plex interactions between several CSs and entities. CSs can
exchange their entities.

1. CS1 sends a delegation-request to SID1 providing
the identifier CS2. Note that SID1 cannot deny the
delegation, this is because the operation is fired by its



(or one of its) holder. Even if SID1 is busy it has to
accept the delegation. After the delegation SID1 can
revoke the possession of CS2 if needed.

2. SID1 contacts CS2 with a possession-notify, which
warns CS2 that it has become its holder. The message
includes SID1 public key.

3. CS2 can accept or deny the delegation. If accepted,
it sends a possession-accepted message together with
its public key, if not, it sends a possession-denied.

4. Finally, SID1 notifies CS1 the result of the posses-
sion notification. If CS2 does not accept the posses-
sion, CS1 continues to be the holder of SID1.

4.3. Terminate and Revoke Possession

Since the possession of an entity is required and initiated
by a CS it has to be terminated by the same CS. This ter-
minations is done by a simple possession-termination noti-
fication message from the CS to the entity. Nevertheless,
there are some situations where the entity may initiate the
termination of the possession. This situations does not cor-
respond to the normal operation between the holder and the
entity, thus we refer to them as revocation of possession.
The revocation can occur because the entity is detecting
a malfunction, has to stop doing its tasks, is going to be
stopped (shutdown, killed, . . . ), or by direct indication of
the owner.

The protocol is also a simple notification message, pos-
session-revoked, which may contain the reason.

5. CONCLUSIONS

In this paper we have presented an overview of the Secure
Agent-based MAnagement for Pervasive computing (SA-
MAP) system. SAMAP provides a trust management in-
spired architecture to support multi-agent systems in perva-
sive computing. The main idea behind SAMAP is to pro-
vide a very simple framework that can be adapted and used
in a wide range of applications and environments.

SAMAP provides support for several roles interacting
in a pervasive environment. A key issue of SAMAP is the
use of a naming schema that provides considerable bene-
fits. It allows the easy creation of groups, in a very scal-
able and robust way. On the other hand it also simplifies
the interactions between entities, and the protocols can be
safely simplified. The naming schema identifies each entity
as its public key gaining all the advantages that this kind of
naming schemas (used by some trust management systems)
have.

We have also designed some protocols for the manage-
ment of entities. A required characteristic of pervasive com-
puting is self-management. These protocols, given its sim-

plicity and robustness allows the management of entities by
other entities, in an easy and efficient way.

Currently we have a prototype implementation of SA-
MAP, which runs on top of a modified version of JADE (a
popular open source multi-agent platform) supporting mo-
bility and several security features. And we are working
towards other platforms and languages.

6. REFERENCES

[1] J. Ametller, S. Robles, and J. Borrell. Agent migration
over fipa acl messages. In Mobile Agents for Telecom-
munication Applications (MATA), 2003.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The KeyNote Trust Management
System. RFC 2704, IETF, September 1999.

[3] C. Ellison. UPnP Security Ceremonies Design Docu-
ment v.1.0. UPnP Forum, October 2003.

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory.
RFC 2693, IETF, September 1999.

[5] FIPA. Fipa agent discovery service specification.
Foundation for Intelligent Physical Agents (FIPA), TC
Ad Hoc Preliminary Specification, August 2003.

[6] FIPA. FIPA Specifications. Foundation for Intelligent
Physical Agents (FIPA) http://www.fipa.org,
2003.

[7] L. Kagal, T. Finin, and A. Joshi. Trust-based secu-
rity in pervasive computing environments. Computer,
34(12), 2001.

[8] P. Leach, M. Mealling, and R. Salz. A
UUID URN Namespace. Interet draft:
draft-mealling-uuid-urn-03.txt, January
2004.

[9] G. Navarro, S. Robles, and J. Borrell. Role-based ac-
cess control for e-commerce sea-of-data applications.
In Information Security Conference 2002, 2002.

[10] M. Sloman. Will pervasive computers be manageable?
Keynote Talk HP OpenView 2001, New Orleans, June
2001.

[11] Frank Stajano and Ross J. Anderson. The resurrect-
ing duckling: Security issues for ad-hoc wireless net-
works. In Proceedings of the 7th International Work-
shop on Security Protocols, 2000.

[12] TILAB. Java Agent DEvelopment Frame-
work: JADE. Telecom Italia Lab (TILAB)
http://jade.tilab.com/.


